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Abstract: 

In this paper, we present an efficient 

architecture for the implementation of a delayed 

least mean square adaptive filter. For achieving 

lower adaptation-delay and area-delay-power 

efficient implementation, we use a novel partial 

product generator and propose a strategy for 

optimized balanced pipelining across the time-

consuming combinational blocks of the 

structure. From synthesis results, we find that 

the proposed design offers nearly 13% less area-

delay product (ADP) and nearly 10% less 

energy-delay product (EDP) than the best of the 

existing systolic structures, on average, for filter 

lengths N = 8, 16, and 32.  

 

We propose an efficient fixed-point 

implementation scheme of the proposed 

architecture, and derive the expression for 

steady-state error. We show that the steady-state 

mean squared error obtained from the analytical 

result matches with the simulation result.  

 

Moreover, we have proposed a bit-level pruning 

of the proposed architecture, which provides 

nearly 25% saving in ADP and 10% saving in 

EDP over the proposed structure before pruning 

without noticeable degradation of steady-state-

error performance. 

 

Keywords: ADP, DLMS, EDP, Bit level Pruning, 

Error Performance, square adaptive filter. 

 

1.Introduction 

The least mean square (LMS) adaptive filter is the 

most popular and most widely used adaptive filter, 

not only because of its simplicity but also because 

of its satisfactory convergence performance. The 

direct-form LMS adaptive filter involves a long 

critical path due to an Inner-product computation 

to obtain the filter output. The critical path is 

required to be reduced by pipelined 

implementation when it exceeds the desired 

sample period. Since the conventional LMS 

algorithm does not support pipelined 

implementation because of its recursive behavior, 

it is modified to a form called the delayed LMS 

(DLMS) algorithm [3]–[5], which allows 

pipelined implementation of the filter. 

 

The existing work on the DLMS adaptive filter 

does not discuss the fixed-point implementation 

issues, e.g., location of radix point, choice of word 

length, and quantization at various stages of 

computation, although they directly affect the 

convergence performance, particularly due to the 

recursive behavior of the LMS algorithm. 

Therefore, fixed-point implementation issues are 

given adequate emphasis in this paper. Besides, 

we present here the optimization of our previously 

reported design to reduce the number of pipeline 

delays along with the area, sampling period, and 

energy consumption. The proposed design is 

found to be more efficient in terms of the power-

delay product (PDP) and energy-delay product 

(EDP) compared to the existing structures. In the 
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next section, we review the DLMS algorithm, and 

in Section III, we describe the proposed optimized 

architecture for its implementation. Section IV 

deals with fixed-point implementation 

considerations and simulation studies of the 

convergence of the algorithm. In Section V, we 

discuss the synthesis of the proposed architecture 

and comparison with the existing architectures. 

Conclusions are given in Section VI. 

 

2. Review Of Delayed Lms Algorithm: 

The weights of LMS adaptive filter during the nth 

iteration are updated according to the following 

equations [2]:  

                 Wn+1=Wn+µ. en. xn        (1a) 

Where 

              en  = dn-yn , yn =wn
T. xn       (1b)  

Where the input  xn, and weight vector Wn at the 

nth iteration are, respectively, given by 

       xn=[xn.xn-1,xn-2……xn-N=1]
T 

        Wn =[wn(0),wn(1)….wn(N-1)]T 

 

Denotes the error computed during the nth 

iteration. μ is the step-size, and N is the number of 

weights used in the LMS adaptive filter. In the 

case of pipelined designs with m pipeline stages, 

the error en becomes available after m cycles, 

where m is called the “adaptation delay.” The 

DLMS algorithm therefore uses the delayed error 

en−m, i.e., the error corresponding to (n − m)th 

iteration for updating the current weight instead of 

the recent-most error. The weight-update equation 

of DLMS adaptive filter is given by  

 

Wn+1= wn+ μ. en-m. xn-m  (2)  

 

The block diagram of the DLMS adaptive filter is 

shown in Fig. 1, where the adaptation delay of m 

cycles amounts to the delay introduced by the 

whole of adaptive filter structure consisting of 

finite impulse response (FIR) filtering and the 

weight-update process. It is shown in [12] that the 

adaptation delay of conventional LMS can be 

decomposed into two parts: one part is the delay 

introduced by the pipeline stages in FIR filtering, 

and the other part is due to the delay involved in 

pipelining the weight update process. Based on 

such a decomposition of delay, the DLMS 

adaptive filter can be implemented by a structure 

shown in Fig. 2. Assuming that the latency of 

computation of error is n1 cycles, the error 

computed by the structure at the nth cycle is 

en−n1 , which is used with the input samples 

delayed by n1 cycles to generate the weight-

increment term. The weight-update equation of 

the modified DLMS algorithm is given by 
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We notice that, during the weight update, the error 

with n1 delays is used, while the filtering unit uses 

the weights delayed by n2 cycles. The modified 

DLMS algorithm decouples computations of the 

error-computation block and the weight-update 

block and allows us to perform optimal pipelining 

by feed forward cut-set retiming of both these 

sections separately to minimize the number of 

pipeline stages and adaptation delay. 

 

3. Proposed Architecture 

As shown in Fig. 2, there are two main computing 

blocks in the adaptive filter architecture:  

1) the error-computation block, and  

2) weight-update block.  

 

In this Section, we discuss the design strategy of 

the proposed structure to minimize the adaptation 

delay in the error-computation block, followed by 

the weight-update block. 

 

A. Pipelined Structure of the Error-

Computation Block 

The proposed structure for error-computation unit 

of an N-tap DLMS adaptive filter is shown in Fig. 

4. It consists of N number of 2-b partial product 

generators (PPG) corresponding to N multipliers 

and a cluster of L/2 binary adder trees, followed 

by a single shift–add tree. Each sub block is 

described in detail. 

 

1) Structure of PPG:  

The structure of each PPG is shown in Fig. 5. It 

consists of L/2 number of 2-to-3 decoders and the 

same number of AND/OR cells (AOC).1 Each of 

the 2-to-3 decoders takes a 2-b digit (u1u0) as 

input and produces three outputs b0 = u0 · . u1, b1 

= . u0 · u1, and b2 = u0 · u1, such that b0 = 1 for 

(u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for 

(u1u0) = 3. The decoder output b0, b1 and b2 

along with w, 2w, and 3w are fed to an AOC, 

where w, 2w, and 3w are in 2’s complement 

representation and sign-extended to have (W + 2) 

bits each.  

 

To take care of the sign of the input samples while 

computing the partial product corresponding to 

the most significant digit (MSD), i.e., (uL−1uL−2) 

of the input sample, the AOC (L/2 − 1) is fed with 

w, −2w, and −w as input since (uL−1uL−2) can 

have four possible values 0, 1, −2, and −1. 

 

2) Structure of AOCs: 

The structure and function of an AOC are 

depicted in Fig. 6. Each AOC consists of three 

AND cells and two OR cells. The structure and 

function of AND cells and OR cells are depicted 

by Fig. 6(b) and (c), respectively. Each AND cell 

takes an n-bit input D and a single bit input b, and 

consists of n AND gates.  

 

It distributes all the n bits of input D to its n AND 

gates as one of the inputs. 

 

The other inputs of all the n AND gates are fed 

with the single-bit input b. As shown in Fig. 6(c), 

each OR cell similarly takes a pair of n-bit input 

words and has n OR gates. A pair of bits in the 

same bit position in B and D is fed to the same OR 

gate.  

 

The output of an AOC is w, 2w, and 3w 

corresponding to the decimal values 1, 2, and 3 of 

the 2-b input (u1u0), respectively.  

 

The decoder along with the AOC performs a 

multiplication of input operand w with a 2-b digit 

(u1u0), such that the PPG of Fig. 5 performs L/2 

parallel multiplications of input word w with a 2-b 

digit to produce L/2 partial products of the product 

word wu. 
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3) Structure of Adder Tree: 

Conventionally, we should have performed the 

shift-add operation on the partial products of each 

PPG separately to obtain the product value and 

then added all the N product values to compute the 

desired inner product. However, the shift-add 

operation to obtain the product value increases the 

word length, and consequently increases the adder 

size of N − 1 additions of the product values. To 

avoid such increase in word size of the adders, we 

add all the N partial products of the same place 

value from all the N PPGs by one adder tree. All 

the L/2 partial products generated by each of the N 

PPGs are thus added by (L/2) binary adder trees. 

 

The outputs of the L/2 adder trees are then added 

by a shift-add tree according to their place values. 

Each of the binary adder trees require log2 N 

stages of adders to add N partial product, and the 

shift–add tree requires log2 L − 1 stages of adders 

to add L/2 output of L/2 binary adder trees.2 The 

addition scheme for the error-computation block 

for a four-tap filter and input word size L = 8 is 

shown in Fig. 7.  

 

For N = 4 and L = 8, the adder network requires 

four binary adder trees of two stages each and a 

two-stage shift–add tree. In this figure, we have 

shown all possible locations of pipeline latches by 

dashed 2When L is not a power of 2, log2 L 

should be replaced by _log2 L_ 

 

lines, to reduce the critical path to one addition 

time. If we introduce pipeline latches after every 

addition, it would require L(N − 1)/2 + L/2 − 1 

latches in log2 N + log2 L − 1 stages, which 

would lead to a high adaptation delay and 

introduce a large overhead of area and power 

consumption for large values of N and L. On the 

other hand, some of those pipeline latches are 

redundant in the sense that they are not required to 

maintain a critical path of one addition time. The 

final adder in the shift–add tree contributes to the 

maximum delay to the critical path. Based on that 

observation, we have identified the pipeline 

latches that do not contribute significantly to the 

critical path and could exclude those without any 

noticeable increase of the critical path. The 

location of pipeline latches for filter lengths N = 8, 

16, and 32 and for input size L = 8 are shown in 

Table I. The pipelining is performed by a feed 

forward cut-set retiming of the error-computation 

block. 

 

B. Pipelined Structure of the Weight-Update 

Block: The proposed structure for the weight-

update block is shown in Fig. 8. It performs N 

multiply-accumulate operations of the form (μ × 

e) × xi + wi to update N filter weights. The step 

size μ is taken as a negative power of 2 to realize 

the multiplication with recently available error 

only by a shift operation.  

 

Each of the MAC units therefore performs the 

multiplication of the shifted value of error with 

the delayed input samples xi followed by the 

additions with the corresponding old weight 

values wi . All the N multiplications for the MAC 

operations are performed by N PPGs, followed by 

N shift– add trees. Each of the PPGs generates L/2 

partialproducts.
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Corresponding to the product of the recently 

shifted error value μ × e with L/2, the number of 

2-b digits of the input word xi , where the sub 

expression 3μ×e is shared within the multiplier. 

Since the scaled error (μ×e) is multiplied with all 

the N delayed input values in the weight-update 

block, this sub expression can be shared across all 

the multipliers as well. This leads to substantial 

reduction of the adder complexity. The final 

outputs of MAC units constitute the desired 

updated weights to be used as inputs to the error-
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computation block as well as the weight-update 

block for the next iteration. 

 

C. Adaptation Delay 

As shown in Fig. 2, the adaptation delay is 

decomposed into n1 and n2. The error-

computation block generates the delayed error by 

n1 −1 cycles as shown in Fig. 4, which is fed to 

the weight-update block shown in Fig. 8 after 

scaling by μ; then the input is delayed by 1 cycle 

before the PPG to make the total delay introduced 

by FIR filtering be n1. In Fig. 8, the weight-

update block generates wn−1−n2, and the weights 

are delayed by n2+1 cycle. However, it should be 

noted that the delay by 1 cycle is due to the latch 

before the PPG, which is included in the delay of 

the error-computation block, i.e., n1. Therefore, 

the delay generated in the weight-update block 

becomes n2. If the locations of pipeline latches are 

decided as in Table I, n1 becomes 5, where three 

latches are in the error-computation block, one 

latch is after the subtraction in Fig. 4, and the 

other latch is before PPG in Fig. 8. Also, n2 is set 

to 1 from a latch in the shift-add tree in the 

weight-update block. 

 

D. Adder-Tree Optimization 

The adder tree and shift–add tree for the 

computation of yn can be pruned for further 

optimization of area, delay, and power 

complexity. To illustrate the proposed pruning 

optimization of adder tree and shift–add tree for 

the computation of filter output, we take a simple 

example of filter length N = 4, considering the 

word lengths L and W to be 8. The dot diagram of 

the adder tree is shown in Fig. 11. Each row of the 

dot diagram contains 10 dots, which represent the 

partial products generated by the PPG unit, for W 

= 8. We have four sets of partial products 

corresponding to four partial products of each 

multiplier, since L = 8. Each set of partial 

products of the same weight values contains four 

terms, since N = 4. The final sum without 

truncation should be 18 b. However, we use only 

8 b in the final sum, and the rest 10 b are finally 

discarded. To reduce the computational 

complexity, some of the LSBs of inputs of the 

adder tree can be truncated, while some guard bits 

can be used to minimize the impact of truncation 

on the error performance of the adaptive filter. In 

Fig. 11, four bits are taken as the guard bits and 

the rest six LSBs are truncated. To have more 

hardware saving, the bits to be truncated are not 

generated by the PPGs, so the complexity of PPGs 

also gets reduced. 

 
 

4. Perfomance Results 

This section evaluates the performance of the 

proposed modified least mean square (LMS) 

algorithm and shows the simulation results. The 

first result declares about the output of LMS 

adaptive filter with delay. It is having some delay 

in the output of Least Mean Square adaptive filter. 

And the second result declares about the output of 

LMS adaptive filter without delay. After the clock 

input has given the output of the adaptive filter is 

achieved without delay. The ModelSIM is the tool 

used here to check the performance of LMS 

adaptive filter. It is a complete HDL simulation 

environment that enables to verify the source code 
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and functional and timing models using test 

bench. 

 

Schematic Diagram of The Project   

 
Output Waveforms 

 

 
Output of the project 

 

 

5. Conclusion 

We proposed an area–delay-power efficient low 

adaptation delay architecture for fixed-point 

implementation of LMS adaptive filter. We used a 

novel PPG for efficient implementation of general 

multiplications and inner-product computation by 

common sub expression sharing. Besides, we have 

proposed an efficient addition scheme for inner-

product computation to reduce the adaptation 

delay significantly in order to achieve faster 

convergence performance and to reduce the 

critical path to support high input-sampling rates. 
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Aside from this, we proposed a strategy for 

optimized balanced pipelining across the time-

consuming blocks of the structure to reduce the 

adaptation delay and power consumption, as well. 

The proposed structure involved significantly less 

adaptation delay and provided significant saving 

of ADP and EDP compared to the existing 

structures.  

 

We proposed a fixed-point implementation of the 

proposed architecture, and derived the expression 

for steady-state error. We found that the steady-

state MSE obtained from the analytical result 

matched well with the simulation result. We also 

discussed a pruning scheme that provides nearly 

25% saving in the ADP and 10% saving in EDP 

over the proposed structure before pruning, 

without a noticeable degradation of steady-state 

error performance. The highest sampling rate that 

could be supported by the ASIC implementation 

of the proposed design ranged from about 870 to 

1010 MHz for filter orders 8 to 32. When the 

adaptive filter is required to be operated at a lower 

sampling rate, one can use the proposed design 

with a clock slower than the maximum usable 

frequency and a lower operating voltage to reduce 

the power consumption further. 
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