

www.ijmetmr.com/icecv2015 Page 20

Low Adaption Area-Delay Power-Efficient Fixed Point LMS

Adaptive Filter

N.Pavani

PG Scholar

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

V.Sabitha

Asst. Professor

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

P Prasad rao

Professor

Department of ECE

Vaagdevi College of Engineering

Bollikunta, Warangal-506001

Abstract:

In this paper, we present an efficient

architecture for the implementation of a delayed

least mean square adaptive filter. For achieving

lower adaptation-delay and area-delay-power

efficient implementation, we use a novel partial

product generator and propose a strategy for

optimized balanced pipelining across the time-

consuming combinational blocks of the

structure. From synthesis results, we find that

the proposed design offers nearly 13% less area-

delay product (ADP) and nearly 10% less

energy-delay product (EDP) than the best of the

existing systolic structures, on average, for filter

lengths N = 8, 16, and 32.

We propose an efficient fixed-point

implementation scheme of the proposed

architecture, and derive the expression for

steady-state error. We show that the steady-state

mean squared error obtained from the analytical

result matches with the simulation result.

Moreover, we have proposed a bit-level pruning

of the proposed architecture, which provides

nearly 25% saving in ADP and 10% saving in

EDP over the proposed structure before pruning

without noticeable degradation of steady-state-

error performance.

Keywords: ADP, DLMS, EDP, Bit level Pruning,

Error Performance, square adaptive filter.

1.Introduction

The least mean square (LMS) adaptive filter is the

most popular and most widely used adaptive filter,

not only because of its simplicity but also because

of its satisfactory convergence performance. The

direct-form LMS adaptive filter involves a long

critical path due to an Inner-product computation

to obtain the filter output. The critical path is

required to be reduced by pipelined

implementation when it exceeds the desired

sample period. Since the conventional LMS

algorithm does not support pipelined

implementation because of its recursive behavior,

it is modified to a form called the delayed LMS

(DLMS) algorithm [3]–[5], which allows

pipelined implementation of the filter.

The existing work on the DLMS adaptive filter

does not discuss the fixed-point implementation

issues, e.g., location of radix point, choice of word

length, and quantization at various stages of

computation, although they directly affect the

convergence performance, particularly due to the

recursive behavior of the LMS algorithm.

Therefore, fixed-point implementation issues are

given adequate emphasis in this paper. Besides,

we present here the optimization of our previously

reported design to reduce the number of pipeline

delays along with the area, sampling period, and

energy consumption. The proposed design is

found to be more efficient in terms of the power-

delay product (PDP) and energy-delay product

(EDP) compared to the existing structures. In the

www.ijmetmr.com/icecv2015 Page 21

next section, we review the DLMS algorithm, and

in Section III, we describe the proposed optimized

architecture for its implementation. Section IV

deals with fixed-point implementation

considerations and simulation studies of the

convergence of the algorithm. In Section V, we

discuss the synthesis of the proposed architecture

and comparison with the existing architectures.

Conclusions are given in Section VI.

2. Review Of Delayed Lms Algorithm:

The weights of LMS adaptive filter during the nth

iteration are updated according to the following

equations [2]:

 Wn+1=Wn+µ. en. xn (1a)

Where

 en = dn-yn , yn =wn
T. xn (1b)

Where the input xn, and weight vector Wn at the

nth iteration are, respectively, given by

 xn=[xn.xn-1,xn-2……xn-N=1]
T

 Wn =[wn(0),wn(1)….wn(N-1)]T

Denotes the error computed during the nth

iteration. μ is the step-size, and N is the number of

weights used in the LMS adaptive filter. In the

case of pipelined designs with m pipeline stages,

the error en becomes available after m cycles,

where m is called the “adaptation delay.” The

DLMS algorithm therefore uses the delayed error

en−m, i.e., the error corresponding to (n − m)th

iteration for updating the current weight instead of

the recent-most error. The weight-update equation

of DLMS adaptive filter is given by

Wn+1= wn+ μ. en-m. xn-m (2)

The block diagram of the DLMS adaptive filter is

shown in Fig. 1, where the adaptation delay of m

cycles amounts to the delay introduced by the

whole of adaptive filter structure consisting of

finite impulse response (FIR) filtering and the

weight-update process. It is shown in [12] that the

adaptation delay of conventional LMS can be

decomposed into two parts: one part is the delay

introduced by the pipeline stages in FIR filtering,

and the other part is due to the delay involved in

pipelining the weight update process. Based on

such a decomposition of delay, the DLMS

adaptive filter can be implemented by a structure

shown in Fig. 2. Assuming that the latency of

computation of error is n1 cycles, the error

computed by the structure at the nth cycle is

en−n1 , which is used with the input samples

delayed by n1 cycles to generate the weight-

increment term. The weight-update equation of

the modified DLMS algorithm is given by

www.ijmetmr.com/icecv2015 Page 22

We notice that, during the weight update, the error

with n1 delays is used, while the filtering unit uses

the weights delayed by n2 cycles. The modified

DLMS algorithm decouples computations of the

error-computation block and the weight-update

block and allows us to perform optimal pipelining

by feed forward cut-set retiming of both these

sections separately to minimize the number of

pipeline stages and adaptation delay.

3. Proposed Architecture

As shown in Fig. 2, there are two main computing

blocks in the adaptive filter architecture:

1) the error-computation block, and

2) weight-update block.

In this Section, we discuss the design strategy of

the proposed structure to minimize the adaptation

delay in the error-computation block, followed by

the weight-update block.

A. Pipelined Structure of the Error-

Computation Block

The proposed structure for error-computation unit

of an N-tap DLMS adaptive filter is shown in Fig.

4. It consists of N number of 2-b partial product

generators (PPG) corresponding to N multipliers

and a cluster of L/2 binary adder trees, followed

by a single shift–add tree. Each sub block is

described in detail.

1) Structure of PPG:

The structure of each PPG is shown in Fig. 5. It

consists of L/2 number of 2-to-3 decoders and the

same number of AND/OR cells (AOC).1 Each of

the 2-to-3 decoders takes a 2-b digit (u1u0) as

input and produces three outputs b0 = u0 · . u1, b1

= . u0 · u1, and b2 = u0 · u1, such that b0 = 1 for

(u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for

(u1u0) = 3. The decoder output b0, b1 and b2

along with w, 2w, and 3w are fed to an AOC,

where w, 2w, and 3w are in 2’s complement

representation and sign-extended to have (W + 2)

bits each.

To take care of the sign of the input samples while

computing the partial product corresponding to

the most significant digit (MSD), i.e., (uL−1uL−2)

of the input sample, the AOC (L/2 − 1) is fed with

w, −2w, and −w as input since (uL−1uL−2) can

have four possible values 0, 1, −2, and −1.

2) Structure of AOCs:

The structure and function of an AOC are

depicted in Fig. 6. Each AOC consists of three

AND cells and two OR cells. The structure and

function of AND cells and OR cells are depicted

by Fig. 6(b) and (c), respectively. Each AND cell

takes an n-bit input D and a single bit input b, and

consists of n AND gates.

It distributes all the n bits of input D to its n AND

gates as one of the inputs.

The other inputs of all the n AND gates are fed

with the single-bit input b. As shown in Fig. 6(c),

each OR cell similarly takes a pair of n-bit input

words and has n OR gates. A pair of bits in the

same bit position in B and D is fed to the same OR

gate.

The output of an AOC is w, 2w, and 3w

corresponding to the decimal values 1, 2, and 3 of

the 2-b input (u1u0), respectively.

The decoder along with the AOC performs a

multiplication of input operand w with a 2-b digit

(u1u0), such that the PPG of Fig. 5 performs L/2

parallel multiplications of input word w with a 2-b

digit to produce L/2 partial products of the product

word wu.

www.ijmetmr.com/icecv2015 Page 23

www.ijmetmr.com/icecv2015 Page 24

3) Structure of Adder Tree:

Conventionally, we should have performed the

shift-add operation on the partial products of each

PPG separately to obtain the product value and

then added all the N product values to compute the

desired inner product. However, the shift-add

operation to obtain the product value increases the

word length, and consequently increases the adder

size of N − 1 additions of the product values. To

avoid such increase in word size of the adders, we

add all the N partial products of the same place

value from all the N PPGs by one adder tree. All

the L/2 partial products generated by each of the N

PPGs are thus added by (L/2) binary adder trees.

The outputs of the L/2 adder trees are then added

by a shift-add tree according to their place values.

Each of the binary adder trees require log2 N

stages of adders to add N partial product, and the

shift–add tree requires log2 L − 1 stages of adders

to add L/2 output of L/2 binary adder trees.2 The

addition scheme for the error-computation block

for a four-tap filter and input word size L = 8 is

shown in Fig. 7.

For N = 4 and L = 8, the adder network requires

four binary adder trees of two stages each and a

two-stage shift–add tree. In this figure, we have

shown all possible locations of pipeline latches by

dashed 2When L is not a power of 2, log2 L

should be replaced by _log2 L_

lines, to reduce the critical path to one addition

time. If we introduce pipeline latches after every

addition, it would require L(N − 1)/2 + L/2 − 1

latches in log2 N + log2 L − 1 stages, which

would lead to a high adaptation delay and

introduce a large overhead of area and power

consumption for large values of N and L. On the

other hand, some of those pipeline latches are

redundant in the sense that they are not required to

maintain a critical path of one addition time. The

final adder in the shift–add tree contributes to the

maximum delay to the critical path. Based on that

observation, we have identified the pipeline

latches that do not contribute significantly to the

critical path and could exclude those without any

noticeable increase of the critical path. The

location of pipeline latches for filter lengths N = 8,

16, and 32 and for input size L = 8 are shown in

Table I. The pipelining is performed by a feed

forward cut-set retiming of the error-computation

block.

B. Pipelined Structure of the Weight-Update

Block: The proposed structure for the weight-

update block is shown in Fig. 8. It performs N

multiply-accumulate operations of the form (μ ×

e) × xi + wi to update N filter weights. The step

size μ is taken as a negative power of 2 to realize

the multiplication with recently available error

only by a shift operation.

Each of the MAC units therefore performs the

multiplication of the shifted value of error with

the delayed input samples xi followed by the

additions with the corresponding old weight

values wi . All the N multiplications for the MAC

operations are performed by N PPGs, followed by

N shift– add trees. Each of the PPGs generates L/2

partialproducts.

www.ijmetmr.com/icecv2015 Page 25

Corresponding to the product of the recently

shifted error value μ × e with L/2, the number of

2-b digits of the input word xi , where the sub

expression 3μ×e is shared within the multiplier.

Since the scaled error (μ×e) is multiplied with all

the N delayed input values in the weight-update

block, this sub expression can be shared across all

the multipliers as well. This leads to substantial

reduction of the adder complexity. The final

outputs of MAC units constitute the desired

updated weights to be used as inputs to the error-

www.ijmetmr.com/icecv2015 Page 26

computation block as well as the weight-update

block for the next iteration.

C. Adaptation Delay

As shown in Fig. 2, the adaptation delay is

decomposed into n1 and n2. The error-

computation block generates the delayed error by

n1 −1 cycles as shown in Fig. 4, which is fed to

the weight-update block shown in Fig. 8 after

scaling by μ; then the input is delayed by 1 cycle

before the PPG to make the total delay introduced

by FIR filtering be n1. In Fig. 8, the weight-

update block generates wn−1−n2, and the weights

are delayed by n2+1 cycle. However, it should be

noted that the delay by 1 cycle is due to the latch

before the PPG, which is included in the delay of

the error-computation block, i.e., n1. Therefore,

the delay generated in the weight-update block

becomes n2. If the locations of pipeline latches are

decided as in Table I, n1 becomes 5, where three

latches are in the error-computation block, one

latch is after the subtraction in Fig. 4, and the

other latch is before PPG in Fig. 8. Also, n2 is set

to 1 from a latch in the shift-add tree in the

weight-update block.

D. Adder-Tree Optimization

The adder tree and shift–add tree for the

computation of yn can be pruned for further

optimization of area, delay, and power

complexity. To illustrate the proposed pruning

optimization of adder tree and shift–add tree for

the computation of filter output, we take a simple

example of filter length N = 4, considering the

word lengths L and W to be 8. The dot diagram of

the adder tree is shown in Fig. 11. Each row of the

dot diagram contains 10 dots, which represent the

partial products generated by the PPG unit, for W

= 8. We have four sets of partial products

corresponding to four partial products of each

multiplier, since L = 8. Each set of partial

products of the same weight values contains four

terms, since N = 4. The final sum without

truncation should be 18 b. However, we use only

8 b in the final sum, and the rest 10 b are finally

discarded. To reduce the computational

complexity, some of the LSBs of inputs of the

adder tree can be truncated, while some guard bits

can be used to minimize the impact of truncation

on the error performance of the adaptive filter. In

Fig. 11, four bits are taken as the guard bits and

the rest six LSBs are truncated. To have more

hardware saving, the bits to be truncated are not

generated by the PPGs, so the complexity of PPGs

also gets reduced.

4. Perfomance Results

This section evaluates the performance of the

proposed modified least mean square (LMS)

algorithm and shows the simulation results. The

first result declares about the output of LMS

adaptive filter with delay. It is having some delay

in the output of Least Mean Square adaptive filter.

And the second result declares about the output of

LMS adaptive filter without delay. After the clock

input has given the output of the adaptive filter is

achieved without delay. The ModelSIM is the tool

used here to check the performance of LMS

adaptive filter. It is a complete HDL simulation

environment that enables to verify the source code

www.ijmetmr.com/icecv2015 Page 27

and functional and timing models using test

bench.

Schematic Diagram of The Project

Output Waveforms

Output of the project

5. Conclusion

We proposed an area–delay-power efficient low

adaptation delay architecture for fixed-point

implementation of LMS adaptive filter. We used a

novel PPG for efficient implementation of general

multiplications and inner-product computation by

common sub expression sharing. Besides, we have

proposed an efficient addition scheme for inner-

product computation to reduce the adaptation

delay significantly in order to achieve faster

convergence performance and to reduce the

critical path to support high input-sampling rates.

www.ijmetmr.com/icecv2015 Page 28

Aside from this, we proposed a strategy for

optimized balanced pipelining across the time-

consuming blocks of the structure to reduce the

adaptation delay and power consumption, as well.

The proposed structure involved significantly less

adaptation delay and provided significant saving

of ADP and EDP compared to the existing

structures.

We proposed a fixed-point implementation of the

proposed architecture, and derived the expression

for steady-state error. We found that the steady-

state MSE obtained from the analytical result

matched well with the simulation result. We also

discussed a pruning scheme that provides nearly

25% saving in the ADP and 10% saving in EDP

over the proposed structure before pruning,

without a noticeable degradation of steady-state

error performance. The highest sampling rate that

could be supported by the ASIC implementation

of the proposed design ranged from about 870 to

1010 MHz for filter orders 8 to 32. When the

adaptive filter is required to be operated at a lower

sampling rate, one can use the proposed design

with a clock slower than the maximum usable

frequency and a lower operating voltage to reduce

the power consumption further.

References

[1] B. Widrow and S. D. Stearns, Adaptive Signal

Processing. Englewood Cliffs, NJ, USA: Prentice-

Hall, 1985.

[2] S. Haykin and B. Widrow, Least-Mean-Square

Adaptive Filters. Hoboken, NJ, USA: Wiley,

2003.

[3] M. D. Meyer and D. P. Agrawal, “A modular

pipelined implementation of a delayed LMS

transversal adaptive filter,” in Proc. IEEE Int.

Symp. Circuits Syst., May 1990, pp. 1943–1946.

[4] G. Long, F. Ling, and J. G. Proakis, “The LMS

algorithm with delayed coefficient adaptation,”

IEEE Trans. Acoust., Speech, Signal Process. vol.

37, no. 9, pp. 1397–1405, Sep. 1989.

[5] G. Long, F. Ling, and J. G. Proakis,

“Corrections to ‘The LMS algorithm with delayed

coefficient adaptation’,” IEEE Trans. Signal

Process., vol. 40, no. 1, pp. 230–232, Jan. 1992.

[6] H. Herzberg and R. Haimi-Cohen, “A systolic

array realization of an LMS adaptive filter and the

effects of delayed adaptation,” IEEE Trans. Signal

Process., vol. 40, no. 11, pp. 2799–2803, Nov.

1992.

[7] M. D. Meyer and D. P. Agrawal, “A high

sampling rate delayed LMS filter architecture,”

IEEE Trans. Circuits Syst. II, Analog Digital

Signal Process., vol. 40, no. 11, pp. 727–729,

Nov. 1993.

[8] S. Ramanathan and V. Visvanathan, “A

systolic architecture for LMS adaptive filtering

with minimal adaptation delay,” in Proc. Int.

Conf. Very Large Scale Integr. (VLSI) Design,

Jan. 1996, pp. 286–289.

[9] Y. Yi, R. Woods, L.-K. Ting, and C. F. N.

Cowan, “High speed FPGA-based

implementations of delayed-LMS filters,” J. Very

Large Scale Integr. (VLSI) Signal Process., vol.

39, nos. 1–2, pp. 113–131, Jan. 2005.

[10] L. D. Van and W. S. Feng, “An efficient

systolic architecture for the DLMS adaptive filter

and its applications,” IEEE Trans. Circuits Syst.

II, Analog Digital Signal Process., vol. 48, no. 4,

pp. 359–366, Apr. 2001.

 [11] L.-K. Ting, R. Woods, and C. F. N. Cowan,

“Virtex FPGA implementation of a pipelined

www.ijmetmr.com/icecv2015 Page 29

adaptive LMS predictor for electronic support

measures receivers,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 13, no. 1, pp. 86–

99, Jan. 2005.

[12] P. K. Meher and M. Maheshwari, “A high-

speed FIR adaptive filter architecture using a

modified delayed LMS algorithm,”

in Proc. IEEE Int. Symp. Circuits Syst., May

2011, pp. 121–124.

[13] P. K. Meher and S. Y. Park, “Low

adaptation-delay LMS adaptive filter part-I:

Introducing a novel multiplication cell,” in Proc.

IEEE Int. Midwest Symp. Circuits Syst., Aug.

2011, pp. 1–4.

[14] P. K. Meher and S. Y. Park, “Low

adaptation-delay LMS adaptive filter part-II: An

optimized architecture,” in Proc. IEEE Int.

Midwest Symp. Circuits Syst., Aug. 2011, pp. 1–4.

[15] K. K. Parhi, VLSI Digital Signal Procesing

Systems: Design and Implementation. New York,

USA: Wiley, 1999.

[16] C. Caraiscos and B. Liu, “A roundoff error

analysis of the LMS adaptive algorithm,” IEEE

Trans. Acoust., Speech, Signal Process., vol. 32,

no. 1, pp. 34–41, Feb. 1984.

[17] R. Rocher, D. Menard, O. Sentieys, and P.

Scalart, “Accuracy evaluation of fixed-point LMS

algorithm,” in Proc. IEEE Int. Conf. Acoust.,

Speech,

AUTHOR 1:-

N.Pavani completed her B tech in Khammam

Institute of Technology and science and pursuing

M-Tech in Vaagdevi College of Engineering.

AUTHOR 2:-

Ms. V. Sabitha is working as Asst. prof in Dept of

ECE Vaagdevi College of Engineering

Bollikuntla, Warangal.

AUTHOR 3:-

Professor Mr.P Prasad Rao, Head of the

Department of ECE Vaagdevi College of

Engineering Bollikuntla, Warangal.

