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Abstract- Here we introduced a new method called 

Built in self-repair analyzer for the memory arrays. 

In this detection of errors is done by a single test. By 

performing the must-repair analysis on the fly during 

the test, it selectively stores fault addresses, and the 

final analysis is performed on the stored fault 

addresses to find a solution. The memory required to 

store the fault addresses is dominated by total area of 

our infrastructure. It grows quadratically with 

respect to the number of repair elements. This 

architecture also to support various types of word-

oriented memories. 
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1.Introduction 

Today’s system-on-chip (SoC) environment requires 

Significant changes in testing methodologies for 

memory arrays. The failure of embedded memories in 

a SoC is more expensive than that of commodity 

memories because a relatively large die is wasted. Due 

to the large die size and the complex fabrication 

process for combining memories and logic, SoCs 

suffer from relatively lower yield [1]. To improve the 

yield, memory arrays are usually equipped with spare 

elements, and external testers have been used to test 

the memory arrays and configures the spare elements. 

the SoC environment, combined with shrinking 

technology, allows us more area for on-chip test 

infrastructure at lower cost than before, which makes 

feasible a variety of built-in self test (BIST) and built 

in self-repair (BISR) techniques for reducing the test 

time. 

A built-in self-test (BIST) or built-in test (BIT) is a 

mechanism that permits a machine to test itself. The 

main purpose of BIST [2] is to reduce the complexity, 

and thereby decrease the cost and reduce 

manufacturing tests. The IC has a function that 

reliance upon external test equipment. BIST is used to 

make faster, less-expensive integrated circuit verifies 

all or a portion of the internal functionality of the IC. 

 
Fig.1. Basic BIST block diagram 

 

Built-in redundancy allocation (BIRA) [3] approaches 

have been proposed as part of BISR. Kawagoe et al. 

propose a pioneering BIRA approach, CRESTA. 

CRESTA [9] has the sub-analyzers for all solution 

candidates, which provides the optimal repair rate with 

a single test. The sub-analyzer consists of a row 

content addressable memory (CAM) with r entries (r is 

the number of repair rows) and a column CAM with c 

entries (c is the number of repair columns) Since this 

may not be affordable in memories with many spare 

elements, subsequent studies have been focused on 

reducing hardware complexity. 

 

In order to lower the hardware complexity and still 

guarantee the optimal repair rate, another approach is 

proposed. This evaluates each possible solution one by 

one and thus does not require the parallel sub-

analyzers [6]. Such serial implementations may 
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increase the overall test time, but the number of 

possible solutions is reduced using the must-repair 

analysis. 

 

2. Preliminaries  

In the classical spare allocation problem, we consider a 

bit oriented memory array with spare (repair) rows and 

spare (repair) columns [11]. Any fault row (column) 

can be replaced with a spare row (column).  If a repair 

solution exists for a memory array, the memory array 

is repairable. If a row has more than c(r) faults and a 

repair row is not used for the row (Column) the 

memory is not repairable. 

 

 
Fig. 2. Proposed on-chip infrastructure and must repair 

analyzer details 

 

3. Implementation for WOM 

There are various types of word-oriented repairable 

memories, and they impose different constraints on the 

spare allocation problem. Since it is difficult to capture 

all the different types of repairable memories into a 

generalized model and to design an universal repair 

analyzer, we categorize them into three types, which 

will be called type A, type B, and type C, respectively. 

A faulty row is replaced with a spare row, but the way 

to replace a faulty column varies, based on which they 

are classified. 

 

In word-oriented memories, the data in a word is 

usually not placed in adjacent locations due to several 

issues such as the coupling effect, and the columns 

associated with the same bit position are clustered 

together. In type A memories, there are spare column-

groups of ω columns each. A group of columns 

associated with a word is replaced with a space-

column group. In other words, the column replacement 

is performed on a column group basis. If the first bit 

line in group 0 is faulty, and it is replaced with the first 

spare column in group 0, then the first bit lines in the 

other groups are also replaced with the associated first 

spare columns, respectively. 

 

 
Fig. 3. Column circuitry of a word-oriented memory of 

type A 

 

Type B: 

In type B memories, a faulty column is replaced with a 

spare column, but among a group of columns 

associated with a word, only one column can be 

replaced. A word-oriented memory of type B has only 

spare columns, each spare column is selected when a 

programmed column address is accessed. Up to faulty 

columns can be replaced, but columns that constitute a 

word cannot be replaced together. 

 

 
 

Fig. 4.   Column circuitry of a word-oriented memory 

of type B 

Type C:  

In type c, any faulty column [7] can be replaced with 

an available spare column without any restriction. 

 
Fig. 5.  Column circuitry of a word-oriented memory 

of type C 

4. Proposed Infrastructure 
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We propose an on-chip infrastructure for bit oriented 

memories, later it will be extended for word oriented 

memories. We assume that an arbitrary BIST engine 

tests a memory array and provides fault addresses 

whenever detected. Our infrastructure consists of 

must-repair analysis and final analysis. The must-

repair analysis identifies must-repair rows and 

columns, and the final analysis searches a repair 

solution. The must-repair analysis is performed 

concurrently with the test, while the final analysis is 

done after the test is completed. 

 

If a particular row or column is identified as must-

repair, the MRA shown in fig.2 writes the row or 

column address in the solution record. The L registers 

are used as valid bits for the solution record and also 

determine the next available CAM entry. Since a must-

repair row and a must-repair column can be identified 

by a fault at the same time, the MRA should  be able to 

write a pair of row and column addresses 

simultaneously. Once a row or column address is 

stored as part of solution by the Must-repair condition, 

then all solution candidates considered by the 

SOLVER includes the address, and faults on the 

address do not affect the final analysis any more. Such 

faults do not need to be stored, and we can collect all 

necessary information for the final analysis during a 

single test.  

 

Once the test is completed BIST_Done signal is 

asserted and the final analysis is started. In the final 

analysis, the SOLVER module controls the MRA. The 

operation of the SOLVER and the MRA in the final 

analysis phase is illustrated in Fig. 6. The SOLVER 

will generate repair strategies one by one and will 

check whether each repair strategy can fix all the faults 

captured in the fault-list. 

 

5. Operation of SOLVER  

The SOLVER generates repair strategy and the MRA 

reads each fault address in the fault-list in order until 

the RESTART signal is arrived. The MRA checks if 

each fault is covered by the current solution, stored in 

the solution record, and assert R_Covered or 

C_Covered. If both signals are low, the fault should be 

covered by a new repair row or column. The SOLVER 

[8] determines whether a repair row or column is used 

for the uncovered fault, and asserts R_Insert or 

C_Insert. If R_Insert (C_Insert) is high, the fault row 

(column) address is written in the row (Column) CAM 

of the solution record. If the CAM is full, the memory 

array cannot be repaired by the first repair strategy, 

and the SOLVER generates the next repair strategy 

and asserts the RESTART signal. 

 

 

Fig.6. Solver details and MRA operation in the final 

analysis phase 
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When the RESTART signal becomes high, the MRA 

restores the initial state, and the next repair strategy 

starts being evaluated. In this way, the SOLVER 

explores the solution space and can find a solution if 

one exists. 

6. Extension for WOM 

We will extend the proposed infrastructure for word-

oriented memories.  Unlike the bit-oriented memory 

case, from the BIST [10] engine, our infrastructure 

takes as input a triplet (R_X,C_X, S), where R_X 

(C_X )  is the row (column) address, and S is the 

failure syndrome, which is the exclusive OR of the test 

response and the expected output of the word at〖 (R

〗_X,C_X) . For word-oriented memories of type A, 

we can discard the failure syndrome and can input only 

the row and column addresses. Then without any 

modification, it will perform repair analysis for type A 

word-oriented memories. 

Type B: 

For a word-oriented memory of type B, Let ω be the 

word size of the device under test (DUT). We will map 

the word-oriented memory to a bit- oriented memory. 

Since every bit should be addressable in the bit-

oriented memory, we expand the width of the column 

address by [log w] to distinguish each column within a 

word. We call the extended address the virtual column 

address [5]. In this case, a triplet can generate up to ω 

virtual column address for the bit-oriented memory. 

However, in the case that the number of “1”s in S is 

greater than 1, it is obvious that the row being tested is 

a must-repair row since the DUT is 1 column-per-word 

replaceable. 

If this case is handled separately, one triplet will 

generate only one virtual column address.  The pair of 

the incoming row address and the virtual column 

address is fed into the proposed infrastructure, which 

will work with the word-oriented memory of type B. 

Type C: 

In word-orient memories, ω bits (columns) have the 

same address. However, in order to repair such 

memories on a column basis, we need to distinguish 

each column. So we define the extended column 

address as a pair of a column address and a word of ω 

bits, each of which corresponds to one among the ω 

columns indicated by the column address. We call a 

pair of a row address and an extended column address 

the extended fault address. Multiple extended fault 

addresses indicating each fault with in a word can be 

combined into a single extended fault address. 

 

Fig. 7. Modified must repair analyzer for word-

oriented memories of type C. 

In the modified MRA, the Column CAM in the fault-

list needs to store the extended Column addresses, and 

each entry has additional bits. Each bit has its own 

match signal, and each entry has ω+1 match signals 

including the original match signal.  These signals are 

fed into the logic for generating the R_Must Repair 

signal. The number of the faulty cells is added to the 

number of 1’s in the incoming fault syndrome, and if it 

is greater than c, then the must repair condition is 

satisfied and the R_MustRepairsignal is asserted. The 

new match signals are also used to generate C_Must 

Repair_1,….,C_Must Repair_ ω, each of which is 

asserted [4] when each column within a word satisfies 

the must-repair condition. 

7. Simulation results 

 
Fig.8. Output of solver circuit if row and column 

address is fault 
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Fig.9. shows the simulation result of solver circuit for 

fault free row  and column address. 

 
Fig.9. output of solver for fault free row and column 

address 

 

Fig.10. shows the simulation result of Must repair 

analyser for row and column address within range. 

 
Fig.10. output of MRA for row & column address 

within range. 

Fig.11. shows the simulation result of Must repair 

analyser for row and column address out of range. 

 

Fig.11.output of MRA for row & column address out 

of range 

Fig.12. shows the simulation result of the final analysis 

is when row address is not valid. 

 

Fig.12. output of main circuit for row address not valid 

Fig.13. shows the output result of the final analysis 

when column address is not valid.

 

Fig.13. output of final analysis when column address is 

not valid 

Fig.14. shows the simulation result of final analysis 

when row and column address are fault free. 

 

Fig.14. output of final analysis with row & column 

address valid. 
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Fig.15. shows the simulation result of final analysis 

when row and column address are out of range. 

 

Fig.15. output of final analysis with row & column 

address out of range. 

8. Conclusion 

We have proposed an on-chip infrastructure for repair 

analysis with the optimal repair rate. Our infrastructure 

requires a single test. Most built-in repair analysers are 

developed for bit-oriented memories, whereas our 

repair analyser also aims at various types of word-

oriented memories. To achieve this, we have 

extensively studied existing word-oriented repairable 

memories and have classified them into three types. 

For each type, we have showed how the bit-oriented 

version can be extended. 
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