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Abstract— A localized content-based image 

retrieval as a CBIR task where the user is only 

interested in a portion of the image, and the 

rest of the image is irrelevant. In this paper, 

we present a localized CBIR system, ACCIO!, 

that uses labeled images in conjunction with a 

multiple-instance learning algorithm to first 

identify the desired object and weight the 

features accordingly, and then to rank images 

in the database using a similarity measure that 

is based upon only the relevant portions of the 

image. A challenge for localized CBIR is how 

to represent the image to capture the content. 

We present and compare two novel image 

representations, which extend traditional 

segmentation-based and salient point-based 

techniques, respectively, to capture content in 

a localized CBIR setting. 

 

Keywords— Machine learning, content-based 

image retrieval, multiple-instance learning, 

salient points. 

 

I. INTRODUCTION 

CLASSIC content-based image retrieval 

(CBIR) taksingle query image and retrieves 

similar images. Since the user typically does 

not provide any indication of which portion of 

the image is of interest, such a search must 

rely upon a global view of the image. We 

define localized content-based image retrieval 

as a CBIR task, where the user is only 

interested in a portion of the image, and the 

rest is irrelevant.  

 

Unless the user explicitly marks the region of 

interest, localized CBIR must rely on multiple 

images (labeled as positive or negative) to 

learn which portion  of the  image  is of 

interest. The query set contains a set of images 

either directly provided by the user or obtained 

using relevance feedback [25] to add labeled 

feedback images to the original query image. 

For example, frames from surveillance video 

could be available for times when  suspicious  

activity occurred (labeled as positive) and 

others for times when nothing out of the 

ordinary occurred (labeled as negative). When 

used in conjunction with an image repository 

containing unlabeled  video  frames,  ACCIO!  

could  be  used to search for frames that have 

some object in common with those containing 

suspicious activity. In localized CBIR, the 

query set is used to identify the portion(s) of 

the image that are relevant to the user’s search 

as well to determine an appropriate weighting 

of the features.  
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Many CBIR systems either subdivide the 

image into predefined blocks [21], [22], [28], 

or more commonly, partition the image into 

different meaningful regions by applying a 

segmentation algorithm [24], [30]. In both 

cases, each region of the image is represented 

as a vector of feature values extracted from 

that region. Other CBIR systems extract 

salient points [15], [16], [20], [27], [31], [32], 

which are points of high variability in the 

features of the local pixel neighborhood. With 

salient point-based methods, one feature 

vector is created for each salient point. 

 

One distinction between region-based CBIR 

systems and localized CBIR is how the image 

is processed. Single feature vector CBIR 

systems represent the entire image as  one 

feature vector. For example, a color histogram 

[5], [11], [18] defined over the entire image is 

such a representation. In contrast, multiple 

feature vector CBIR systems represent the 

image as a collection of feature vectors with 

one feature vector for either a block in some 

prespecified image subdivision (e.g., [21], and 

[22]), the region defined by a segmentation 

algorithm (e.g., [30]) or  a  window  around 

each salient point (e.g., [15], [16], [20], [27], 

[31], and [32]). 

 

Another important distinction is the type of 

similarity metric used to rank the images. In 

global ranking methods, all feature vectors in 

the image representation affect the ranking. 

While salient point-based methods only use 

portions of the image around the salient 

points, if the ranking method uses all salient 

points, then it is a global method. In contrast, 

local ranking methods select only portions of 

an image (or a subset of the salient points) as 

relevant to rank the images. For example, if a 

salient point- based method learns which 

subset S of the salient points are contained in 

desirable images and ranks images using only 

the subset S of salient points, then it is a local 

ranking method. Localized CBIR systems 

must use local ranking methods.. 

 

We present  ACCIO!,  named  after  Harry  

Potter’s  sum-moning charm, that uses a small 

query set in conjunction with a multiple-

instance (MI) learning algorithm to identify 

the desired local content, reweight the 

features, and then rank new images. We also 

present two novel image representations. The 

first extends traditional segmenta- tion-based 

techniques, and the second extends traditional 

salient point-based techniques. These image 

representations allow ACCIO! to perform well 

even when the desired content is complex, 

defined by multiple parts or objects. 

 

 
Fig. 1. Salient points detection with SPARSE, 

the Harr Wavelet-based method, and SIFT. 

 

Salient Points Autoreduction Using 

Segmentation (SPARSE) 

Our SPARSE image representation limits the 

number of salient points in each segment 

while maintaining the diversity needed for 
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localized CBIR.  SPARSE first applies a 

salient point detection algorithm to the image. 

We use a Harr wavelet-based salient point 

detection method. Begin- ning at the coarsest 

level of wavelet coefficients, we keep track of 

the salient points from level to level by finding 

the points with the highest coefficients on the 

next finer level among those used to compute 

the wavelet coefficients at the current level. 

The saliency value of a salient point is the sum 

of the wavelet coefficients of its parent salient 

points from all coarser scales. Note any salient 

point detection method can be used here 

instead, with little modification. 

Next, a segmentation algorithm is applied to 

the image. 

 

The segmentation algorithm we use is a 

clustering-based segmentation method [10] 

that uses the euclidean distance between six-

dimensional feature vectors, with three color 

features and three texture features, as its 

similarity measure. The resulting segmentation 

is used to reduce the number of salient points. 

Specifically, SPARSE keeps at most k salient 

points in each segment by keeping those with 

the highest saliency value. In our 

implementation, k ¼ 3. 

 

Fig. 1 shows examples of salient points 

detected using SPARSE. For comparison, we 

also show the salient points detected by the 

Harr wavelet-based salient points detection 

method and the SIFT [20] method. The  

wavelet-based method selects the top 200 

salient points for each image. SPARSE 

reduces it to at most 96  salient points  per 

image. SIFT selects 392 salient points for the 

tea box and 288 salient points for the coke 

can. When using SPARSE, the  salient points 

predominantly gather at complex objects, 

whereas with the wavelet-based method, the 

salient points gather at the edges. While the 

wavelet-based method reduces the number of 

salient points on the textured region (such as 

at the printed words on the calendar and tea 

box), SPARSE further reduces the number of 

salient points at textured regions. 

  

VSWN: Our Salient Point Representation 

We now describe our variably-split window 

with neighbor (VSWN) representation. Since 

salient points are often on the boundary of 

objects, the features assigned to a salient point 

involve pixels from different objects, which is 

not good for localized CBIR because only one 

of these objects might be of interest. If we 

divide the window, we can better capture the 

color and texture of an individual object. 

 

For each salient point, VSWN uses the local 

characteristics of the window around each 

salient point to split the window in either the 

horizontal, vertical, or one of the two diagonal 

directions. The variably split window (VSW) 

technique adaptively chooses the best split. 

VSW applies a wavelet transform on the 

pixels in the window and measures the 

average coefficients in the HL (vertical), LH 

(horizontal), and HH (up-right diagonal). We 

also flip the window around the vertical to 

compute a flipped-HH coefficient (up-left 

diagonal). If the LH and HL channels have 

similar coefficients, then we use the split 

associated with the larger of the HH and 

flipped-HH channel. Otherwise, we use the 

split based on the largest of the four channels. 

While the best segmentation of the region is 

unlikely to be one of the four splits considered 

(since it is an 8 × 8 window), the selected split 
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serves as a sufficiently good approximation. If 

desired, we could further subdivide each 

subwindow. 

 

Second, as was the case for segmentation with 

neighbors, for salient points, it is 

advantageous to incorporate information about 

the neighboring subwindow to provide 

additional context. The two subwindows for 

each salient point are represented via three 

color features and three texture features. 

VSWN augments the feature vector for each 

subwindow with the difference between its 

values and the other subwindow’s values for 

each of the six features. We use the feature 

differences to allow for robustness against 

global changes in the image, such as 

brightness changes from variable light or 

shade. Since we do not know which 

subwindow might hold the object of interest, 

we create two 12-dimensional feature vectors 

for each salient point: one for each subwindow 

as the object of interest. 

 

TABLE 1 

Summary of AUC Values Averaged over the Categories 

of SIVAL and COREL Natural Scenes Data Sets 

 
 

2 EXPERIMENTAL RESULTS 

We compare the system-level performance of 

ACCIO!, SIMPLIcity [14], [30], and SBN 

[22] on the  SIVAL  and COREL natural 

scenes data sets, both with small query sets (2-

16 images), for which ACCIO! was designed, 

and with the traditional CBIR setting of a 

single positive query  image. We also compare 

the performance of our SPARSE+VSWN 

salient point-based representation to that of 

SIFT and the wavelet-based method. On the 

Flickr data set, we compare our segmentation-

based and salient point-based representa- 

tions. Unless otherwise indicated, ACCIO! 

results were produced using the segmentation-

based representation, where     was set roughly 

equal to the bag size. Thus,    ¼ 25 for the 

segmentation-based representation, and    ¼ 75 

for the salient point-based representations. For 

results that used a single query image, we set 

¼ jHj. 

 

For the SBN algorithm, we replace DD by the 

EM-DD algorithm because of its performance 

gains in both retrieval accuracy and efficiency 

[38]. Since SIMPLIcity is designed to use a 

single positive example, we created a variant 

of it that uses any size query image set. Let P 

be the set of positive images, and let N be the 

set of negative images. For image q in the 

query set and image x in the image  repository,  

let rqðxÞ be the ranking SIMPLIcity gives to 

image x when the query image is q. (The 

highest rank image is rank 0.) Our variation of  

SIMPLIcity  ranks  the  images  in  decreasing 

order based on 

 
 

We selected this measure since it is similar to 

the definition of diverse density of a point t, 

DDðtÞ¼ Q q2P[N PrðtjqÞ. For an   image,   q 

2 P,   ð1 — rqðxÞ=nÞ  can   be   viewed   as   

the probability that x is positive given that q is 

positive. Similarly, for an image, q 2 N , 
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rqðxÞ=n can be viewed as the probability that 

x is positive given that q is negative. When 

given a single positive image, the ranking is 

the same as that given by the original 

SIMPLIcity algorithm [14], [30]. 

 

As our measure of performance, we use the 

area under the ROC curve [12] that plots the 

true positive rate as a function of the false 

positive rate. The area under the ROC curve 

(AUC) is equivalent to the probability that a 

randomly chosen positive image will be 

ranked higher than a randomly chosen 

negative image. Unlike the precision-recall 

curve, the ROC curve is insensitive to the ratio 

of positive to negative examples in the image 

repository. Regardless of the fraction of the 

images that are positive, for a random 

permutation the AUC is 0.5. For all AUCs 

reported, we repeat each experiment with 30 

random selections of the positive and negative 

examples and use these to compute the 

average AUC and the 95 percent confidence 

intervals for the AUC. 

 

System Performance 

Table 1 compares the average performance 

(over all cate- gories) of ACCIO!, SIMPLIcity 

and SBN for the SIVAL and the natural scenes 

data sets. Fig. 2 compares all 25 object 

categories of SIVAL when the query set 

contains eight random positive and eight 

random negative examples. For two 

categories—“LargeSpoon” and “CandleWith 

Holder”— SIMPLIcity’s segmentation 

algorithm failed on a few images so results 

could not be provided. For both 

representations, in every category, ACCIO!’s 

performance is statistically better than that of 

both SIMPLIcity and SBN, with the exception 

of “LargeSpoon” for SBN and “RapBook” for 

SIMPLIcity. ACCIO!, using segmentation 

with neighbors,  has  an average improvement 

of 51.7 percent over SIMPLIcity and 41.4 

percent over SBN. ACCIO!,  using 

SPARSE+VSWN, has an average 

improvement of 51.2 percent over SIMPLIcity 

and 41.0 percent over SBN. 

 

Fig. 2 also compares the SPARSE+VSWN 

and the segmentation  with  neighbors  

representation   of   ACCIO!. We see similar 

performance in 17 of 25 categories. In five 

categories, the segmentation-based approach 

performs statistically better, and  in  three  

categories,  SPARSE+VSWN is statistically 

better. Therefore, overall, their results are 

comparable. Segmentation with neighbors 

encodes its neighbors in a manner that 

preserves orientation, which is advantageous 

for some tasks (e.g., when distinguishing a 

waterfall from a river). Furthermore, encoding 

four neighbors, instead of just one, captures 

more contextual information for each segment. 

On the other hand, SPARSE+VSWN has 

several advantages over segmentation with 

neighbors. 

 

The reduction in dimensionality from 30 to 12 

improves the time complexity. Also,  VSWN’s  

use  of  a  single  neighbor that is both mirror 

invariant and rotation invariant allows it to 

perform better on categories in which the 

images experience significant rotation (90 

degree and 180 degree). While the salient 

points currently encode only the same 

information as the segmentation-based 

method, salient points can be encoded with a 

multitude  of  additional features not easily 

derived  from  segmentation  methods such as 
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the orientation histogram used by  SIFT.  

Addition- ally, salient points by their nature 

can capture much finer detail in the image 

than segmentation. 

 

Since SIMPLIcity was designed for a single  

positive query image, we also considered 

when the query set contains only a single 

positive image (not shown). On 

  

 
Fig. 2. CBIR systems results for the SIVAL 

data set when the query set has eight positive 

and eight negative examples. 

 

average ACCIO! obtains a 4.3 percent 

improvement in performance over SIMPLIcity 

and a 15.6 percent improve- ment over SBN. 

For our alternative SPARSE+VSWN 

representation, ACCIO! obtains a 12.4 percent  

improvement in performance over SIMPLIcity 

and a 24.5 percent improvement over SBN. 

The version  of  SIMPLIcity  we created to 

make use of a query set with multiple images 

did improve performance over having a  single  

query  image  in 12 of the 23 categories. 

Fig. 3 shows the performance of ACCIO! 

when using the segmentation with neighbors 

representation on the Flickr data set for 

varying query set sizes. Likewise, Fig. 4 

shows the performance of ACCIO! when 

using SPARSE+VSWN. As the size of the 

training data increases, in general, we both get 

better retrieval performance, and also the 

variation in performance is reduced. For some 

categories, increasing the training size has a 

very small impact (e.g., waterfall, samurai 

helmet), yet for others (e.g., American flag 

and Pepsi can), the impact is quite large. 

When there is some aspect of a category that is 

very distinctive, then the smaller training set 

can be effective. However, when the object is 

defined by fairly typically occurring 

colors/textures (e.g., the color red) or in a 

category with a lot of variation (e.g., fire 

flame), having a larger query set can really 

help performance. 

 

We now compare the performance of these 

two represen- tations when there are eight 

positive and eight negative examples. ACCIO! 

using segmentation with neighbors per- forms 

statistically better on “Snowboarding,” 

“Sushi,” and “Persian Rug.” Conversely, 

though ACCIO! using SPAR- SE+VSWN 

does not perform statistically better in any of 

the 

  

image categories, there is a noticeable 

improvement over segmentation with 

neighbors on the “American Flag,” “Fire 

Flame,” “Pepsi Can,” and “Coca-Cola Can” 

categories. Since the “American Flag,” “Pepsi 

Can,” and “Coca-Cola Can” images all contain 

a specific complex object of interest, there are 
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a large number of salient points in each image 

corresponding to that object. Since the object 

is specific, the colors and textures defining the 

object are very well defined, with variations 

due only to lighting, shading, and noise. 

Therefore, the sets of salient points for these 

objects serve as effective identifiers enabling 

the SPARSE+VSWN method to perform well 

on such categories. The “Fire Flame” category 

does not target as specific an object, but the 

nature of fire does lend itself well to a small 

set of easily distinguishable colors and 

textures. 

 

The “Snowboarding,” “Sushi,” and “Persian  

Rug” categories do not contain a specific 

object  but  include objects with common sets 

of color schemes and textures, which can be 

effectively captured by whole-segment feature 

characteristics. As long as the segmentation 

algorithm can effectively segment out the 

object regions, and there are sufficient training 

examples to characterize both the most 

common variations in the object’s color and 

texture and the spatial relationship between 

the object(s) of interest, ACCIO! using  

segmentation  with  neighbors  generally  

performs well. For example, in 

“Snowboarding,” segmentation with neighbors 

searches for  regions  containing  snow  

bordered by one or more neighboring regions 

containing trees, mountains, or sky. While 

these categories can be character- ized by a 

variety of different color schemes and 

textures, with effective segmentation and 

sufficient training data segmentation with 

neighbors  achieves  good  performance for 

these categories. 

 

 
Fig. 4. Results from our SPARSE+VSWN 

representation on the Flickr data set. 

 

 
Fig. 5. Comparing salient point methods on 

the SIVAL data set, where the query set has 

eight positive and eight negative examples. 

 

Comparison of Salient Point-Based 

Representations 

In this section, we compare  the  performance  

of  ACCIO! when using salient point-based 

representations. Fig. 5 compares the three 
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salient point extraction methods: Wavelet, 

SIFT, and SPARSE+VSWN. In these  

experiments, both SPARSE and Wavelet use 

the same salient point extraction and 

representation methods (three color  and three 

texture dimensions). The primary difference 

between them is where the salient points are 

placed in the image. SIFT uses both a  

different  feature  extraction  method, placing 

the salient points differently, and a more 

complex feature representation. SPARSE 

outperforms  Wavelet  in 23 of 25 categories, 

16 of which are statistically significant. The 

use of SPARSE can also improve the 

algorithm efficiency by reducing the number 

of feature vectors per bag and hence the 

number of computations. 

 

The SIFT feature  vector  has  128  dimensions  

that describe the  local  gradient  orientation  

histogram  around a salient point.  Results  

using  SIFT  were  generated  using five 

random selections of the training data (as 

opposed to 30) since the high dimensionality 

makes it very compu- tationally intensive. 

SIFT performs 5.9 percent better than Wavelet 

over all  categories.  However,  SPARSE  

outper- forms SIFT by 3.2 percent (over all 

categories), despite its relatively simpler 

feature representation. 

  

We also compared the performance obtained 

from varying the salient point extraction 

method. The average AUC values (across all 

categories) of SIVAL are 81.6 for 

SPARSE+VSWN, 80.3 for SPARSE, 77.0 for 

VSWN, 73.5 for Wavelet, and 77.9 for SIFT. 

Both  SPARSE  and  VSWN  can help 

improve retrieval performance, and  when  

used together, they improve performance 

further. 

 

Fig. 6 independently compares the effect of 

using SPARSE and VSWN with the standard 

wavelet-based salient points on SIVAL. 

Adding VSWN to Wavelet leads to a 4.8 

percent improvement when averaged over all 

categories with statistically significant 

improvements in nine categories. Adding 

SPARSE to Wavelet leads to a 9.3 percent 

improve- ment when averaged over all 

categories. When both SPARSE and VSWN 

are added to Wavelet, an 11 percent increase 

in performance occurs. 

 

3 Conclusions And Future Work 

We have presented ACCIO!, a localized  

CBIR  system  that does not assume that the 

desired object(s) are in a fixed location or 

have a fixed size. We have demonstrated that 

ACCIO! outperforms existing systems for 

localized CBIR on both a natural scenes image 

repository and SIVAL, our new benchmark 

data set. Our experimental results  when  using 

the Flickr data set demonstrate that ACCIO!  

can successfully be used for real image 

retrieval problems where the user is interested 

in general object categories. 

 

We introduce the SPARSE technique, which 

uses segmentation as a filter to reduce the  

total  number  of salient points while still 

maintaining diversity. Finally, we introduce 

the VSWN salient point representation, which 

splits salient points on region boundaries into 

two salient points, characterizing the separate 

objects at the boundary. There are many 

directions for future work. 
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Fig. 6. Comparing salient point methods on 

SIVAL data set for a query set of eight 

positive and eight negative examples. 

 

We believe that ACCIO! can be improved 

further by making further improve- ments to 

GEM-DD, by employing improved 

segmentation algorithms, and perhaps by the 

careful introduction of some features to 

represent shape. For SPARSE, an important 

area of future work is to perform experiments 

to determine the sensitivity to k, the number of 

salient points per segment, and develop 

methods to select the best value for k. 
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