

 Page 222

Engineering A Compiler: An Incremental Approach

Shreyas Shetty G S

Student,

Department of ISE,

The National Institute of

Engineering, Mysuru - 08

Swasthik G Hebbar

Student,

Department of ISE,

The National Institute of

Engineering, Mysuru - 08

Smt. S. Kuzhalvaimozhi

Associate Professor,

Department of ISE,

The National Institute of

Engineering, Mysuru - 08

Abstract

Compilers are actually the magical artifacts of

computers. There are complex programs that translate

code in a source language to a target language. Real

life compilers are kind of very complex for

understanding on an academic basis.

Many books that teach how to design compilers portray

that the design is like killing a giant monster with a

very blunt sword. A lot of tradeoff exists between the

designs of compilers on an academic scale to the design

of compilers for real-time deployment. Hence many

people think that it is just feasible to code an

interpreter. This paper aims to break this barrier. This

paper illustrates all the tools and the various

methodologies that are used to design a simple

compiler. Here a simple set of python called S3L will be

accepted by the compiler and produces assembly code

for the x86 architecture.

Every section described in this paper if followed

incrementally will result in a full-fledged compiler

.Supporting material for the tutorial such as an

automated testing facility coupled with a

comprehensive test suite are provided with the tutorial.

The motivation of this paper is to provide a simplified

design strategy compilers so that students can be better

exposed to develop high performance compilers in

future.

Keywords—Compilers, Interpreters, Instruction Set,

Python.

Introduction

Compilers, it seems to be a very lengthy and hard

program to code. But that‟s not a real concept, even

though it may be tough but following a correct order and

knowing the basics about a compiler, it will work out

easily. There are many books which will help you out

with theory concepts about the compiler but

implementing those in the practical world will be

difficult.

Since it‟s a heavy task so people tend to write an

interpreter than a compiler, but there are many problems,

basically all languages can‟t be interpreted. These can‟t

be mapped on to compilers because compilers are far

better and helpful than interpreters.

Before we begin our journey through building a compiler

let‟s talk about what compilers mean, steps involved, at

are interpreters so on one by one.

A. Compilers

A compiler is a computer program (or a set of programs)

that transforms source code written in a programming

language (the source language) into another computer

language (the target language), with the latter often

having a binary form known as object code. If the

compiled program can run on a computer whose CPU or

operating system is different from the one on which the

compiler runs, the compiler is known as a cross-

compiler.

A compiler is likely to perform many or all of the

following operations: lexical analysis, preprocessing,

parsing, semantic analysis (syntax-directed translation),

code generation, and code optimization. Program faults

caused by incorrect compiler behavior can be very

difficult to track down and work around; therefore,

compiler implementers invest significant effort to ensure

compiler correctness.

 Page 223

Compilers enabled the development of programs that are

machine-independent. Compilers bridge source programs

in high-level languages with the underlying hardware. A

compiler verifies code syntax, generates efficient object

code, performs run-time organization, and formats the

output according to assembler and linker conventions.

Compilers are sometimes classified as single-pass, multi-

pass, load-go depending on how they have been

constructed or on what function they are supposed to

perform.

B. Interpreters

An interpreter is a computer program that directly

executes, i.e. performs, instructions written in a

programming or scripting language, without previously

compiling them into a machine language program. An

interpreter generally uses one of the following strategies

for program execution:

1. Parse the source code and perform its behavior

directly.

2. Translate source code into some efficient

intermediate representation and immediately

execute this.

3. Explicitly execute stored precompiled code

made by a compiler which is part of the

interpreter system.

Source programs are compiled ahead of time and stored

as machine independent code, which is then linked at

run-time and executed by an interpreter (for JIT

systems). Interpreters of various types have also been

constructed for many languages.

C. Types of compiler

1) A source-to-source compiler is a type of compiler that

takes a high level language as its input and outputs a

high level language. For example, an automatic

parallelizing compiler will frequently take in a high level

language program as an input and then transform the

code and annotate it with parallel code annotations (e.g.

OpenMP) or language constructs.

2) Bytecode compilers that compile to assembly

language of a theoretical machine, like some Prolog

implementations. Bytecode compilers for Java, Python

are also examples of this category.

3) Just-in-time compiler (JIT compiler) is the last part of

a multi-pass compiler chain in which some compilation

stages are deferred to run-time. Examples are

implemented in Smalltalk, Java and Microsoft .NET's

Common Intermediate Language (CIL) systems.

4) Hardware compilers (also known as syntheses tools)

are compilers whose output is a description of the

hardware configuration instead of a sequence of

instructions.

D. Phases of Compilation:

A compiler is likely to perform many or all of the

following operations:

Lexical analysis:

This phase of the compiler does the actual reading of the

source program in a stream of characters and the output

is a collection of meaningful characters called tokens.

Parsing:

This phase receives the source code in the form of tokens

from the lexical analyzer and performs "Syntax

Analysis". This phase determines the structural elements

of the program and their relationships. The output is a

"Parse Tree".

Semantic analysis (syntax-directed translation):

Semantics of the program determine the runtime

behavior. Static semantics refer to the semantics of the

program that can be determined during compilation

phase. The job of determining the runtime behavior of

the program is the job of the semantic analyzer.

Source Code Optimizer:

This part of the compiler includes a number of code

improvement or optimization steps. The output is the

machine independent intermediate code.

Code generation:

This phase takes the intermediate code as the input and

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computers)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Parse
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Just-in-time_compilation

 Page 224

generates the equivalent code for the target machine.

Code optimization:

This phase optimizes the code generated by the previous

phase and the output is an optimized machine dependent

target code.

E. The Data Structures Used in a Compiler:

Symbol Table:

This data structure keeps track of the associated

identifiers, functions, variables, constants and data types.

This is heavily used almost in every phase. So hence the

insertion, deletion and access operations should be

highly optimized and run in a constant-time.

Literal Table:

This table includes the constants and strings used in the

program. This is heavily used almost in every phase. So

hence the insertion, deletion and access operations

should be highly optimized and run in a constant-time.

Fig 1. Phases of compiler and data structures

Tools used

A. Lex and Lex file

It helps in writing the control statements for a program

which is given has regular expressions. The regular

expressions are written inside a lex file with „.l‟

extension. It also contains some of the program

fragments. All the regular expressions and fragments are

translated to programs which read an input stream, which

is divided into small parts and that are mapped with the

regular expressions given inside a lex file. The validation

of the expressions and segments are done by a

deterministic finite automation generated by lex. Lex is

not a complete language, but rather a generator

representing a new language feature.

Lex turns the user's expressions and actions (called

source in this memo) into the host general-purpose

language; the generated program is named yylex. The

yylex program will recognize expressions in a stream

(called input in this memo) and perform the specified

actions for each expression as it is detected.

 +-------+

 Source -> | lex | -> yylex

 +-------+

 +-------+

 Input -> | yylex | -> Output

 +-------+

A lex file

Definition section

%%

Rules section

%%

C code section

Definition section: will import header files and defines

macro. In the Definitions section, any line beginning

with a "%" character and followed by an alphanumeric

word beginning with either s or S defines a set of start

conditions. Any line beginning with a "%" followed by a

word beginning with either x or X defines a set of

exclusive start conditions.

 Page 225

Rules section: The rules in lex source files are a table in

which the left column contains regular expressions and

the right column contains C program fragments to be

executed when the expressions are recognized.

C code section: C code section contain functions and C

statements.

B. Yacc and Yacc file

The computer program which takes any input will have

to define a structure in which it will accept it. That

particular structure is called an “input language”. This

language can be as complex as a programming or just

easy has a set of numbers or numerals. If the input

language is not according to the defined language it will

be considered or reported as an invalid statement.

Yacc provides a tool for describing the computer

program. Yacc coder specifies the structure of his input,

together with the segment which has to be invoked when

a certain sequence is recognized. Yacc contains

subroutines which are invoked; because it is easily

possible to go through the code and do any changes

inside the subroutine and also it‟s easy to handle them.

The input streams can be defines as a set of individual

input characters, or in terms of higher language

constructs such as names or names. The yacc part used

for validating the statements are stored in a file with

extension „.y‟.

Yacc file

 Definition section

 %%

Rules section

%%

C code section

Definition section: tokens used in grammar are declared

here.

Rules section: contains rule of grammar

A rule has the form:

 non_terminal: sentential form

 | sentential form

 | sentential form

 ;

Actions may be associated with rules and are

executed when the associated sentential form is

matched.

C. LLVM (Low Level Virtual Machine)

The Low Level Virtual Machine (LLVM) is a register-

based compiler framework which aims to provide a

standardized tool-kit for mid-level and front-end

language development. Like many virtual machines it

works with an intermediate representation language.

Some of the sub-systems in LLVM are synonymous to

those of the “traditional compiler”, but fundamentally

LLVM is different. Some of its features which

differentiates it with other compilers are

 It provides a standard API and compiler back-end

for many different compilers.

 It ships with tools to make platform specific

assembler from on-disk byte-code; this can be

assembled and linked in order to make an executable

binary code.

 It has very strong type checking, which is far

stronger than C.

 Has a comprehensive optimizer framework for

many specific platforms.

 Has a number of profiling utilities.

 Can be used solely as an interpreter, using byte-

code from disk. Can be interfaced by a number of

language bindings, allowing parsers and tokenizers to

be implemented in high level languages.

 It has the ability to cal any system integrated with

the existing operating system.

The top level component of any LLVM assembler

program is the module, which acts like a container for

one or more functions and perhaps some global

variables. Unlike most assembler implementations,

LLVM assembler supports the concept of functions.

Each function has its own stack frame.

 Page 226

One feature of LLVM is that it is able to optimize at

several stages of the compile/execute life-cycle:

compile-time, link-time and run-time. LLVM defines a

set of optimizer passes, which the user may turn on

individually, according to their needs. A typical

optimizer pass will transform the bit-code representation

of a program, arriving at a new, functionally identical

program, which when applied properly, can improve the

performance or size of a program. Some optimizer

passes do not transform the program at-all. These passes

are profiler passes. Instead of altering the program, such

passes only analyze it, allowing the developer to spot

possible bottlenecks and shortcomings in their programs.

Connecting LLVM and Yacc

Flex is used by Bison to generate tokens that the tokens

as asked by Bison parser. Bison parser is optimised to

produce an abstract syntax tree. Abstract syntax tree is a

diagrammatic representation of the grammar used to

parse.

Node.h is a file that contains the code to construct the

AST as asked by the parser. The pseudo variables of

bison are used to build the AST as and when a recursive

call happens.

The class Value is used to represent the values that are

parsed in the parser. The other classes NStatement,

NExpression, NVariableDeclaration are used to

construct the AST. The other classes also follow.

Node.h

#include <stack>

#include <llvm/Module.h>

#include <llvm/Function.h>

#include <llvm/Type.h>

#include <llvm/DerivedTypes.h>

#include <llvm/LLVMContext.h>

#include <llvm/PassManager.h>

#include <llvm/Instructions.h>

#include <llvm/CallingConv.h>

#include <llvm/Bitcode/ReaderWriter.h>

#include <llvm/Analysis/Verifier.h>

#include <llvm/Assembly/PrintModulePass.h>

#include <llvm/Support/IRBuilder.h>

#include <llvm/ModuleProvider.h>

#include <llvm/Target/TargetSelect.h>

#include <llvm/ExecutionEngine/GenericValue.h>

#include <llvm/ExecutionEngine/JIT.h>

#include <llvm/Support/raw_ostream.h>

using namespace llvm;

class NBlock;

class CodeGenBlock {

public:

 BasicBlock *block;

 std::map<std::string, Value*> locals;

};

class CodeGenContext {

 std::stack<CodeGenBlock *> blocks;

 Function *mainFunction;

public:

 Module *module;

 CodeGenContext() { module = new

Module("main", getGlobalContext()); }

 void generateCode(NBlock& root);

 GenericValue runCode();

 std::map<std::string, Value*>& locals() { return

blocks.top()->locals; }

 BasicBlock *currentBlock() { return blocks.top()-

>block; }

 void pushBlock(BasicBlock *block) {

blocks.push(new CodeGenBlock()); blocks.top()-

>block = block; }

 void popBlock() { CodeGenBlock *top =

blocks.top(); blocks.pop(); delete top; }

};

CodeGen.h is another file that is used to emit the llvm

byte code according to the AST as generated by the

parser using the Node.h. The stack class of the STL in

C++ is used to generate the symbol table. The language

proposed here has no scope for global variables. Stack is

 Page 227

also used to keep in mind the activation records so that

the block entered will be visible to the compiler.

Codegen.h

#include <stack>

#include <llvm/Module.h>

#include <llvm/Function.h>

#include <llvm/Type.h>

#include <llvm/DerivedTypes.h>

#include <llvm/LLVMContext.h>

#include <llvm/PassManager.h>

#include <llvm/Instructions.h>

#include <llvm/CallingConv.h>

#include <llvm/Bitcode/ReaderWriter.h>

#include <llvm/Analysis/Verifier.h>

#include <llvm/Assembly/PrintModulePass.h>

#include <llvm/Support/IRBuilder.h>

#include <llvm/ModuleProvider.h>

#include <llvm/Target/TargetSelect.h>

#include <llvm/ExecutionEngine/GenericValue.h>

#include <llvm/ExecutionEngine/JIT.h>

#include <llvm/Support/raw_ostream.h>

using namespace llvm;

class NBlock;

class CodeGenBlock {

public:

 BasicBlock *block;

 std::map<std::string, Value*> locals;

};

class CodeGenContext {

 std::stack<CodeGenBlock *> blocks;

 Function *mainFunction;

public:

 Module *module;

 CodeGenContext() { module = new

Module("main", getGlobalContext()); }

 void generateCode(NBlock& root);

 GenericValue runCode();

 std::map<std::string, Value*>& locals() { return

blocks.top()->locals; }

 BasicBlock *currentBlock() { return blocks.top()-

>block; }

 void pushBlock(BasicBlock *block) {

blocks.push(new CodeGenBlock()); blocks.top()-

>block = block; }

 void popBlock() { CodeGenBlock *top =

blocks.top(); blocks.pop(); delete top; }

};

The main.cpp file will run the program and the output

will be the target code. Make file is used to automate the

process.

Main.cpp

#include <iostream>

#include "codegen.h"

#include "node.h"

using namespace std;

extern int yyparse();

extern NBlock* programBlock;

int main(int argc, char **argv)

{

 yyparse();

 std::cout << programBlock << std::endl;

 CodeGenContext context;

 context.generateCode(*programBlock);

 context.runCode();

 return 0;

}

Make file

all: parser

clean: rm parser.cpp parser.hpp parser tokens.cpp

parser.cpp:

 parser.y

 bison -d -o $@ $^

 Page 228

parser.hpp: parser.cpp

tokens.cpp:

 tokens.l parser.hpp

 lex -o $@ $^

parser:

 parser.cpp codegen.cpp main.cpp tokens.cpp

 g++ -o $@ `llvm-config --libs core jit native --

cxxflags --ldflags` *.cpp

Conclusion

As we have seen the seen the different phases of

compiler, learnt about the tools used for construction of a

compiler, we can say that if these steps are followed by a

programmer he will be able to design a compiler for his

own.

This approach also tries to solve the particle and

theoretical trade-offs which are present in the

construction of any working compiler.

Bibliography

[1] Kenneth C Louden, "Compiler Construction

Principles and Practices", Cengage India, 1999.

[2] William M. Waite, Gerhard Goos (1996),

“COMPILER CONSTRUCTION”, 347, 111 – 148, 183

– 208.

[3] J. Grosch, H. Emmelmann (1991), “A TOOL BOX

FOR COMPILER CONSTRUCTION”, 11.

