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Abstract: 

Singular Value Decomposition (SVD) deals with the 

decomposition of general matrices which has proven 

to be useful for numerous applications in science and 

engineering disciplines. In this paper the method of 

SVD has been applied to mid-level digital image 

processing. SVD transforms a given matrix into three 

different matrices, which in other words, means 

refactoring the digital image into three matrices. 

Refactoring is achieved by using singular values, and 

the image is represented with a smaller set of values. 

The primary aim is to achieve image compression by 

using less storage space in the memory and 

simultaneously preserving the useful features of 

original image. The experiments with different 

singular values are performed and the performance 

evaluation parameters for image compression viz. 

Compression Ratio, Mean Square Error, PSNR and 

Compressed Bytes are calculated for each SVD 

coefficient. The implementation tool for the tests and 

experiments is MATLAB. Here we are using kernel-

Based SVD for effective compression. And we 

compare the SVD based compression and Kernel 

based SVD compression with the help of different 

quality metrics. 

 

I. INTRODUCTION 

The recent developments and improvements in the 

field of image security have increased awareness on 

the importance of digital signal processing for image 

recognition and image compression. These 

developments have made it essential to reduce the 

digital information that needs to be stored and 

transmitted. The reduction in both the storage space 

capacity of the image and its transmission bandwidth 

is exploited using image compression. The main 

advantage of image compression is that the percentage 

of irrelevance and redundancy is reduced. This also 

optimizes the storage space and enhances the 

transmission rate. Image compression enables image 

reconstruction. The digital information contained by 

the image determines the degree of compression 

achieved. Singular Value Decomposition (SVD) is one 

of the most effective tools for image compression and 

also for biometric recognition such as face recognition. 

Image processing exploits the transformation, storage 

and retrieval of a digital image. The field of image 

processing is far-fetched and finds its applications in 

satellite imagery, medical imaging , object recognition  

and image enhancement. 

 

With the advancement in high speed computers and 

signal processors, image processing has become the 

most common form of digital signal processing. Image 

compression (in this particular case) takes place in the 

following order in this research: 

1. Refactoring of original image using SVD algorithm 

on the system tests. 

2. Perform image reconstruction for the input image 

using different values of „K‟ (lowest rank 

approximations or singular value of the matrix). 

3. Compute the Compression Ratio (CR), Mean Square 

Error (MSE) and Peak Signal to Noise Ratio (PSNR) 

for quantitative and qualitative measurement of the 

compressed image, as a measure for performance 

evaluation of the compressed image. 

4. Observe the variation in the performance evaluation 

parameters with varying singular values „k‟. 

 

II. IMAGE COMPRESSION 

An image can be represented as an m by n matrix, 

where m, the number of rows, is the pixel height of the 

image, and n, the number of columns, is the pixel 

width of the image. When a computer creates or stores 
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an image, each and every pixel is assigned a number to 

represent its relative darkness or brightness . Each 

value contained inside the matrix decides the 

brightness of the corresponding displayed pixel. In 

case of a grayscale image the range of values within 

the matrix is from 0 (black) to 1 (white), where each 

number simply represents light or dark. But for colour 

images, which are much more space-consuming, the 

computer must split the image into three layers 

composed of red, green and blue in the image. Each 

single-colour picture is then calculated much like a 

grayscale picture based on darkness, and then 

recombined at the end to reproduce the original image. 

 

In other words, in case of a colour image, each colour 

pixel is broken down to three primary components: 

red, green and blue (RGB). Hence there are three 

values associated with each pixel, each ranging from 0 

(colour is absent) to 1 (completely saturated). These 3 

values are assigned to red, green and blue respectively. 

For instance, if a 9 megapixel grayscale image is 

considered, it can be represented as a 3000 × 3000 

pixels matrix. Since it is a grayscale image, each pixel 

in the image matrix can be represented by a certain 

integer whose value falls between 0 and 255. If a 

storage space of 1 byte is assigned to each pixel, then 

the entire image requires approximately 9MB space. 

For a colour image, this storage space value is larger 

since it has three components, red, green and blue 

(RGB). Each component is represented by a matrix, so 

storing colour images takes three times the space 

(27Mb). 

 

III. REDUNDANCIES 

Three types of redundancies exist when image 

compression and similar techniques are studied. 

A. Coding Redundancy: 

Coding redundancy is present when less than optimal 

code words are used. Lookup Tables (LUTs)[3]are 

used for the implementation of this technique and that 

makes the coding reversible. Huffman coding and 

Arithmetic Coding techniques are the two most 

exercised image coding schemes for this technique. 

 

B. Interpixel Redundancy: 

In Interpixel redundancy, a pixel value is predicted 

based on the values of the neighbouring pixels, by 

mapping the original 2-D array of pixels into a 

different format. Interpixel redundancy is also called 

spatial redundancy; inter frame redundancy, or 

geometric redundancy. 

 

C. Psycho-visual Redundancy:  

From the study of psychophysical aspects of human 

vision it is known that the human eye is insensitive to 

certain band of frequencies i.e. it does not respond to 

all the incoming visual information with equal 

sensitivity. Some parts of the information come to be 

of more importance than others. Due to this, there is 

another type of redundancy that comes into existence, 

which is called Psycho-visual redundancy. 

 

IV. SINGULAR VALUE DECOMPOSITION 

Singular Value Decomposition (SVD) deals with the 

decomposition of general matrices which has proven to 

be useful for numerous applications in science and 

engineering disciplines. The SVD is commonly used in 

the solution of unconstrained linear least squares 

problems, matrix rank estimation and canonical 

correlation analysis. Computational science exploits 

SVD for information retrieval, seismic reflection 

tomography, and real-time signal processing. 

 

A. Theory 

The goal of SVD is to find the best approximation of 

the original data points that is of large dimensions, 

using fewer dimensions. This is possible by identifying 

regions of maximum variations. So when a high 

dimensional, highly variable set of data points is taken, 

SVD is employed to reduce it to a lower dimensional 

space that exposes the substructure of the original data 

more clearly and orders it from most variation to the 

least. In this way, the region of most variation can be 

found and its dimensions can be reduced using the 

method of SVD. In other words, SVD can be seen as a 

method for data reduction. The singular value 

decomposition is defined as a factorization of a real or 

complex, square or non-square matrix. Consider a 
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matrix A with m rows, n columns and rank r. Then A 

can be factorized into three matrices: 

 
Where U and V are orthonormal matrices and the 

matrix Σ is a diagonal matrix with positive real entries. 

 U is an m × m orthogonal matrix. 

 VT is the conjugate transpose of the n × n 

orthogonal matrix. 

 Σ is an m × n diagonal matrix with non-

negative real numbers on the diagonal which 

are known as the singular values of A. 

 The m columns of U and n columns of V are 

called the left-singular and right-singular 

vectors of A respectively. 

 The singular values of Σ are arranged as 

σ1>=σ2>=…σr>=0,  where the largest 

singular values precede the smallest and they 

appear on the main diagonal of Σ. 

 The numbers σ1 2 ≥ … ≥ σr2 are the eigen 

values of AA^T and A^TA. 

 

B. Steps to calculate SVD of a matrix 

1) First, calculate AAT and ATA. 

2) Use AAT to find the eigen values and eigenvectors 

to form the columns of U: (AAT - ƛI) ẍ = 0 [3]. 

3) Use ATA to find the eigen values and eigenvectors 

to form the columns of V: (ATA - ƛI) ẍ =0. 

4) Divide each eigenvector by its magnitude to form 

the columns of U and V. 

5) Take the square root of the eigen values to find the 

singular values, and arrange them in the diagonal 

matrix S in descending order: σ1 ≥ σ2 ≥ … ≥ σr ≥ 0. 

 

C. Properties of SVD:  

SVD has many properties and attributes. A selective 

few of the properties have been listed here: 

1) The singular values „σ‟ are unique, unlike, the 

matrices U and V, which are not unique. 

2) The singular values of a rectangular matrix A are 

equal to the square roots of the eigen values λ1, λ2 . .. 

λm of the matrix ATA. 

3) Mathematically, the rank of the matrix A is the 

number of its non-zero positive singular values; 

 
4) Since AAT = UΣΣ(T)U(T) , so U diagonalizes AAT 

and u(i) s are the eigenvectors of AAT . 

5) Since ATA = VΣ(T)ΣV(T) , V diagonalizes ATA 

and the v(j)s are the eigenvectors of ATA . 

6) If A has rank „r‟ then vj, vj, … ,vr form an 

orthonormal basis for range space of AT , R(AT ), and 

uj, uj, … ,ur form an orthonormal basis for range space 

A, R(A). 

 

D. SVD Approach to Image Compression 

SVD divides a square matrix into two orthogonal 

matrices (U, V) and a diagonal matrix (Σ).So the 

original matrix is rewritten as a sum of much simpler 

rank-one matrices. SVD is applied on an image matrix 

A to decompose it into 3 different matrices U, Σ and 

V. But applying SVD alone does not compress the 

image. To compress an image, after applying SVD, 

only a few singular values have to be retained while 

other singular values have to be discarded. All the 

singular values are arranged in descending order on the 

diagonal of Σmatrix. The discarding of the SV‟s 

follows the fact that the first singular value on the 

diagonal of Σcontains the greatest amount of 

information and subsequent singular values contain 

decreasing amounts of image information. 

 

Thus, negligible amount of information is contained in 

the lower SV‟s. So, they can be positively discarded 

after performing SVD, simultaneously avoiding 

significant image distortion. Furthermore, property3 of 

SVD (section V „C‟) says that „the number of non-zero 

singular values of A is equal to the rank of A‟. In cases 

where the lower order singular values after the rank of 

the matrix are not zero, the discarding can still be done 

since they have negligible values and are treated as 



 

 Page 430 
 

noise. SVD image compression process can be 

illustrated by implementing the following algorithm, 

where a given matrix A is expressed as follows: 

 
 

Now the image matrix „A‟ can be represented by the 

outer product expansion 

 
When performing image compression, the sum is not 

performed to the very last Singular Values(SV‟s)  

;theSV‟s with small enough values are dropped. The 

values falling outside the required rank are equated to 

zero. The closet matrix of rank k   is obtained by 

truncating those sums after the first k terms: 

 
 

The total storage for Ak will be: 

 
The value of integer k can be chosen less than n. This 

won‟t bring any significant change in the image under 

consideration. Hence the digital image corresponding 

to Ak will still have very close resemblance to the 

original image. As different values of k are chosen, it 

is observed that each value of k pertains to each 

corresponding image with their corresponding storage 

capacities. Further approximation in the image matrix 

can be achieved by dropping more singular terms of 

the matrix A, thereby reducing the storage space of the 

image on the computer and achieving disk space 

optimization. 

 

E. SVD Image Compression Measures 

To measure the performance of the SVD compression, 

the quantitative and qualitative measurement of the 

compressed image is found by calculating the 

following 

3 parameters: 

1. Compression Ratio (CR) 

Compression Ratio is defined as the ratio of file sizes 

of the uncompressed image to that of the compressed 

image. 

 
 

2. Mean Square Error (MSE) 

MSE is defined as square of the difference between 

pixel value of original image and the corresponding 

pixel value of the compressed image averaged over the 

entire image. 

 

Mean Square Error (MSE) is computed to measure the 

quality difference between the original image A and 

the compressed image Ak, using the following formula 

 
 

3. Peak Signal to Noise Ratio (PSNR) 

Peak signal-to-noise ratio (PSNR) is defined as the 

ratio between the maximum possible power of a signal 

and the power of corrupting noise that affects the 

fidelity of its representation. PSNR is usually 

expressed in terms of the logarithmic decibel scale to 

accommodate signals with a wide range. In lossy 

compression, the quality of compressed image is 

determined by calculating PSNR. The signal in this 

case is the original data, and the noise is the error 

introduced by compression. The PSNR (in dB) is given 

by the equations. 

 
Here, MAXI is the maximum possible pixel value of 

the image. 

 

F. SVD v/s Memory (Storage Space Calculation) 

The amount of memory required by a non-compressed 

image I needs to be found out first. Considering an 
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m×n pixel grayscale image, the values stored for such 

an image is mn, where one value is assigned for each 

pixel. 

IM=m n 

 

On the contrary, a rank k SVD approximation of I 

consists of three matrices, U , Σ and V; so the method 

for computation of the number of values for SVD 

compressed image is trickier.After SVD is performed, 

the number of values required to store U is calculated.  

 

U is an m×m matrix, where only the first k columns 

are desired. Hence U can be considered to bean m×k 

matrix with mk values. 

UM=mk 

Similarly, for matrix V only the first k columns are 

considered (which become the rows of VT),so V is 

stored as an n ×k matrix containing nk values. 

VM=nk 

 

Lastly, due to the consideration of only the first k 

columns of U and V, only the first k singular values of 

the Σmatrix are considered. So, ΣM=k Now the rank k 

approximation requires a total number of AM values 

which is computed as 

 
 

G. Best Rank - k Approximations 

Most images aren‟t perfect geometric shapes. Many 

images that we come across have full rank, i.e. to 

compress those images using SVD, it is observed that 

their best rank approximation parameter „k‟ will nearly 

be equal to n (where n is the smaller dimension of the 

original matrix I).Solving for AM in this case 

 
 

But for a general consideration, the compressed image 

AM occupies more space than the original image 

(IM=mn), which is contradictory to the purpose of 

SVD compression [5]. In order to save memory, in 

other words to reduce the storage space during SVD, 

the value of k has limit restrictions on it. Hence AM<= 

IM: 

 
 

The same rule for computation of k applies to colour 

images. In case of colouring images IM=3mn,while 

 

 
 

Theorem:A best k-rank approximation Akis given by 

zeroing out the (r-k)trailing singular values of A, that 

is:- 

 
The minimal error is given by the Euclidean norm of 

the singular values that have been zeroed out in the 

process: 

 
Let the SVD of A be: 

 
For k = {1,2…r}, let 

 
be the sum truncated after k terms. The rank of the 

SVD compressed image Ak is k. Furthermore, Ak is the 

best rank k 
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approximation to A when the error is measured in 

either the 2-norm or the Frobenius norm. 

 

 

 
Initially the processor is fed with the JPEG image 

which has to be compressed. This input image is stored 

as an array of integers. For performing compression in 

MATLAB, the array of integers is converted to double 

data type. Now, prior to the compression process, the 

user needs to specify the amount of compression that is 

desired. This is achieved by specifying the 

Compression Ratio for the particular input JPEG 

image. Singular Value Decomposition is performed to 

refactor the input image matrix and is then applied 

separately to the matrix components. The resultant 

decomposed matrix is regenerated by decoding the bit 

stream. SVD compression technique is applied to the 

input image for different singular values and the 

compressed images are created and displayed in Fig.3. 

Considering different values of k, the result of SVD 

compression is depicted in the images displayed 

above. Fig.3(f) shows the original image. The 

displayed image is extremely blurred when the 

singular value is chosen to be 3, as shown in Fig.3(a). 

Alternatively, it means that only first 2 eigen values of 

Σ matrix are considered for image reconstruction. 

 

The image obtained by applying SVD using k=12 as 

the singular value (shown in Fig.3(b)) shows 

comparatively less signs of distortion than Fig.3(a). By 

observing figures 3(a) to 3(j), conclusion can be drawn 

that with increase in the value of k(i.e. number of 

Eigen values used for reconstruction of the compressed 

image), the compressed image approaches the original 
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image with negligible MSE. The rank of the input 

image matrix is 202 as observed from the tabular 

column. Following inference can be drawn on the basis 

of the above table and plots: 

1. The Eigen values used in the reconstruction of the 

compressed image are represented by the parameter 

„k‟. 

2. Smaller values of k imply greater compression ratio 

(i.e. less storage space is required) but a deterioration 

in the image quality (i.e. larger MSE values& smaller 

PSNR values). 

3. Thus, it is necessary to strike a balance between 

storage space required and image quality for good. 

image compression. From the above observations, it is 

found that optimum compression results are obtained 

when MSE of the compressed image is just less than or 

equal to 38dB (i.e. MSE ≤ 38dB). In our case, this is 

obtained when value of k is 52. 

4. Thus, it is necessary to strike a balance between 

storage space required and image quality for good 

image compression. From the above observations, it is 

found that optimum compression results are obtained 

when MSE of the compressed image is just less than or 

equal to 38dB (i.e. MSE ≤ 38dB). In our case, this is 

obtained when value of k is 52. 

5. When k is equal to the rank of the image matrix (202 

here), the reconstructed image is almost same as the 

original one. And as k is increased further, there is a 

negligible decrease in the MSE values. This means that 

improvement in the image quality is very negligible. 

 

VI. CONCLUSION 

In performing SVD compression for JPEG images the 

values of Compression Ratio and their variation with 

corresponding singular values (SVD coefficients) are 

observed and their relation is concluded to be a 

decreasing exponential function. More compression 

ratio can be achieved for smaller ranks. On the other 

hand, the computation time for the compressed images 

is the same for all the values of k taken. It was also 

found that the fewer the singular values were used, the 

smaller the resulting file size was. An increase in the 

number of SVD coefficients causes an increase in the 

resulting file size of the compressed image.  As the 

number of SVD coefficients nears the rank of the 

original image matrix, the value of Compression Ratio 

approaches one. From the observations recorded it can 

be seen that the Mean Square Error decreases with 

increase in the number of SVD coefficients, unlike 

PSNR which varies inversely with the value of 'k'.  

 

Therefore, an optimum value for 'k' must be chosen, 

with an acceptable error, which conveys most of the 

information contained in the original image, and has an 

acceptable file size too. 

 

VII. APPLICATIONS 

1. An optimum value of Compression Ratio (CR) is 

characteristic to any image compression technique to 

make the compressed image well adapted to statistical 

variations. SVD has proven to be advantageous in this 

aspect. 

2. The range and null space of a matrix are important 

quantities in linear algebraic operations, which are 

explicitly defined by SVD, through the left and right 

singular vectors (U & V resp.). Vector U has vanishing 

singular values of original image that span its „null 

space‟. Vector V contains the non-zero singular values 

of original image that span the „range‟. 

3. Noise reduction is also one of the many applications 

of SVD. In this paper A stands for an image matrix. 

Likewise, if A represents a noisy signal, then on 

computation of SVD, small singular values of A can be 

discarded. The discarded SV‟s mainly represent noise. 

Hence, the compressed signal Ak represents a noise 

filtered signal. 

4. SVD also finds its application in the area of Face 

Recognition. 
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