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ABSTRACT: 

Cognitive radio (CR) is a developing wireless 

communication technology that addresses the 

inefficiency of current radio spectrum management. 

The automatic modulation classifier (AMC) is an 

important signal processing component that helps the 

CR in identifying the modulation format occupied in 

the detected signal. A blind equalizer is another 

important signal processing component that a CR must 

carry since there are no training or pilot signals 

available in many applications. In a typical wireless 

communication area the transmitted signals are 

subjected to noise and multipath fading. Multipath 

fading is not only affects the performances of symbol 

detection by causing inter symbol interference (ISI) 

but also affects the performance of the AMC.  

 

The blind equalizer that removes ISI from the received 

signal, thus improving the symbol detection 

performance.AMC can be broadly classified into are 

two categories: Likelihood based and Feature based. 

Cumulants based AMC was categorized in featured 

based and it was considered because of its ability to 

classify a wide variety of modulation schemes with 

easy implementation. This will involve formulating a 

cost function that is related to the performance of the 

chosen AMC and adapting the weights of the equalizer 

such that the cost function is optimized. Depending on 

the type of feature based AMC, it may be required to 

use nonlinear optimization techniques like a genetic 

algorithm (GA). 

 

 

INTRODUCTION: 

 

Cognitive Radio (CR), basically introduced by Mitola 

[2], has become a key research area in the field of 

communications. CR is a hopeful technology that is 

capable of achieving better spectrum utilization by 

opportunistically finding and utilizing vacancy 

frequency bands [1]. AMC, as the name suggests is the 

automatic recognition of modulated signals present in 

a particular band of frequency. AMC is an important 

component of cognitive radio that improves spectral 

efficiency by modifying transmission and reception 

according to the spectral environment. CRs are 

basically intended to form an ad-hoc network known 

as a Cognitive Radio Network (CRN) [3], which has 

potential military and commercial applications.  

 

In public safety and military applications, the CRs 

must be capable of performing fixed and on-the move 

communications between highly different elements in 

a harsh environment which may also be susceptible to 

jamming attacks and malicious interference [4]. For 

the secure and reliable operation of a CRN, CRs must 

be able to identify all users in the frequency band 

simultaneously. Feature based AMCs [5] are widely 

used because of easy implementation and better 

performance. The multiuser AMC using fourth order 

cumulant based approach is recently proposed in [6]. 

By using multiple antennas at the receiver the CR can 

identify the number of transmitting users which is 

generally not possible while using a single antenna 

receiver.  
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Also, by using multiple antennas the CR can harness 

the flexibility offered by traditional multi-input multi-

output (MIMO) communication schemes separate from 

classifying the signals from multiple users. The 

cumulant based multiuser AMC [6] requires the 

knowledge of the multiuser channel impulse response. 

However, channel knowledge or pilot sequence for 

estimating the channel is not available in a CR 

scenario. Therefore, one needs toestimate the channel 

blindly. In blind channel estimation, the channel 

impulse response is estimated using only the received 

data sequence withpilot sequence or no knowledge of 

the transmitted. Most of the blind multi-channel 

identification algorithms are proposed in[8]-[19]are 

batch processing algorithms.  

 

Due to the presence of multiple signals in a frequency 

band, any transmitted signal is subjected to the inter 

user interference (IUI).The transmitted signals are 

subjected to inter symbol interference (ISI) due to the 

multipath fading. Since there is no training sequence 

available in a CR scheme, MIMO blind equalizers are 

used to remove IUI and ISI. Both second order 

statistics (SOS) and higher order statistics (HOS) of 

the received signal are required to achieve MIMO 

blind equalization. Since HOS are used, MIMO blind 

equalizers have the potential to converge to a local 

minimum. Convergence of MIMO blind equalizer to 

local minimum not only affects symbol detection 

performance but also the performance of multiuser 

AMC.  

Mostly, blind equalizers are designed to improve the 

performance of symbol detection. In a CR, AMC is an 

important component and hence it is better to design a 

blind equalizer that improves the performance of both 

symbol detection and AMC. In this paper, we propose 

the MIMO blind equalizer that improves the 

performance of both multiuser AMC and multiuser 

symbol detection. In order to do so, we design a cost 

function that is related to the performance of the 

multiuser AMC and then choose the parameters of the 

blind equalizer such that the cost function is 

maximized. The overall block diagram of the proposed 

CR receiver is shown in Figure 1. 

In the figure, we design the MIMO blind equalizer 

G(z−1) by considering the performance of both 

multiuser AMC and multiuser symbol detection. For 

designing the blind equalizer we can also use the 

MIMO channel estimates provided by the multiuser 

AMC. 

 

Figure 1: Block diagram of the proposed system. 

2. Channel Model and Assumptions 

As mentioned earlier, multiple receiving antennas are 

used for classifying signals from multiple users. Let l 

and m are the number of transmitting users and  the 

number of receiving antennas respectively and it is 

required that m > l. Usually in a CR scheme, l is not 

known and needs to be estimated using algorithms like 

the one proposed in [20]. The multipath channel 

between the ith receiving antenna and jth user is denoted 

as hij(z−1) and is given by 

hij(z−1) = hij(0) + hij(1)z−1 + . . . + hij(L)z−L, 

    (1) 

where L is the number of multipath components, z−1 is 

the unit delay operator and hij(k) (for k = 1, . . . , L) is 

the fading coefficients of the corresponding 

multipaths. Now, the overall system can be represented 

by the following model 

y(i) = x(i) + w(i), i = 0, 1, 2, . . . (2) 

x(i) = H(z−1)s(i), 

Where s(i) is the l × 1 transmission vector whose 

elements sk(i) (k = 1, 2 . . . l) denote the kth 

transmitting user and y(i) is the m × 1 reception vector 

whose elements yk(i) (k = 1, 2 . . . m) denote the 
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received signal at the kth receiving antenna, w(i) 

denotes the m × 1 noise vector and H(z−1) is given by 

h11(z−1)  ...  h1l(z−1) 

H(z−1) =     ...    ...     ...   

   (3) 

hm1(z−1)  ...  hml(z−1) 

Another representation of H(z−1) used in this paper is 

H(z−1) = ∑L
k=0 Hkz−k   (4) 

Where  Hk(for k = 1, 2 . . L) is the m × l scalar matrix. 

We make the following assumptions regarding the 

system model (2). 

Assumption A21: rank[H(z−1)]=l, for all complex z=0, 

i.e. H(z−1) is irreducible.Assumption A21 is valid for 

any practical wireless channel with reasonable spatial 

diversity. Also we assume that the signals transmitted 

by various users are uncorrelated and each element of 

the noise vector w(i) is zero mean white Gaussian with 

variance σ2
w. 

MIMO blind equalizers are used to recover the 

transmitted signal vector s(i) using only the received 

signal vector y(i) with no training sequence and 

knowledge of the channel transfer function H(z−1). As 

mentioned earlier, in this paper we design a blind 

equalizer that takes into consideration the performance 

of the multiuser AMC. In order to do so, we consider 

the following theorem from [17]. 

Theorem 1:[17] For the system given in (2) under 

Assumption A21 there exists (l × m) polynomial 

matrix G(z−1)  such that 

G(z−1)H(z−1) = Il.  (5) 

Since G(z−1) is not unique, so we can choose G(z−1) 

such that both multiuser AMC performance andsymbol 

detection performances are improved. 

According to [18], G(z−1) in (5) can be factorized as 

follows 

G(z−1) = G2(z−1)G1(z−1), (6) 

where G2(z−1) is a l × m polynomial matrix and G1(z−1) 

is an arbitrary m × m polynomial matrix with the 

condition det[G1(z−1)] ≠0, f or |z| ≥ 1. Since G1(z−1) is 

an arbitrary polynomial matrix, we design G1(z−1) such 

that the multiuser AMC performance is improved. To 

do so, we first construct a cost function Jamc which is 

related to the performance of the multiuser AMC. 

Then We can choose the parameters of G1(z−1) such 

that Jamc is maximized. The overall design of G1(z−1) 

can be viewed as the following constrained 

optimization problem 

maxG1(z−1) Jamc 

s.t.det[G1(z−1)] = 0, f or |z| ≥ 1 (7) 

The rest of the paper is about formulating the cost 

function Jamc and solving for the polynomial matrices 

G1(z−1) and G2(z−1). 

2.1 Cost Function for the Multiuser AMC 

In this subsection we develop the cost function Jamc for 

designing blind equalizer polynomials G1(z−1) and 

G2(z−1). In order to do so, we need to understand the 

effect of the MIMO FIR filter on the normalized 

cumulant values of the received signal. From [6] one 

can see that the normalized cumulant values of each 

received signal C˜
yi(n,m) (for i = 1, 2 . . . m)is a weighted 

sum of the normalized cumulant values of all the 

transmitting users. The weighting coefficients are 

given by wij = γij(for i= 1,2. . . m, j= 1,2. .l) [6]. It can 

be easily shown that 

|wij | = |γij∆2
i| <1  (f or i = 1, 2 . . . m, (8) 

       j= 1,2. .l) 

Since the magnitude of the weighting coefficients are 

less than one, the magnitude of the normalized 

cumulant values of the received signals are driven 

towards zero. The MIMO FIR channel clusters all the 

cumulant features around zero. This clustering makes 

it hard for the classifier shown in [6] to distinguish 

between the features. Thus the coefficients of the 

matrix polynomial G1(z−1) must be chosen in such a 

way that the features are unclustered. For this reason 

we propose the following cost function 
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Jamc = ∑m
j=1 |Cx2j(n,m)|,  (9) 

Where x2(i) = G1(z−1)y(i) and Cx2j(n,m) is the cumulant 

value of the jth component in the vector signal x2(i). 

The above cost function maximizes the magnitude of 

the normalized cumulant values of the signals so that 

the classifier can distinguish between the features. 

3 Designing the Matrix Polynomials 

In this section, we propose the algorithm for designing 

the polynomials G1(z−1) and G2(z−1). We also present 

the overall step by step procedure for designing the 

blind equalizer. The cost function in (9) can be 

expressed as follows 

Jamc = ∑m
j=1|Cx2(j)(n,k)| = J1 + . . . + Jm, (10) 

Where Ji = |Cx2(i)(n,k)| (for i = 1 . . . m). Now we choose 

G1(z−1) to be the diagonal  

matrix given by 

G1(z−1) = diag C1(z−1), . . . , Cm(z−1) , (11) 

Where the elements of diagonal matrix are the FIR 

filters given by 

Cp(z−1) = cp1z−1 + . . . + cpL1z−L1 (12) 

for p = 1 . . . m 

Where L1 is the length of the filter and cij (for i = 1, . . 

. , m, j = 1, . . . , L1) are the filter weights. Since 

G1(z−1) is chosen to be a diagonal matrix, the 

constraint on G1(z−1)(refer[21]-[25]) implies that the 

FIR filter Cp(z−1) (for p = 1 . . . m) must be minimum 

phase. That is, the filter must not have any zeros on or 

outside the unit circle. Let us denote the weight vector 

as cp = [cp1, . . . ,cpL] (for p = 1, . . . , m) then, for 

updating weights we use the following constrained 

gradient search technique. Due to the constraint on 

G1(z−1) we reduce the search space to the region where 

the weights form a minimum phase 

polynomial.Letcp(k)denote the coefficient vector 

during the iteration k = 0, 1, 2, . . .. 

• Step 1: For k = 0 initialize cp(0) to a random value 

from the search space. 

• Step 2: For k = 1, 2, . . . calculate the output of the 

filter 

x2p(n) =∑L
m=0cp(m)yp(n − m)  (13) 

for p = 1 . . . m 

• Step 3: Update the coefficient vector using the 

following equation 

cp(k) = cp(k − 1) − µ ∂Jp/∂cp 

for p = 1 . . . m  (14) 

where µ is step size. The weights are updated only if 

the new weights lies in the search space. If not, repeat 

step 2. 

• Step 4: If |Jp(cp(k))−Jp(cp(k−1))| / Jp(cp(k−1)) < ζ 

terminate the iteration and go to step 5. If not, repeat 

step 2, where ζ is chosen to be a small number less 

than one. 

• Step 5: Calculate the output x2(i) using G1(z−1). 

Now the cumulant features of the (m × 1) signal vector 

x2 are maximized and not clustered around zero, 

therefore x2 is given to the MAMC shown for 

classification[6]. Let us denote 

F(z−1) = G1(z−1)H(z−1) = ∑L+L1−1
k=0 Fkz−k.  

   (15) 

It can be seen from [6], that a blind MIMO channel 

estimator forms an integral part of the multiuser AMC  

Since x2(i) is fed to the multiuser AMC, we can obtain 

the estimate of the polynomial F(z−1). Using the 

estimate of F(z−1),we design G2(z−1) by solving the 

following equation 

G2(z−1)F(z−1) = Il,  (16) 

where Il is the (l × l) identity matrix. Let us denote 

G2(z−1) as 

G2(z−1) = ∑L2−1
k=0 G2kz−k, (17) 

where G2k (for k = 0, 2 . . . (L2 − 1)) are the l × m 

scalar matrix. Now the solution to (16) is given by 

[17],[18] 

[G21 G22 G23 . . . . . .] = [Il . . .] S†, (18) 
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Where S† is the pseudo inverse of the S matrix given 

by 

F0   F1    F2...  ... 

0    F0   F1 ...  ... 

S = ...   ...    ...  ...  …  

 0     0    0   F0  ... (19) 

 

3.1.Overall Classification and Equalization 

Algorithm 

In this section we can present the step by step 

implementation of the overall proposed system. 

• Step 1: Given the (m × 1) received signal vector y(i) 

estimate the number of transmitting users l using the 

method proposed in [20].•  

Step 2: Choose the length of the matrix polynomials 

L1 and L2. Since the length of  channel impulse 

response is not known,choose a sufficiently large 

length so that  

the system is over modeled. 

• Step 3: G1(z−1) is chosen to be a diagonal matrix 

given by (11) and its coefficients are adapted by using 

the gradient search algorithm given by (14). 

• Step 4: The signal x2(i) is sent to the MAMC for 

classification. The multiuser AMC provides an 

estimate of the matrix polynomial F(z−1). 

• Step 5: Using the estimated F(z−1), then design the (l 

× m) matrix polynomial G2(z−1) by solving (16). The 

output of G2(z−1) is used for symbol detection. 

4 Simulation results 

In this section, we demonstrate the performance of the 

constant modulus algorithm (CMA) optimization and 

the performance of the proposed MIMO blind 

equalizer using Monte Carlo simulation. Since the 

performance of the multiuser AMC is also considered 

while designing the blind equalizer, we can analyze the 

performance of both the multiuser AMC and symbol 

detection. For the Monte Carlo simulation, 1,000 trials 

are considered.  

4.1 CMA Optimization performance 

 

Figure 2: Performance of the CMA optimization 

The above figure represents the maintenance of the 

error rate as no of operational blocks are going to 

increase in CMA optimization. 

4.2 Multiuser AMC Performance 

In this subsection we can determine the performance 

of the MAMC using computer simulation. The 

performance measure considered is the probability of 

correct classification Pcc. Suppose that there are l users 

and M modulation schemes which are denoted as Ω = 

{Ω1, . . . , ΩM }. Then there are L1 = Ml possible 

transmission scenarios denoted as D = {d1, . . . , dL1 }. 

The probability of correct classification Pcc is defined 

as 

Pcc =∑ L1
i=1 P(di|di)P(di) (20) 

Where P(di) is the probability to that the particular 

transmission scenario occurs and P(di|di) is the correct 

classification probability when scenario di has been 

transmitted. For the simulation we assumeP (di) =1/ 

L1,∀i, where all scenarios are equally probable. 

Two-user three-class problem (Fourth order 

cumulants) 

In this experiment we can consider l = 2 transmitting 

users and m = 3 receiving antennas. The 3 × 2 channel 

matrix H(z−1) is modeled as a realistic three tap MIMO 

FIR channel. Three modulation schemes are 

considered for this experiment and they are Ω = 
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{BPSK, QAM(4), PSK(32)}. Since three modulation 

schemes are considered, there are nine possible 

scenarios. The Monte Carlo simulation results are 

summarized in Figure 3. In Figure 3, the curve labeled 

Pcc2 shows the performance of the multiuser AMC 

without the proposed blind equalizer. The curve 

labelled Pcc1 illustrates the performance of the AMC 

using the proposed system. 

 

Figure 3: Performance of the multiuser AMC 

(Two-user three-class problem). 

Two-user four-class problem (Fourth order 

cumulants) 

In this experiment we can consider l = 2 transmitting 

users and m = 3 receiving antennas. The 3 × 2 channel 

matrix H(z−1) is modeled as a realistic three tap MIMO 

FIR channel. Three modulation schemes are 

considered for this experiment and they are Ω = 

{BPSK, QAM (4), QAM (16), PSK(32)}. Since four 

modulation schemes are considered, there are sixteen 

possible scenarios. The Monte Carlo simulation results 

are summarized in Figure 4. In Figure 4, the curve 

labeled Pcc2 showsthe performance of the multiuser 

AMC without the proposed blind equalizer. The curve 

labelled Pcc1 illustrates the performance of the AMC 

using the proposed system. 

 

Figure 4: Performance of the multiuser AMC 

(Two-user four-class problem) 

Four-user five-class problem (Sixth order 

cumulants) 

In this experiment we can consider l = 4 transmitting 

users and m = 5 receiving antennas. Each entry of the 

5 × 4 channel matrix H(z−1) is modeled as a realistic 

three tap MIMO FIR channel.Five modulation 

schemes are considered for this experiment and they 

are Ω = {BPSK, QAM (4), QAM (16), PSK(8), 

PSK(32)}. The Monte Carlo simulation results are 

summarized in Figure 5. In Figure 5, the curve labeled 

Pcc1 shows the performance of the MAMC without 

the proposed blind equalizer. The curve labelled Pcc2 

illustrates the performance of the AMC using the 

proposed system. 

 

Figure 5: Performance of the MAMC (Four-user 

five-class problem) . 

Four-user five-class problem (Realistic channel II) 

This problem is the same as the previous one except 

four modulation schemes are considered. The 

modulation schemes considered are Ω = {BPSK, QAM 

(4), QAM (64), PSK (8), PSK(32)}. The channel 

considered was a realistic MIMO multipath channel. 

The Monte Carlo simulation results are summarized in 

Figure 6. In Figure 6 the curves labelled Pcc1, and Pcc2 

have the same meaning as that of Figure 5. From 

Figures 4 - 5, it can be seen that the proposed MIMO 

blind equalizer enhances the performance of the 

MAMC. 
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Figure 6: Performance of the MAMC (Realistic 

multipath channel II) 

4.3 Symbol Detection Performance 

In order to analyze the symbol detection performance, 

we can consider the same 2-input/3-output FIR random 

channel considered in the previous experiment. The 

normalized mean square error (NMSE) and symbol 

error rate (SER) are taken as performance measures. 

The simulation results are shown in Figure 7 and 

Figure 8. In Figure 7 and Figure 8 the curve labeled 

sd1 illustrates the symbol detection performance of the 

proposed system. The curve labeled sd2 illustrates the 

symbol detection performance of MIMO blind 

equalizer when the channelimpulse response is known 

(non-blind equalizer). From the figures it can be seen 

that the symbol detection performance of the proposed 

system is close to that of the non-blind MIMO 

equalizer. 

 

Figure 7: Symbol detection performance of the 

proposed system(NMSE Vs SNR). 

 

Figure 8: Symbol detection performance of the 

proposed system (SER vs SNR) 

4.4 Performance of Multiuser AMC with Genetic 

algorithm 

 

Figure 9: Performance of the multiuser AMC 

(Two-user three-class problem) 

In the above figure9 genetic algorithm optimization 

gives better correct classification probability than other 

methods in two user and three class problem. 

 

Figure 10: Performance of the multiuser AMC 

(Two-user four-class problem) 

In the above figure10 genetic algorithm optimization 

gives better correct classification probability than other 

methods in two user and four class problem. 



 

  
                                                                                                                                                                                                                    Page 656 

 

 

Figure 11: Performance of the multiuser AMC 

(Four-user five-class problem) 

In the above figure11 genetic algorithm optimization 

gives better correct classification probability than other 

methods in four users and five class problem. 

 

Figure 12: Performance of the MAMC (Realistic 

multipath channel II) 

In the above figure12 genetic algorithm optimization 

gives better correct classification probability than other 

methods in realistic multipath channel II. 

5.Conclusion: 

In this paper, the proposed MIMO blind equalizer was 

tested under different scenarios. From the simulation 

results it can be seen the MIMO blind equalizer 

improves the performance of both multiuser AMC and 

multiuser symbol detection with Genetic algorithm. 

Irrespective of the kind of channel and the type of 

feature used, it can be seen from the simulation results 

that we get 15% improvement at higher SNR’s and 

atleast 10% improvement in performance at 0dB SNR. 

The performance of proposed equalizer was analyzed 

using computer simulations and yielded promising 

results. 
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