

www.ijmetmr.com/icecv2015 Page 34

An Adaptive Low Latency Low Complexity Architecture for

Matching of Information Coded with Error–Correcting Codes
Khadeejah Neelofer Roohi

PG Scholar

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

M.A.Himayath Shamshi

Asst. Professor

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

P Prasad rao

Professor & HoD

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

Abstract: A computing system is one, where an

input data needs to be compared with a stored

data to locate the matching entry, e.g.,

translation look-aside buffer and cache tag array

lookup matching. In this paper we propose a new

architecture to reduce complexity and latency for

matching the data protected with an error-

correcting code (ECC). It is based on the fact

that the codeword of an ECC generated by

encoding is usually represented in a systematic

form, and it consists of the raw data and the

parity information. The proposed architecture

parallelizes the comparison of the data and that

of the parity information. To further reduce the

latency and complexity, in addition, a new

butterfly-formed weight accumulator (BWA) is

proposed for the efficient computation of the

Hamming distance. The proposed architecture

examines whether the incoming data matches

the stored data if a certain number of erroneous

bits are corrected.

1. Introduction

Data comparison circuit is a logic that has many

applications in a computing system. For example,

to check whether a piece of information is in a

cache, the address of the information in the

memory is compared to all cache tags in the same

set that might contain that address. Error

correction codes (ECC) are the one, most

commonly used to protect standard memories and

circuits [6], while more sophisticated codes are

used in critical applications such as space [6].

ECC are widely used to enhance the reliability

and data integrity of memory structures in modern

microprocessors. For example, caches on modern

microprocessors are protected by ECC [3]. If a

memory structure is protected with ECC, a piece

of data is encoded first and the entire codeword

including the ECC check bits are written into the

memory array. When the input data is loaded into

the system, it has to be encoded and compared

with the data stored in the memory and corrected

if errors are detected to obtain the original data.

Data comparison circuit is usually in the critical

path of a pipeline stage because the result of the

comparison determines the flow of the succeeding

operations. When the memory array is protected

by ECC, it exacerbates the criticality because of

the added latency due to ECC logic. In the cache

tag matching example, the cache tag directory

must be accessed first. After the tag information is

retrieved, it must go through ECC decoding and

correction before the comparison operation can be

performed. At the mean time, the corresponding

data array is waiting for the comparison result to

decide which way in the set to load the data from.

The most recent solution for the matching

problem is the direct compare method [5], which

encodes the incoming data and then compares it

with the retrieved data that has been encoded as

well. Therefore, the method eliminates the

complex decoding from the critical path. In

performing the comparison, the method does not

examine whether the retrieved data is exactly the

same as the incoming data. Instead, it checks if the

www.ijmetmr.com/icecv2015 Page 35

retrieved data resides in the error correctable

range of the codeword corresponding to the

incoming data. As the checking necessitates an

additional circuit to compute the Hamming

distance, i.e., the number of different bits between

the two code words, the saturate adder (SA) was

presented [5] as a basic building block for

calculating the Hamming distance.

However, it does not consider an important fact

that a practical ECC codeword is usually

represented in a systematic form in which the data

and parity bits are completely separated from each

other. In addition, SA contributes to the increase

of the entire circuit complexity as it always forces

its output not to be greater than the number of

detectable errors by more. In brief, we renovate

the SA-based direct compare architecture to

reduce the latency and hardware complexity by

resolving the drawbacks. More specifically, we

consider the characteristics of systematic codes in

designing the proposed architecture and propose a

low-complexity processing element that computes

the Hamming distance faster. Therefore, the

latency and the hardware complexity are

decreased considerably compared with the SA

based architecture. The rest of this brief is

organized as follows. Section II reviews previous

works. The proposed architecture is explained in

Section III, and evaluated in Section IV. Finally,

concluding remarks are made in Section V.

2. Previous Works

This section describes the conventional decode-

and-compare architecture based on the direct

compare method. For the sake of concreteness,

only the tag matching performed in a cache

memory is discussed in this brief, but it is said that

the proposed architecture can be applied to similar

applications without loss of generality.

Direct Compare Method

The key idea behind direct compare scheme is to

utilize the information carried by the incoming

data (referred to as input) to circumvent the

necessity of decoding and correction of the stored

codeword which may or may not have errors. For

input protected with ECC, in most scenarios, the

corrupted codeword is the only copy of that

contains the original information. Without

redundancy provided by ECC there is no other

way to retrieve it. However, for data comparison,

the absolute values of the stored information are

not that important, but rather the relative value to

the incoming data is important for deriving a

comparison result. Considering the number of

input bits (N) to be 31, i.e., N=31 a circuit for

direct compare method is proposed with full

adders and saturate adders.

Decode-and-Compare Architecture

Let us consider a cache memory where an n-bit

codeword is stored after being encoded by a (n, k)

code. In the decode-and-compare architecture

depicted in Fig. 2, the n-bit retrieved codeword

should first be decoded to extract the original k-bit

tag. The extracted k-bit tag is then compared with

the k-bit tag field of an incoming address to

determine whether the tags are matched or not. As

the retrieved codeword should go through the

decoder before being compared with the incoming

tag, the critical path is too long to be employed in

a practical cache system designed for high-speed

www.ijmetmr.com/icecv2015 Page 36

access. Since the decoder is one of the most

complicated processing elements, in addition, the

complexity overhead is not negligible. Grounded

on the fact of implementing the decoding

architecture in hardware, it results in increase of

hardware complexity, since the decoding

technique includes large no of gates when

implemented.

Figure 2: Decode-and-Compare architecture

3. Proposed Architecture

This section presents a new architecture that can

reduce the latency and complexity of the data

comparison by using the characteristics of

systematic codes.

A. Block Diagram

The Fig.3 describes the flow of the proposed

architecture. The incoming data is encoded by

appending the parity bits.

Then the encoded data is compared with the data

in the memory which can be retrieved. The XOR

bank and Butterfly formed weighted accumulator

is used to find the number of bit changes and to

calculate the number of ones which are fed into

error correction and error deduction unit. Thus the

output is obtained from the decision unit.

B. Data Path Design

In the SA-based architecture [5], the comparison

of two codeword is performed after the incoming

tag is encoded. Therefore, the critical path consists

of a series of the encoding and the n-bit

comparison. However, the fact that, in practice,

the ECC codeword is of a systematic form in

which the data and parity parts are completely

separated is not taken into the account. As the data

part of a systematic codeword is exactly the same

as the incoming tag field, it is immediately

available for comparison while the parity part

becomes available only after the encoding is

completed. Grounded on this fact, the comparison

of the k-bit tags can be started before the

remaining (n–k)-bit comparison of the parity bits.

In the proposed architecture, therefore, the

encoding process to generate the parity bits from

the incoming tag is performed in parallel with the

tag comparison, resulting in the reduction of the

overall latency.

C. Construction of Low Delay Single-Error

Correction Codes

The proposed method to construct SEC and SEC-

DED codes tries to minimize the number of ones

in each row and in each column of the parity

check H matrix. Reducing the number of ones in

the rows lowers the delay when computing the

parity bits in the encoder. To minimize the

number of ones the value w = 2 can be used to

obtain SEC codes. It is also interesting to analyze

the case w = 3 as in that case the code is SEC-

DED. Since for the parity bits thecolumns have

only a one, the condition is not met as other

columns have a one in that bit. Therefore, this

modification cannot correct errors in the parity

bits. This is not an issue for registers as the

www.ijmetmr.com/icecv2015 Page 37

correction of parity bits is not normally needed.

The method to construct the code starts by finding

the smallest value of n − k for which the following

is true:

For w = 2, this value can be found analytically by

solving (1) that is a quadratic equation in n. As the

value of n has to be larger than k, only one of the

two possible solutions of the equation is valid in

our case. The value of n − k obtained is

that shows a growth of the number of parity bits

with square root of k that is larger than

logarithmic growth of Hamming codes. This

means that as k increases, the overhead of the

proposed codes in terms of the number of

additional parity bits compared to Hamming will

also increase. Similarly, for w = 3, the solution to

(1) is given by

that, as k is larger than one, it can be

approximated by

n − k ≥((6k)^1/3) + 1 (4)

The growth of the number of parity check bits

with k is smaller than for w = 2, but is still larger

than the logarithmic growth of traditional SEC-

DED codes. In the second step to constructing the

codes, a different combination of w of the n−k

added bits is used for each of the first k columns

of the H matrix. Equation (1) guarantees that there

are sufficient different combinations. The

remaining n − k columns form an identity matrix

of size n − k. The reduction in the number of ones

enables a lower encoding and decoding delay. In a

general case, a Hamming code will have rows

with a number of ones that is roughly k/2. This

compares with the proposed SEC codes (w = 2)

for which the number of ones in a row is by

design at most n − k − 1. Similarly, to locate an

error a traditional SEC code requires an n−k input

AND gate compared with a simple two input

AND gate in the proposed code. In practical

implementations, this results in a significant

reduction of the encoding and decoding delays.

One distinct feature of the proposed codes is that

they correct errors on the data bits only. This is

similar to other codes such as Orthogonal Latin

square (OLS) codes [10]. However, in OLS codes,

each pair of data bits participates in at most one

shared parity check bit to ensure that majority

logic decoding can be used. This is different from

the proposed scheme in which the goal is to

ensure that no data bit participates in all the parity

check bits, in which another data bit participates.

This is then used to simplify the location and

correction of an error, as described before.

Another difference is that OLS codes are

commonly used when multiple error correction

capabilities are needed although SEC can also be

implemented. The main issues with SEC OLS

codes are that they are only implemented for a few

block sizes and require a large number of parity

check bits. Finally, it is worth mentioning that the

parity check matrices of the proposed codes are

similar to that of low density parity check (LDPC)

codes commonly used in communication systems

[11]. Nevertheless, since LDPC codes usually

have large block size, and must provide multiple

error correction, the encoding and decoding

procedures are very different from our proposed

codes and require complex logic circuitry [11].

D. Architecture for Hamming Distance

Computation

www.ijmetmr.com/icecv2015 Page 38

The proposed architecture grounded on the data

path design is shown in Fig.4. It contains multiple

butterfly-formed weight accumulators (BWAs)

proposed for the Hamming distance computation.

The basic function of the BWA is to count the

number of 1’s among its input bits. It consists of

multiple stages of HAs as shown in Fig.5(a),

where each output bit of a HA is associated with a

weight. The HAs in a stage are connected in a

butterfly form so as to accumulate the carry bits

and the sum bits of the upper stage separately. In

other words, both inputs of a HA in a stage,

except the first stage, are either carry bits or sum

bits computed in the upper stage. This connection

method leads to a property that if an output bit of

a HA is set, the number of 1’s among the bits in

paths reaching the HA is equal to the weight of

the output bit.

Figure 4:.Architecture of Hamming Distance

Computation

Figure 5 (a):.General structure and (b): New

revised structure.

In Fig. 5(a), for example, if the carry bit of the HA

is set, the number of 1’s among the associated

input bits, i.e., A, B, C, and D, is 2. At the last

stage of Fig. 5(a), the number of 1’s among the

input bits, d, can be calculated as d = 8I + 4 (J + K

+ M) + 2 (L + N + O) + P (5)

Since what we need is not the precise Hamming

distance but the range it belongs to, it is possible

to simplify the circuit. When rmax = 1, for

example, two or more than two 1’s among the

input bits can be regarded as the same case that

falls in the fourth range.

In that case, we can replace several HAs with a

simple OR-gate tree as shown in Fig. 5(b). This is

an advantage over the SA. Note that in Fig. 5

there is no overlap between any pair of two carry-

bit lines or any pair of two sum-bit lines. As the

overlaps exist only between carry-bit lines and

sum-bit lines, it is not hard to resolve overlaps in

the contemporary technology that provides

multiple routing layers no matter how many bits a

BWA takes. We now explain the overall

architecture in more detail. Each of the number of

gates in the critical path. bThe count of all gates.

cThe critical path delay(CPD)in nanoseconds.

XOR stage generates the bitwise difference vector

for either data bits or parity bits.

E. General Expressions for the Complexity

www.ijmetmr.com/icecv2015 Page 39

The complexity as well as the latency of

combinational circuits heavily depends on the

algorithm employed. It is unfortunately hard to

derive an analytical and fully deterministic

equation that shows the relationship between the

number of gates and the latency for the proposed

architecture The complexity of the proposed

architecture, C, can be expressed as

C = CXOR+ CENC+ CBWA(k) + CBWA(n− k)+

C2nd + CDU ≤ n + CENC + 2CBWA(n) + CDU

(6)

where CXOR, CENC, C2nd, CDU, and CBWA(n)

are complexities of XOR banks, an encoder, the

second level circuits, the decision unit, and a

BWA for n inputs, respectively. Using the

recurrence relation, CBWA(n) can be calculated

as

CBWA(n) = CBWA (n/2) + CBWA (n/2) + 2 [n/2]

F. General Expressions for the Latency

The latency of the proposed architecture, L, can be

expressed as

L ≤ max [LXOR + LBWA (k), LENC + LXOR +

LBWA (n-k)] + L2nd + LDU (8)

where LXOR, LENC, L2nd, LDU, and LBWA (n)

are the latencies of an XOR bank, an encoder, the

second level circuits, the decision unit, and a

BWA for n inputs, respectively. Note that the

latencies of the OR-gate tree and BWAs for x ≤ n

inputs at the second level are all bounded by

log2n. As one of BWAs at the first level finishes

earlier than the other, some components at the

second level may start earlier.

Similarly, some BWAs or the OR-gate tree at the

second level may provide their output earlier to

the decision unit so that the unit can begin its

operation without waiting for all of its inputs. In

such cases, L2nd and LDU can be partially hidden

by the critical path of the preceding circuits, and L

becomes shorter than the given expression.

4. Results

Table 2: Comparison For Latency And

Complexity

a The number of gates in the critical path.

b The count of all gates.

c The critical path delay(CPD)in nanoseconds.

d The equivalent gate count(EGC).

e The numbers in the parenthesis are normalized

values

Table II shows the latencies and hardware

complexities resulting from three architectures: 1)

the conventional decode-and-compare; 2) The SA-

based direct compare; and 3) the proposed ones.

In [5], the latency is measured from the time when

the incoming address is completely encoded. As

the critical path starts from the arrival of the

incoming address to a cache memory, the

encoding delay must be, however, included in the

latency computation. The latency values in Table

II are all measured in this way. Besides, critical-

path delays in Table II are obtained by performing

post layout simulations and equivalent gate counts

are measured by counting a two-input NAND as

one. As shown in Table II, the proposed

architecture is effective in reducing the latency as

well as the hardware complexity even with

considering the practical factors. Note that the

effectiveness of the proposed architecture over the

SA-based one in shortening the latency gets larger

as the size of a codeword increases. The reason is

that, the latencies of the SA-based architecture

and the proposed one is dominated by SAs and

www.ijmetmr.com/icecv2015 Page 40

HAs, respectively. As the bit-width doubles, at

least one more stage of SAs or HAs needs to be

added. Since the critical path of a HA consists of

only one gate while that of a SA has several gates,

the proposed architecture achieves lower latency

than its SA-based counterpart, especially for long

code words.

5. Conclusion

To reduce the latency and hardware complexity, a

new architecture has been presented for matching

the data protected with an ECC. The proposed

architecture examines whether the incoming data

matches the stored data if a certain number of

erroneous bits are corrected. To reduce the

latency, the comparison of the data is parallelized

with the encoding process that generates the parity

information. It is based on the fact that the

systematic codeword has separate fields for the

data and parity. In addition, an efficient

processing architecture has been presented to

further minimize the latency and complexity. As

the proposed architecture is effective in reducing

the latency as well as the complexity

considerably, it can be regarded as a promising

solution for the comparison of ECC-protected

data. Though this brief focuses only on the tag

match of a cache memory, the proposed method is

applicable to diverse applications that need such

comparison.

References

[1] J.D. Warnock, Y.H. Chan, S. M.Carey,

H.Wen, P. J. Meaney, G.Gerwig,

H.H.Smith, Y.H.Chan, J. Davis, P. Bunce,

A.Pelella, D.Rodko, P.Patel, T.Strach, D.Malone,

F. Malgioglio, J. Neves, D. L. Rude, and W. V.

Huott “Circuit and physical design

implementation of the microprocessor chip for the

zEnterprise system,” IEEE J. Solid-State Circuits,

vol. 47, no. 1, pp. 151– 163, Jan. 2012.

[2] B.Y Kong, Jihyuck Jo, Hyewon Jeong, Mina

Hwang, Soyoung Cha, Bongjin Kim, and In-

Cheol Park, “Low- Complexity Low-Latency

Architecture for Matching of Data Encoded With

Hard Systematic Error-CorrectingCodes,” IEEE

Trans. Very Large Scale Integr.(VLSI) Syst., vol.

22, no. 7, pp. 1648 - 1652, July. 2014.

[3] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama,

T. Asakawa, T. Muta, K.Morita, T.

Motokurumada, S. Okada, H. Yamashita, Y.

Satsukawa, A. Konmoto, R. Yamashita, and H.

Sugiyama, “A 1.3 GHz fifth generation SPARC64

microprocessor,” in ISSCC. Dig. Tech. Papers,

2003, pp. 246–247.

[4] AMD Inc., Sunnyvale, CA, “Family 10h AMD

Opteron™ Processor Product Data Sheet,” PID:

40036 Rev: 3.04, 2010.

Available:http://support.amd.com/us/Processor_T

echDocs/40036.pdf [Online]

[5] W.Wu, D. Somasekhar, and S.-L. Lu, “Direct

compare of information coded with error-

correcting codes,” IEEE Trans. Very Large Scale

Integr.(VLSI) Syst., vol. 20, no. 11, pp. 2147–

2151, Nov. 2012.

[6] Pedro Reviriego, Salvatore Pontarelli, Juan

Antonio Maestro, and Marco Ottavi, “A Method

to Construct Low Delay Single Error Correction

Codes for Protecting Data Bits Only,” IEEE

Trans. Computer-Aided Design of Integrated

Circuits and Systems., vol. 32, no. 3, pp. 479 -

483, March 2013.

[7] M. Nicolaidis, “Design for soft error

mitigation,” IEEE Trans. Device Mater. Reliab.,

vol. 5, no. 3, pp. 405–418, Sep. 2005.

[8] C. L. Chen and M. Y. Hsiao, “Error-correcting

codes for semiconductor memory applications: A

state-of-the-art review,” IBM J. Res. Develop.,

vol. 28, no. 2, pp. 124–134, 1984.

www.ijmetmr.com/icecv2015 Page 41

[9] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M.

Re, and A. Salsano, “Fault tolerant solid state

mass memory for space applications,” IEEE

Trans. Aerospace Electron. Syst., vol. 41, no. 4,

pp. 1353–1372, Oct. 2005.

[10]M. Y. Hsiao, D. C. Bossen, and R. T. Chien,

“Orthogonal latin square codes,” IBM J. Res.

Develop., vol. 14, no. 4, pp. 390–394, Jul. 1970.

[11] G. Li, I. J. Fair, and W. A. Krzymien, “Low-

density parity-check codes for space-time wireless

transmission,” IEEE Trans. Wirel. Commun.,

vol.5, no. 2, pp. 312–322, Feb. 2006.

[12]M. Y. Hsiao “A class of optimal minimum

odd-weight column SECDED codes,” IBM J. Res.

Develop., vol. 14, pp. 395–301, Jul. 1970.

[13] R. W. Hamming, “Error detecting and error

correcting codes,” Bell Syst. Tech. J., vol. 29, pp.

147–160, Apr. 1950.

[14] V. Gherman, S. Evain, N. Seymour, and Y.

Bonhomme, “Generalized parity-check matrices

for SEC-DED codes with fixed parity,” in Proc.

IEEE On-Line Testing Symp., Jul. 2011, pp. 198–

20.

Author-1:-

Khadeejah Neelofer Roohi completed her B.Tech from

Balaji Institute of Engineering and Sciences; and

Pursuing M.Tech in Vaagdevi College of Engineering.

Author-2:-

Mr. M.A.Himayath Shamshi is working as Asst.prof in

Dept of ECE, Vaagdevi College of Engineering,

Bollikunta, Warangal.

Author-3:-

Professor P Prasad Rao, Head of the Department

of ECE, Vaagdevi College of Engineering

Bollikunta, Warangal.

