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Abstract: A computing system is one, where an 

input data needs to be compared with a stored 

data to locate the matching entry, e.g., 

translation look-aside buffer and cache tag array 

lookup matching. In this paper we propose a new 

architecture to reduce complexity and latency for 

matching the data protected with an error-

correcting code (ECC). It is based on the fact 

that the codeword of an ECC generated by 

encoding is usually represented in a systematic 

form, and it consists of the raw data and the 

parity information. The proposed architecture 

parallelizes the comparison of the data and that 

of the parity information. To further reduce the 

latency and complexity, in addition, a new 

butterfly-formed weight accumulator (BWA) is 

proposed for the efficient computation of the 

Hamming distance. The proposed architecture 

examines whether the incoming data matches 

the stored data if a certain number of erroneous 

bits are corrected.   

 

1. Introduction  

Data comparison circuit is a logic that has many 

applications in a computing system. For example, 

to check whether a piece of information is in a 

cache, the address of the information in the 

memory is compared to all cache tags in the same 

set that might contain that address. Error 

correction codes (ECC) are the one, most 

commonly used to protect standard memories and 

circuits [6], while more sophisticated codes are 

used in critical applications such as space [6]. 

ECC are widely used to enhance the reliability 

and data integrity of memory structures in modern 

microprocessors. For example, caches on modern 

microprocessors are protected by ECC [3]. If a 

memory structure is protected with ECC, a piece 

of data is encoded first and the entire codeword 

including the ECC check bits are written into the 

memory array. When the input data is loaded into 

the system, it has to be encoded and compared 

with the data stored in the memory and corrected 

if errors are detected to obtain the original data.  

 

Data comparison circuit is usually in the critical 

path of a pipeline stage because the result of the 

comparison determines the flow of the succeeding 

operations. When the memory array is protected 

by ECC, it exacerbates the criticality because of 

the added latency due to ECC logic. In the cache 

tag matching example, the cache tag directory 

must be accessed first. After the tag information is 

retrieved, it must go through ECC decoding and 

correction before the comparison operation can be 

performed. At the mean time, the corresponding 

data array is waiting for the comparison result to 

decide which way in the set to load the data from.  

 

The most recent solution for the matching 

problem is the direct compare method [5], which 

encodes the incoming data and then compares it 

with the retrieved data that has been encoded as 

well. Therefore, the method eliminates the 

complex decoding from the critical path. In 

performing the comparison, the method does not 

examine whether the retrieved data is exactly the 

same as the incoming data. Instead, it checks if the 
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retrieved data resides in the error correctable 

range of the codeword corresponding to the 

incoming data. As the checking necessitates an 

additional circuit to compute the Hamming 

distance, i.e., the number of different bits between 

the two code words, the saturate adder (SA) was 

presented [5] as a basic building block for 

calculating the Hamming distance.  

 

However, it does not consider an important fact 

that a practical ECC codeword is usually 

represented in a systematic form in which the data 

and parity bits are completely separated from each 

other. In addition, SA contributes to the increase 

of the entire circuit complexity as it always forces 

its output not to be greater than the number of 

detectable errors by more. In brief, we renovate 

the SA-based direct compare architecture to 

reduce the latency and hardware complexity by 

resolving the drawbacks. More specifically, we 

consider the characteristics of systematic codes in 

designing the proposed architecture and propose a 

low-complexity processing element that computes 

the Hamming distance faster. Therefore, the 

latency and the hardware complexity are 

decreased considerably compared with the SA 

based architecture. The rest of this brief is 

organized as follows. Section II reviews previous 

works. The proposed architecture is explained in 

Section III, and evaluated in Section IV. Finally, 

concluding remarks are made in Section V.  

 

2. Previous Works  

This section describes the conventional decode-

and-compare architecture based on the direct 

compare method. For the sake of concreteness, 

only the tag matching performed in a cache 

memory is discussed in this brief, but it is said that 

the proposed architecture can be applied to similar 

applications without loss of generality. 

 

Direct Compare Method  

The key idea behind direct compare scheme is to 

utilize the information carried by the incoming 

data (referred to as input) to circumvent the 

necessity of decoding and correction of the stored 

codeword which may or may not have errors. For 

input protected with ECC, in most scenarios, the 

corrupted codeword is the only copy of that 

contains the original information. Without 

redundancy provided by ECC there is no other 

way to retrieve it. However, for data comparison, 

the absolute values of the stored information are 

not that important, but rather the relative value to 

the incoming data is important for deriving a 

comparison result. Considering the number of 

input bits (N) to be 31, i.e., N=31 a circuit for 

direct compare method is proposed with full 

adders and saturate adders. 

 

 
 

Decode-and-Compare Architecture  

Let us consider a cache memory where an n-bit 

codeword is stored after being encoded by a (n, k) 

code. In the decode-and-compare architecture 

depicted in Fig. 2, the n-bit retrieved codeword 

should first be decoded to extract the original k-bit 

tag. The extracted k-bit tag is then compared with 

the k-bit tag field of an incoming address to 

determine whether the tags are matched or not. As 

the retrieved codeword should go through the 

decoder before being compared with the incoming 

tag, the critical path is too long to be employed in 

a practical cache system designed for high-speed 
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access. Since the decoder is one of the most 

complicated processing elements, in addition, the 

complexity overhead is not negligible. Grounded 

on the fact of implementing the decoding 

architecture in hardware, it results in increase of 

hardware complexity, since the decoding 

technique includes large no of gates when 

implemented.                                                                                                             

 
Figure 2: Decode-and-Compare architecture 

 

3. Proposed Architecture  

This section presents a new architecture that can 

reduce the latency and complexity of the data 

comparison by using the characteristics of 

systematic codes.  

 

A. Block Diagram  

The Fig.3 describes the flow of the proposed 

architecture. The incoming data is encoded by 

appending the parity bits.  

 

Then the encoded data is compared with the data 

in the memory which can be retrieved. The XOR 

bank and Butterfly formed weighted accumulator 

is used to find the number of bit changes and to 

calculate the number of ones which are fed into 

error correction and error deduction unit. Thus the 

output is obtained from the decision unit.  

 

B. Data Path Design  

In the SA-based architecture [5], the comparison 

of two codeword is performed after the incoming 

tag is encoded. Therefore, the critical path consists 

of a series of the encoding and the n-bit 

comparison. However, the fact that, in practice, 

the ECC codeword is of a systematic form in 

which the data and parity parts are completely 

separated is not taken into the account. As the data 

part of a systematic codeword is exactly the same 

as the incoming tag field, it is immediately 

available for comparison while the parity part 

becomes available only after the encoding is 

completed. Grounded on this fact, the comparison 

of the k-bit tags can be started before the 

remaining (n–k)-bit comparison of the parity bits. 

In the proposed architecture, therefore, the 

encoding process to generate the parity bits from 

the incoming tag is performed in parallel with the 

tag comparison, resulting in the reduction of the 

overall latency.  

C. Construction of Low Delay Single-Error 

Correction Codes  

The proposed method to construct SEC and SEC-

DED codes tries to minimize the number of ones 

in each row and in each column of the parity 

check H matrix. Reducing the number of ones in 

the rows lowers the delay when computing the 

parity bits in the encoder. To minimize the 

number of ones the value w = 2 can be used to 

obtain SEC codes. It is also interesting to analyze 

the case w = 3 as in that case the code is SEC-

DED. Since for the parity bits thecolumns have 

only a one, the condition is not met as other 

columns have a one in that bit. Therefore, this 

modification cannot correct errors in the parity 

bits. This is not an issue for registers as the 
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correction of parity bits is not normally needed. 

The method to construct the code starts by finding 

the smallest value of n − k for which the following 

is true: 

                                                                                                                   
For w = 2, this value can be found analytically by 

solving (1) that is a quadratic equation in n. As the 

value of n has to be larger than k, only one of the 

two possible solutions of the equation is valid in 

our case. The value of n − k obtained is 

 

 

that shows a growth of the number of parity bits 

with square root of k that is larger than 

logarithmic growth of Hamming codes. This 

means that as k increases, the overhead of the 

proposed codes in terms of the number of 

additional parity bits compared to Hamming will 

also increase. Similarly, for w = 3, the solution to 

(1) is given by 

 
that, as k is larger than one, it can be 

approximated by    

n − k ≥( (6k)^1/3) + 1          (4) 

The growth of the number of parity check bits 

with k is smaller than for w = 2, but is still larger 

than the logarithmic growth of traditional SEC-

DED codes. In the second step to constructing the 

codes, a different combination of w of the n−k 

added bits is used for each of the first k columns 

of the H matrix. Equation (1) guarantees that there 

are sufficient different combinations. The 

remaining n − k columns form an identity matrix 

of size n − k. The reduction in the number of ones 

enables a lower encoding and decoding delay. In a 

general case, a Hamming code will have rows 

with a number of ones that is roughly k/2. This 

compares with the proposed SEC codes (w = 2) 

for which the number of ones in a row is by 

design at most n − k − 1. Similarly, to locate an 

error a traditional SEC code requires an n−k input 

AND gate compared with a simple two input 

AND gate in the proposed code. In practical 

implementations, this results in a significant 

reduction of the encoding and decoding delays.  

 

One distinct feature of the proposed codes is that 

they correct errors on the data bits only. This is 

similar to other codes such as Orthogonal Latin 

square (OLS) codes [10]. However, in OLS codes, 

each pair of data bits participates in at most one 

shared parity check bit to ensure that majority 

logic decoding can be used. This is different from 

the proposed scheme in which the goal is to 

ensure that no data bit participates in all the parity 

check bits, in which another data bit participates.  

 

This is then used to simplify the location and 

correction of an error, as described before. 

Another difference is that OLS codes are 

commonly used when multiple error correction 

capabilities are needed although SEC can also be 

implemented. The main issues with SEC OLS 

codes are that they are only implemented for a few 

block sizes and require a large number of parity 

check bits. Finally, it is worth mentioning that the 

parity check matrices of the proposed codes are 

similar to that of low density parity check (LDPC) 

codes commonly used in communication systems 

[11]. Nevertheless, since LDPC codes usually 

have large block size, and must provide multiple 

error correction, the encoding and decoding 

procedures are very different from our proposed 

codes and require complex logic circuitry [11]. 

 

D. Architecture for Hamming Distance 

Computation  



 
 

www.ijmetmr.com/icecv2015 Page 38 
 

The proposed architecture grounded on the data 

path design is shown in Fig.4. It contains multiple 

butterfly-formed weight accumulators (BWAs) 

proposed for the Hamming distance computation. 

The basic function of the BWA is to count the 

number of 1’s among its input bits. It consists of 

multiple stages of HAs as shown in Fig.5(a), 

where each output bit of a HA is associated with a 

weight. The HAs in a stage are connected in a 

butterfly form so as to accumulate the carry bits 

and the sum bits of the upper stage separately. In 

other words, both inputs of a HA in a stage, 

except the first stage, are either carry bits or sum 

bits computed in the upper stage. This connection 

method leads to a property that if an output bit of 

a HA is set, the number of 1’s among the bits in 

paths reaching the HA is equal to the weight of 

the output bit. 

 
Figure 4:.Architecture of Hamming Distance 

Computation 

 

 
Figure 5 (a):.General structure and (b): New 

revised structure. 

In Fig. 5(a), for example, if the carry bit of the HA 

is set, the number of 1’s among the associated 

input bits, i.e., A, B, C, and D, is 2. At the last 

stage of Fig. 5(a), the number of 1’s among the 

input bits, d, can be calculated as d = 8I + 4 (J + K 

+ M) + 2 (L + N + O) + P (5)  

 

Since what we need is not the precise Hamming 

distance but the range it belongs to, it is possible 

to simplify the circuit. When rmax = 1, for 

example, two or more than two 1’s among the 

input bits can be regarded as the same case that 

falls in the fourth range.  

 

In that case, we can replace several HAs with a 

simple OR-gate tree as shown in Fig. 5(b). This is 

an advantage over the SA. Note that in Fig. 5 

there is no overlap between any pair of two carry-

bit lines or any pair of two sum-bit lines. As the 

overlaps exist only between carry-bit lines and 

sum-bit lines, it is not hard to resolve overlaps in 

the contemporary technology that provides 

multiple routing layers no matter how many bits a 

BWA takes. We now explain the overall 

architecture in more detail. Each of the number of 

gates in the critical path. bThe count of all gates. 

cThe critical path delay(CPD)in nanoseconds. 

XOR stage generates the bitwise difference vector 

for either data bits or parity bits. 

 

E. General Expressions for the Complexity  
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The complexity as well as the latency of 

combinational circuits heavily depends on the 

algorithm employed. It is unfortunately hard to 

derive an analytical and fully deterministic 

equation that shows the relationship between the 

number of gates and the latency for the proposed 

architecture The complexity of the proposed 

architecture, C, can be expressed as   

C = CXOR+ CENC+ CBWA(k) + CBWA(n− k)+ 

C2nd + CDU ≤ n + CENC + 2CBWA(n) + CDU                                           

(6) 

where CXOR, CENC, C2nd, CDU, and CBWA(n) 

are complexities of XOR banks, an encoder, the 

second level circuits, the decision unit, and a 

BWA for n inputs, respectively. Using the 

recurrence relation, CBWA(n) can be calculated 

as 

CBWA(n) = CBWA (n/2) + CBWA (n/2) + 2 [n/2]  

 

F. General Expressions for the Latency 

The latency of the proposed architecture, L, can be 

expressed as  

L ≤ max [LXOR + LBWA (k), LENC + LXOR + 

LBWA (n-k)] + L2nd + LDU        (8) 

 

where LXOR, LENC, L2nd, LDU, and LBWA (n) 

are the latencies of an XOR bank, an encoder, the 

second level circuits, the decision unit, and a 

BWA for n inputs, respectively. Note that the 

latencies of the OR-gate tree and BWAs for x ≤ n 

inputs at the second level are all bounded by 

log2n. As one of BWAs at the first level finishes 

earlier than the other, some components at the 

second level may start earlier.  

 

Similarly, some BWAs or the OR-gate tree at the 

second level may provide their output earlier to 

the decision unit so that the unit can begin its 

operation without waiting for all of its inputs. In 

such cases, L2nd and LDU can be partially hidden 

by the critical path of the preceding circuits, and L 

becomes shorter than the given expression.  

4. Results  

Table 2: Comparison For Latency And 

Complexity 

 
 

a The number of gates in the critical path.  

b The count of all gates.  

c The critical path delay(CPD)in nanoseconds. 

d The equivalent gate count(EGC). 

e The numbers in the parenthesis are normalized 

values 

 

Table II shows the latencies and hardware 

complexities resulting from three architectures: 1) 

the conventional decode-and-compare; 2) The SA-

based direct compare; and 3) the proposed ones. 

In [5], the latency is measured from the time when 

the incoming address is completely encoded. As 

the critical path starts from the arrival of the 

incoming address to a cache memory, the 

encoding delay must be, however, included in the 

latency computation. The latency values in Table 

II are all measured in this way. Besides, critical-

path delays in Table II are obtained by performing 

post layout simulations and equivalent gate counts 

are measured by counting a two-input NAND as 

one. As shown in Table II, the proposed 

architecture is effective in reducing the latency as 

well as the hardware complexity even with 

considering the practical factors. Note that the 

effectiveness of the proposed architecture over the 

SA-based one in shortening the latency gets larger 

as the size of a codeword increases. The reason is 

that, the latencies of the SA-based architecture 

and the proposed one is dominated by SAs and 
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HAs, respectively. As the bit-width doubles, at 

least one more stage of SAs or HAs needs to be 

added. Since the critical path of a HA consists of 

only one gate while that of a SA has several gates, 

the proposed architecture achieves lower latency 

than its SA-based counterpart, especially for long 

code words.  

 

5. Conclusion   

To reduce the latency and hardware complexity, a 

new architecture has been presented for matching 

the data protected with an ECC. The proposed 

architecture examines whether the incoming data 

matches the stored data if a certain number of 

erroneous bits are corrected. To reduce the 

latency, the comparison of the data is parallelized 

with the encoding process that generates the parity 

information. It is based on the fact that the 

systematic codeword has separate fields for the 

data and parity. In addition, an efficient 

processing architecture has been presented to 

further minimize the latency and complexity. As 

the proposed architecture is effective in reducing 

the latency as well as the complexity 

considerably, it can be regarded as a promising 

solution for the comparison of ECC-protected 

data. Though this brief focuses only on the tag 

match of a cache memory, the proposed method is 

applicable to diverse applications that need such 

comparison.   
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