

www.ijmetmr.com/icecv2015 Page 1

Design of a High speed Built-in Repair Analyser

for Word-Oriented Memories

Mulagundla Laxmi

MTech Student

Department of ECE

Vaagdevi Engineering College

Bollikunta, Warangal

B.Shivakumar

Asst. Professor

Department of ECE

Vaagdevi Engineering College

Bollikunta, Warangal

M. Swetha

Asst. Professor

Department of ECE

Vaagdevi Engineering College

Bollikunta, Warangal

Abstract- Here we introduced a new method called

Built in self-repair analyzer for the memory arrays.

In this detection of errors is done by a single test. By

performing the must-repair analysis on the fly during

the test, it selectively stores fault addresses, and the

final analysis is performed on the stored fault

addresses to find a solution. The memory required to

store the fault addresses is dominated by total area of

our infrastructure. It grows quadratically with

respect to the number of repair elements. This

architecture also to support various types of word-

oriented memories.

Keywords- Must repair Analyzer, Solver, Spare rows

and columns, Built in repair analyzer.

1.Introduction

Today’s system-on-chip (SoC) environment requires

Significant changes in testing methodologies for

memory arrays. The failure of embedded memories in

a SoC is more expensive than that of commodity

memories because a relatively large die is wasted. Due

to the large die size and the complex fabrication

process for combining memories and logic, SoCs

suffer from relatively lower yield [1]. To improve the

yield, memory arrays are usually equipped with spare

elements, and external testers have been used to test

the memory arrays and configures the spare elements.

the SoC environment, combined with shrinking

technology, allows us more area for on-chip test

infrastructure at lower cost than before, which makes

feasible a variety of built-in self test (BIST) and built

in self-repair (BISR) techniques for reducing the test

time.

A built-in self-test (BIST) or built-in test (BIT) is a

mechanism that permits a machine to test itself. The

main purpose of BIST [2] is to reduce the complexity,

and thereby decrease the cost and reduce

manufacturing tests. The IC has a function that

reliance upon external test equipment. BIST is used to

make faster, less-expensive integrated circuit verifies

all or a portion of the internal functionality of the IC.

Fig.1. Basic BIST block diagram

Built-in redundancy allocation (BIRA) [3] approaches

have been proposed as part of BISR. Kawagoe et al.

propose a pioneering BIRA approach, CRESTA.

CRESTA [9] has the sub-analyzers for all solution

candidates, which provides the optimal repair rate with

a single test. The sub-analyzer consists of a row

content addressable memory (CAM) with r entries (r is

the number of repair rows) and a column CAM with c

entries (c is the number of repair columns) Since this

may not be affordable in memories with many spare

elements, subsequent studies have been focused on

reducing hardware complexity.

In order to lower the hardware complexity and still

guarantee the optimal repair rate, another approach is

proposed. This evaluates each possible solution one by

one and thus does not require the parallel sub-

analyzers [6]. Such serial implementations may

www.ijmetmr.com/icecv2015 Page 2

increase the overall test time, but the number of

possible solutions is reduced using the must-repair

analysis.

2. Preliminaries

In the classical spare allocation problem, we consider a

bit oriented memory array with spare (repair) rows and

spare (repair) columns [11]. Any fault row (column)

can be replaced with a spare row (column). If a repair

solution exists for a memory array, the memory array

is repairable. If a row has more than c(r) faults and a

repair row is not used for the row (Column) the

memory is not repairable.

Fig. 2. Proposed on-chip infrastructure and must repair

analyzer details

3. Implementation for WOM

There are various types of word-oriented repairable

memories, and they impose different constraints on the

spare allocation problem. Since it is difficult to capture

all the different types of repairable memories into a

generalized model and to design an universal repair

analyzer, we categorize them into three types, which

will be called type A, type B, and type C, respectively.

A faulty row is replaced with a spare row, but the way

to replace a faulty column varies, based on which they

are classified.

In word-oriented memories, the data in a word is

usually not placed in adjacent locations due to several

issues such as the coupling effect, and the columns

associated with the same bit position are clustered

together. In type A memories, there are spare column-

groups of ω columns each. A group of columns

associated with a word is replaced with a space-

column group. In other words, the column replacement

is performed on a column group basis. If the first bit

line in group 0 is faulty, and it is replaced with the first

spare column in group 0, then the first bit lines in the

other groups are also replaced with the associated first

spare columns, respectively.

Fig. 3. Column circuitry of a word-oriented memory of

type A

Type B:

In type B memories, a faulty column is replaced with a

spare column, but among a group of columns

associated with a word, only one column can be

replaced. A word-oriented memory of type B has only

spare columns, each spare column is selected when a

programmed column address is accessed. Up to faulty

columns can be replaced, but columns that constitute a

word cannot be replaced together.

Fig. 4. Column circuitry of a word-oriented memory

of type B

Type C:

In type c, any faulty column [7] can be replaced with

an available spare column without any restriction.

Fig. 5. Column circuitry of a word-oriented memory

of type C

4. Proposed Infrastructure

www.ijmetmr.com/icecv2015 Page 3

We propose an on-chip infrastructure for bit oriented

memories, later it will be extended for word oriented

memories. We assume that an arbitrary BIST engine

tests a memory array and provides fault addresses

whenever detected. Our infrastructure consists of

must-repair analysis and final analysis. The must-

repair analysis identifies must-repair rows and

columns, and the final analysis searches a repair

solution. The must-repair analysis is performed

concurrently with the test, while the final analysis is

done after the test is completed.

If a particular row or column is identified as must-

repair, the MRA shown in fig.2 writes the row or

column address in the solution record. The L registers

are used as valid bits for the solution record and also

determine the next available CAM entry. Since a must-

repair row and a must-repair column can be identified

by a fault at the same time, the MRA should be able to

write a pair of row and column addresses

simultaneously. Once a row or column address is

stored as part of solution by the Must-repair condition,

then all solution candidates considered by the

SOLVER includes the address, and faults on the

address do not affect the final analysis any more. Such

faults do not need to be stored, and we can collect all

necessary information for the final analysis during a

single test.

Once the test is completed BIST_Done signal is

asserted and the final analysis is started. In the final

analysis, the SOLVER module controls the MRA. The

operation of the SOLVER and the MRA in the final

analysis phase is illustrated in Fig. 6. The SOLVER

will generate repair strategies one by one and will

check whether each repair strategy can fix all the faults

captured in the fault-list.

5. Operation of SOLVER

The SOLVER generates repair strategy and the MRA

reads each fault address in the fault-list in order until

the RESTART signal is arrived. The MRA checks if

each fault is covered by the current solution, stored in

the solution record, and assert R_Covered or

C_Covered. If both signals are low, the fault should be

covered by a new repair row or column. The SOLVER

[8] determines whether a repair row or column is used

for the uncovered fault, and asserts R_Insert or

C_Insert. If R_Insert (C_Insert) is high, the fault row

(column) address is written in the row (Column) CAM

of the solution record. If the CAM is full, the memory

array cannot be repaired by the first repair strategy,

and the SOLVER generates the next repair strategy

and asserts the RESTART signal.

Fig.6. Solver details and MRA operation in the final

analysis phase

www.ijmetmr.com/icecv2015 Page 4

When the RESTART signal becomes high, the MRA

restores the initial state, and the next repair strategy

starts being evaluated. In this way, the SOLVER

explores the solution space and can find a solution if

one exists.

6. Extension for WOM

We will extend the proposed infrastructure for word-

oriented memories. Unlike the bit-oriented memory

case, from the BIST [10] engine, our infrastructure

takes as input a triplet (R_X,C_X, S), where R_X

(C_X) is the row (column) address, and S is the

failure syndrome, which is the exclusive OR of the test

response and the expected output of the word at〖 (R

〗_X,C_X) . For word-oriented memories of type A,

we can discard the failure syndrome and can input only

the row and column addresses. Then without any

modification, it will perform repair analysis for type A

word-oriented memories.

Type B:

For a word-oriented memory of type B, Let ω be the

word size of the device under test (DUT). We will map

the word-oriented memory to a bit- oriented memory.

Since every bit should be addressable in the bit-

oriented memory, we expand the width of the column

address by [log w] to distinguish each column within a

word. We call the extended address the virtual column

address [5]. In this case, a triplet can generate up to ω

virtual column address for the bit-oriented memory.

However, in the case that the number of “1”s in S is

greater than 1, it is obvious that the row being tested is

a must-repair row since the DUT is 1 column-per-word

replaceable.

If this case is handled separately, one triplet will

generate only one virtual column address. The pair of

the incoming row address and the virtual column

address is fed into the proposed infrastructure, which

will work with the word-oriented memory of type B.

Type C:

In word-orient memories, ω bits (columns) have the

same address. However, in order to repair such

memories on a column basis, we need to distinguish

each column. So we define the extended column

address as a pair of a column address and a word of ω

bits, each of which corresponds to one among the ω

columns indicated by the column address. We call a

pair of a row address and an extended column address

the extended fault address. Multiple extended fault

addresses indicating each fault with in a word can be

combined into a single extended fault address.

Fig. 7. Modified must repair analyzer for word-

oriented memories of type C.

In the modified MRA, the Column CAM in the fault-

list needs to store the extended Column addresses, and

each entry has additional bits. Each bit has its own

match signal, and each entry has ω+1 match signals

including the original match signal. These signals are

fed into the logic for generating the R_Must Repair

signal. The number of the faulty cells is added to the

number of 1’s in the incoming fault syndrome, and if it

is greater than c, then the must repair condition is

satisfied and the R_MustRepairsignal is asserted. The

new match signals are also used to generate C_Must

Repair_1,….,C_Must Repair_ ω, each of which is

asserted [4] when each column within a word satisfies

the must-repair condition.

7. Simulation results

Fig.8. Output of solver circuit if row and column

address is fault

www.ijmetmr.com/icecv2015 Page 5

Fig.9. shows the simulation result of solver circuit for

fault free row and column address.

Fig.9. output of solver for fault free row and column

address

Fig.10. shows the simulation result of Must repair

analyser for row and column address within range.

Fig.10. output of MRA for row & column address

within range.

Fig.11. shows the simulation result of Must repair

analyser for row and column address out of range.

Fig.11.output of MRA for row & column address out

of range

Fig.12. shows the simulation result of the final analysis

is when row address is not valid.

Fig.12. output of main circuit for row address not valid

Fig.13. shows the output result of the final analysis

when column address is not valid.

Fig.13. output of final analysis when column address is

not valid

Fig.14. shows the simulation result of final analysis

when row and column address are fault free.

Fig.14. output of final analysis with row & column

address valid.

www.ijmetmr.com/icecv2015 Page 6

Fig.15. shows the simulation result of final analysis

when row and column address are out of range.

Fig.15. output of final analysis with row & column

address out of range.

8. Conclusion

We have proposed an on-chip infrastructure for repair

analysis with the optimal repair rate. Our infrastructure

requires a single test. Most built-in repair analysers are

developed for bit-oriented memories, whereas our

repair analyser also aims at various types of word-

oriented memories. To achieve this, we have

extensively studied existing word-oriented repairable

memories and have classified them into three types.

For each type, we have showed how the bit-oriented

version can be extended.

9. References

[1] Y. Zorian and S. Shoukourian, “Embedded-

memory test and repair: Infrastructure IP for SOC

yield,” IEEE Design Test Compute., vol. 20, no. 3, pp.

58–66, May/Jun. 2003.

[2] P. Oehler,S. Hellebrand, and H.-H. Wunderlich,

“An integrated built-in test and repair approach for

memories with 2D redundancy,” in Proc. Eur. Test

Symp., 2007, pp. 91–96.

[3] W. Jeong, J. Lee, T. Han, K. Lee, and S. Kang,

“An advanced BIRA for memories with an optimal

repair rate and fast analysis speed by using a branch

analyzer,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 29, no. 12, pp. 2014–2026, Dec.

2010.

[4] W. Jeong, I. Kang, K. Jin, and S. Kang, “A fast

built-in redundancy analysis for memories with

optimal repair rate using a line-based search tree,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 17, no. 12, pp. 1665–1678, Dec. 2009.

[5] S. Shoukourian, V. A. Vardanian, and Y. Zorian,

“A methodology for design and evaluation of

redundancy allocation algorithms,” in Proc. VLSI Test

Symp., 2004, pp. 249–255.

[6] E. E. Swartzlander, “Parallel counters,” IEEE

Trans. Comput., vol. 22, no. 11, pp. 1021–1024, Nov.

1973.

[7] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu,

“Built-in redundancy analysis for memory yield

improvement,” IEEE Trans. Reliab., vol. 52, no. 4, pp.

386–399, Dec. 2003.

[8] A. Ferris and G. Work, “Memory circuit capable of

replacing a faulty column with a spare column,” U.S.

Patent 5 163 023, Nov. 10, 1992.[9] T. Kawagoe, J.

Ohtani, M. Niiro, and T. Ooishi, “A built-in self-repair

analyzer (cresta) for embedded drams,” in Proc. Int.

Test Conf., 2000, pp. 567–574.

[10] S. Hamdioui, G. Gaydadjiev, and A. van de Goor,

“The state-of-art and future trends in testing embedded

memories,” in Proc. Records Int. Workshop Memory

Technol., Design, Test., 2004, pp. 54–59.

[11] P. Oehler, A. Bosio, G. D. Natale, and S.

Hellebrand, “A modular memory BIST for optimized

memory repair,” in Proc. Int. On-Line Test. Symp.,

2008, pp. 171–172.

Author-1:

Ms. Mulagundla Laxmi is persuing her M. Tech in

Vaagdevi Engineering College, Bollikunta, Warangal

and completed her B.Tech from Ganapathy

www.ijmetmr.com/icecv2015 Page 7

Engineering College, Hunter Road,Warangal. She is

intrested in the area of VLSI.

Author-2:

Mr.B.Shivakumar (Asst.Prof in Vaagdevi College of

Engineering). He has completed his M.Tech from

Vaagdevi Engineering College and he is intrested in

this area VLSI.

Author-3:

Mr. M. Swetha Maheswaram (Asst.Prof in Vaagdevi

College Of Engineering). She has completed her

M.Tech from Vaagdevi Engineering College and she is

intrested in the field of VLSI.

