

 Page 1253

Elimination of extra copies using a Secure Authorized

Deduplication framework in the Cloud Environment to Reduce

Amount of Storage Space

Amboji Raju

M.Tech Student,

Department of CSE,

Sarada Institute of Technology and Science

Khammam, Telangana, India.

M.Prasanna

Associate Professor

Department of CSE,

Sarada Institute of Technology and Science

Khammam, Telangana, India.

Abstract:

Data deduplication is a technique for reducing the

amount of storage space an organization needs to

save its data. In most organizations, the storage

systems contain duplicate copies of many pieces of

data. For example, the same file may be saved in

several different places by different users, or two or

more files that aren't identical may still include much

of the same data. Deduplication eliminates these

extra copies by saving just one copy of the data and

replacing the other copies with pointers that lead

back to the original copy. Companies frequently use

deduplication in backup and disaster recovery

applications, but it can be used to free up space in

primary storage as well. To avoid this duplication of

data and to maintain the confidentiality in the cloud

we using the concept of Hybrid cloud. To protect the

confidentiality of sensitive data while supporting

deduplication, the convergent encryption technique

has been proposed to encrypt the data before

outsourcing. To better protect data security, this

paper makes the first attempt to formally address the

problem of authorized data deduplication

Keywords: Deduplication, authorized duplicate

check, confidentiality, hybrid cloud.

1 Introduction

In computing, data deduplication is a specialized data

compression technique for eliminating duplicate copies

of repeating data. Related and somewhat synonymous

terms are intelligent (data) compression and single-

instance (data) storage. This technique is used to

improve storage utilization and can also be applied to

network data transfers to reduce the number of bytes

that must be sent. In the deduplication process, unique

chunks of data, or byte patterns, are identified and

stored during a process of analysis. As the analysis

continues, other chunks are compared to the stored

copy and whenever a match occurs, the redundant

chunk is replaced with a small reference that points to

the stored chunk. while other data is stored in and

accessible from a public cloud. Hybrid clouds seek to

deliver the advantages of scalability, reliability, rapid

deployment and potential cost savings of public clouds

with the security and increased A Hybrid Cloud

Approach For Secure Authorized Deduplication 13 G.

Kakariya and S. Rangdale control and management of

private clouds. As cloud computing becomes famous,

an increasing amount of data is being stored in the

cloud and used by users with specified privileges,

which define the access rights of the stored data.

The critical challenge of cloud storage or cloud

computing is the management of the continuously

increasing volume of data. Data deduplication or

Single Instancing essentially refers to the elimination

of redundant data. In the deduplication process,

duplicate data is deleted, leaving only one copy (single

instance) of the data to be stored. However, indexing

 Page 1254

of all data is still retained should that data ever be

required. In general the data deduplication eliminates

the duplicate copies of repeating data. The data is

encrypted before outsourcing it on the cloud or

network. This encryption requires more time and space

requirements to encode data. In case of large data

storage the encryption becomes even more complex

and critical. By using the data deduplication inside a

hybrid cloud, the encryption will become simpler.

violated. It creates the burden on the operation of

cloud.

To avoid this duplication of data and to maintain the

confidentiality in the cloud we using the concept of

Hybrid cloud. It is a combination of public and private

cloud. Hybrid cloud storage combines the advantages

of scalability, reliability, rapid deployment and

potential cost savings of public cloud storage with the

security and full control of private cloud storage.

1.1 Contributions

In this paper, aiming at efficiently solving the problem

of deduplication with differential privileges in cloud

computing, we consider a hybrid cloud architecture

consisting of a public cloud and a private cloud.

Unlike existing data deduplication systems, the private

cloud is involved as a proxy to allow data owner/users

to securely perform duplicate check with differential

privileges. Such an architecture is practical and has

attracted much attention from researchers. The data

owners only outsource their data storage by utilizing

public cloud while the data operation is managed in

private cloud. A new deduplication system supporting

differential duplicate check is proposed under this

hybrid cloud architecture where the S-CSP resides in

the public cloud.

TABLE 1:Notations Used in This Paper

demonstrates that our system is secure in terms of the

definitions specified in the proposed security model.

Finally, we implement a prototype of the proposed

authorized duplicate check and conduct testbed

experimentsto evaluate the overhead of the prototype.

Weshow that the overhead is minimal compared to the

normalconvergent encryption and file upload

operations.

1.2 Organization

The rest of this paper proceeds as follows. In Section

2,we briefly revisit some preliminaries of this paper. In

Section 3, we propose the system model for our

deduplication system. In Section 4, we propose a

practical de duplication system with differential

privileges in cloud computing. The security and

efficiency analysis for theproposed system are

respectively presented in Section 5.In Section 6, we

present the implementation of our prototype, and in

Section 7, we present test bed evaluation results.

Finally we draw conclusion in Section 8.

2 PRELIMINARIES

In this section, we first define the notations used in this

paper, review some secure primitives used in our

secure de duplication. The notations used in this paper

are listedin TABLE 1.

Symmetric encryption. Symmetric encryption uses a

common secret key κ to encrypt and decrypt

 Page 1255

information. A symmetric encryption scheme consists

of three primitive functions:KeyGenSE(1_) ! κ is the

key generation algorithm that generates κ using

security parameter EncSE(κ,M) ! C is the symmetric

encryption algorithm that takes the secret κ and

message M and then outputs the ciphertext C; and

DecSE(κ,C) ! M is the symmetric decryption algorithm

that takes the secret κ and ciphertext C and then

outputs the original message M.

Convergent encryption. Convergent encryption [4],

[8] provides data confidentiality in deduplication. A

user(or data owner) derives a convergent key from

each original data copy and encrypts the data copy

with the convergent key. In addition, the user also

derives a tagfor the data copy, such that the tag will be

used to detect duplicates. Here, we assume that the tag

correctness This article has been accepted for

publication in a future issue of this journal, but has not

been fully edited. Content may change prior to final

publication. Citation information:

DOI10.1109/TPDS.2014.2318320, IEEE Transactions

on Parallel and Distributed Systems 3property [4]

holds, i.e., if two data copies are the same, then their

tags are the same. To detect duplicates, the user first

sends the tag to the server side to check if the identical

copy has been already stored. Note that both the

convergent key and the tag are independently derived

and the tag cannot be used to deduce the convergent

key and compromise data confidentiality. Both the

encrypted data copy and its corresponding tag will be

stored on the server side. Formally, a convergent

encryption scheme can be defined with four primitive

functions:• KeyGenCE(M) ! K is the key generation

algorithm that maps a data copy M to a convergent key

K;• EncCE(K,M) ! C is the symmetric encryption

algorithm that takes both the convergent key Kand the

data copy M as inputs and then outputs a ciphertext C;•

DecCE(K,C) ! M is the decryption algorithm that takes

both the ciphertext C and the convergent keyK as

inputs and then outputs the original data copyM; and•

TagGen(M) ! T(M) is the tag generation algorithm that

maps the original data copy M and outputs atag T(M).

Proof of ownership. The notion of proof of ownership

(PoW) [11] enables users to prove their ownership of

data copies to the storage server. Specifically, PoW is

implemented as an interactive algorithm (denoted by

PoW) run by a prover (i.e., user) and a verifier (i.e.,

storage server). The verifier derives a short value ϕ(M)

from a data copy M. To prove the ownership of the

data copy M, the prover needs to send ϕ′ to the verifier

such that ϕ′ = ϕ(M). The formal security definition for

PoW roughly follows the threat model in a content

distribution network, where an attacker does not know

the entire file, but has accomplices who have the file.

The accomplices follow the “bounded retrieval

model”, such that they can help the attacker obtain the

file, subject to the constraint that they must send fewer

bits than the initial min-entropy of the file to the

attacker [11].

Identification Protocol. An identification protocol

_can be described with two phases: Proof and Verify.

In the stage of Proof, a prover/user U can demonstrate

his identity to a verifier by performing some

identification proof related to his identity. The input of

the prover/user is his private key skU that is sensitive

information such as private key of a public key in his

certificate or credit card number etc. that he would not

like to share with the other users. The verifier performs

the verification with input of public information pkU

related to skU. At the conclusion of the protocol, the

verifier outputs either accept or reject to denote

whether the proof is passed or not. There are many

efficient identification protocols in literature, including

certificate-based, identity-based identification etc. [5],

[6].

User

1. Public Cloud

2. Private Cloud

3. Upload/Download Request

4. Results

5. Encrypted Files

 Privilege Keys

Token Request

 File Token

 Page 1256

Fig. 1. Architecture for Authorized Deduplication

3 System Model

3.1 Hybrid Architecture for Secure Deduplication

At a high level, our setting of interest is an enterprise

network, consisting of a group of affiliated clients (for

example, employees of a company) who will use the

S-CSP and store data with deduplication technique. In

this setting, deduplication can be frequently used in

these settings for data backup and disaster recovery

applications while greatly reducing storage space.

Such systems are widespread and are often more

suitable to user file backup and synchronization

applications than richer storage abstractions. There are

three entities defined in our system, that is, users,

private cloud and S-CSP in public cloud as shown in

Fig. 1.

3.2 Design Goals In this paper, we address the

problem of privacypreserving deduplication in cloud

computing and propose a new deduplication system

supporting for • Differential Authorization. Each

authorized user is able to get his/her individual token

of his file to perform duplicate check based on his

privileges. Under this assumption, any user cannot

generate a token for duplicate check out of his

privileges or without the aid from the private cloud

server. Authorized Duplicate Check. Authorized user is

able to use his/her individual private keys to generate

query for certain file and the privileges he/she owned

with the help of private cloud, while the public cloud

performs duplicate check directly and tells the user if

there is any duplicate. The security requirements

considered in this paper lie in two folds, including the

security of file token and security of data files. For the

security of file token, two aspects are defined as

unforgeability and in distinguish ability of file token.

The details are given below. Unforgeability of file

token/duplicate-check token. Unauthorized users

without appropriate privileges or file should be

prevented from getting or generating the file tokens for

duplicate check of any file stored at the S-CSP. The

users are not allowed to collude with the public cloud

server to break the unforgeability This article has been

accepted for publication in a future issue of this

journal, but has not been fully edited. Content may

change prior to final publication. Citation information:

DOI 10.1109/TPDS.2014.2318320, IEEE Transactions

on Parallel and Distributed Systems requires that any

user without querying the private cloud server for

some file token, he cannot get any useful information

from the token, which includes the file information or

the privilege information.

4 Secure Deduplication Systems Main Idea.

To support authorized de duplication, the tag of a file

F will be determined by the file F and the privilege. To

show the difference with traditional notation of tag, we

call it file token instead. To support authorized access,

a secret key kp will be bounded with a privilege p to

generate a file token. Let ϕ′ F;p = TagGen(F, kp)

denote the token of F that is only allowed to access by

user with privilege p. In another word, the token ϕ′ F;p

could only be computed by the users with privilege p.

As a result, if a file has been uploaded by a user with a

duplicate token ϕ′ F;p, then a duplicate check sent

from another user will be successful if and only if he

also has the file F and privilege p. Such a token

generation function could be easily implemented as

H(F, kp), where H(_) denotes a cryptographic hash

function.

 Page 1257

4.1 A First Attempt Before introducing our

construction of differentialdeduplication, we present a

straightforward attempt with the technique of token

generation TagGen(F, kp) above to design such a

deduplication system. The main idea of this basic

construction is to issue corresponding privilege keys to

each user, who will compute the file tokens and

perform the duplicate check based on the privilege

keys and files. In more details, suppose that there are N

users in the system and the privileges in the universe is

defined as P = fp1, . . . , psg. For each privilege p in P,

a private key kp will be selected. For a user U with a

set of privileges PU, he will be assigned the set of keys

fkpi gpi∈PU . File Uploading. Suppose that a data

owner U with privilege set PU wants to upload and

share a file F with users who have the privilege set PF

= fpjg. The user computes and sends S-CSP the file

token ϕ′ F;p = TagGen(F, kp) for all p 2 PF If a

duplicate is found by the S-CSP, the user proceeds

proof of ownership of this file with the S-CSP. If the

proof is passed, the user will be assigned a pointer,

which allows him to access the file. Otherwise, if no

duplicate is found, the user computes the encrypted file

CF = EncCE(kF , F) with the convergent key kF =

KeyGenCE(F) and uploads (CF , fϕ′ F;p g) to the

cloud server. The convergent key kF is stored by the

user locally. File Retrieving. Suppose a user wants to

download a file F. It first sends a request and the file

name to the S-CSP. Upon receiving the request and

file name, the S-CSP will check whether the user is

eligible to download F. If failed, the S-CSP sends back

an abort signal to the user to indicate the download

failure. Otherwise, the S-CSP returns the

corresponding ciphertext CF . Upon receiving the

encrypted data from the S-CSP, the user uses the key

kF stored locally to recover the original file F.

Problems. Such a construction of authorized

deduplication has several serious security problems,

which are listed below. • First, each user will be issued

private keys fkpi gpi∈PU for their corresponding

privileges, denoted by PU in our above construction.

These private keys fkpi gpi∈PU can be applied by the

user to generate file token for duplicate check.

However, during file uploading, the user needs to

compute file tokens for sharing with other users with

privileges

5 Security Analysis Our system is designed to solve

the differential privilege problem in secure

deduplication. The security will be analyzed in terms

of two aspects, that is, the authorization of duplicate

check and the confidentiality of data. Some basic tools

have been used to construct the secure deduplication,

which are assumed to be secure. These basic tools

include the convergent encryption scheme, symmetric

encryption scheme, and the PoW scheme. Based on

this assumption, we show that systems are secure with

respect to the following security analysis.

5.1 Security of Duplicate-Check Token We consider

several types of privacy we need protect, that is, i)

unforgeability of duplicate-check token: There are two

types of adversaries, that is, external adversary and

internal adversary. As shown below, the external

adversary can be viewed as an internal adversary

without any privilege. If a user has privilege p, it

requires that the adversary cannot forge and output a

valid duplicate token with any other privilege p′ on any

file F, where p does not match p′. Furthermore, it also

requires that if the adversary does not make a request

of token with its own privilege from private cloud

server, it cannot forge and output a valid duplicate

token with p on any F that has been queried. The

internal adversaries have more attack power than the

external adversaries and thus we only need to consider

the security against the internal attacker, ii) in

distinguishability of duplicatecheck token : this

property is also defined in terms of two aspects as the

definition of unforgeability. First, if a user has

privilege p, given a token ϕ′, it requires that the

adversary cannot distinguish which privilege or file in

the token if p does not match p′. Furthermore, it also

require that if the adversary does not make a request of

token with its own privilege from private cloud server,

it cannot distinguish a valid duplicate token with p on

any other F that the adversary has not queried. In the

Security definition of indistinguishablity, we require

 Page 1258

that the adversary is not allowed to collude with the

public cloud servers. Actually, such an assumption

could be removed if the private cloud server maintains

the tag list for all the files uploaded. Similar to the

analysis of unforgeability, the security against external

adversaries is implied in the security against the

internal adversaries. Next, we will give detailed

security analysis for scheme in Section 4.2 based on

the above definitions. This article has been accepted

for publication in a future issue of this journal, but has

not been fully edited. Content may change prior to

final publication. Citation information: DOI

10.1109/TPDS.2014.2318320, IEEE Transactions on

Parallel and Distributed Systems 8

Unforgeability of duplicate-check token Assume a

user with privilege p could forge a new duplicate-

check token ϕ′ F;p′ for any p′ that does not match p. If

it is a valid token, then it should be calculated as ϕ′

F;p′ = H1(H(F), kp′). Recall that kp′ is a secret key

kept by the private cloud server and H1(H(F), kp′) is a

valid message authentication code. Thus, without kp′ ,

the adversary cannot forge and output a new valid one

for any file F. • For any user with privilege p, to output

a new duplicate-check token ϕ′ F;p, it also requires the

knowledge of kp. Otherwise, the adversary could break

the security of message authentication code.

Indistinguishiability of duplicate-check token The

security of indistinguishability of token can be also

proved based on the assumption of the underlying

message authentication code is secure. The security of

message authentication code requires that the

adversary cannot distinguish if a code is generated

from an unknown key. In our deduplication system, all

the privilege keys are kept secret by the private cloud

server. Thus, even if a user has privilege p, given a

token ϕ′, the adversary cannot distinguish which

privilege or file in the token because he does not have

the knowledge of privilege key skp.

5.2 Confidentiality of Data

The data will be encrypted in our deduplication system

before outsourcing to the S-CSP. Furthermore, two

kinds of different encryption methods have been

applied in our two constructions. Thus, we will

analyze them respectively. In the scheme in Section

4.2, the data is encrypted with the traditional

encryption scheme. The data encrypted with such

encryption method cannot achieve semantic security as

it is inherently subject to bruteforce attacks that can

recover files falling into a known set. Thus, several

new security notations of privacy against chosen-

distribution attacks have been defined for

unpredictable message. In another word, the adapted

security definition guarantees that the encryptions of

two unpredictable messages should be

indistinguishable. Thus, the security of data in our first

construction could be guaranteed under this security

notion. We discuss the confidentiality of data in our

further enhanced construction in Section 4.3. The

security analysis for external adversaries and internal

adversaries is almost identical, except the internal

adversaries are provided with some convergent

encryption keys additionally. However, these

convergent encryption keys have no security impact on

the data confidentiality because these convergent

encryption keys are computed with different

privileges. Recall that the data are encrypted with the

symmetric key encryption technique, instead of the

convergent encryption method. Though the symmetric

key k is randomly chosen, it is encrypted by another

convergent encryption key kF;p.

Thus, we still need analyze the confidentiality of data

by considering the convergent encryption. Different

from the previous one, the convergent key in our

construction is not deterministic in terms of the file,

which still depends on the privilege secret key stored

by the private cloud server and unknown to the

adversary. Therefore, if the adversary does not collude

with the private cloud server, the confidentiality of our

second construction is semantically secure for both

predictable and unpredictable file. Otherwise, if they

collude, then the confidentiality of file will be reduced

to convergent encryption because the encryption key is

deterministic.

 Page 1259

6 Implementation

We implement a prototype of the proposed authorized

deduplication system, in which we model three entities

as separate C++ programs. A Client program is used to

model the data users to carry out the file upload

process. A Private Server program is used to model

the private cloud which manages the private keys and

handles the file token computation. A Storage Server

program is used to model the S-CSP which stores and

deduplicates files. We implement cryptographic

operations of hashing and encryption with the

OpenSSL library [1].We also implement the

communication between the entities based on HTTP,

using GNU Libmicrohttpd [10] and libcurl [13]. Thus,

users can issue HTTP Post requests to the servers. Our

implementation of the Client provides the following

function calls to support token generation and

deduplication along the file upload process.

FileTag(File) - It computes SHA-1 hash of the File as

File Tag; TokenReq(Tag, UserID) - It requests the

Private Server for File Token generation with the File

Tag and User ID; DupCheckReq(Token) - It requests

the Storage Server for Duplicate Check of the File by

sending the file token received from private server;

ShareTokenReq(Tag, {Priv.}) - It requests the Private

Server to generate the Share File Token with the File

Tag and Target Sharing Privilege Set;

FileEncrypt(File) - It encrypts the File with

Convergent Encryption using 256-bit AES algorithm

in cipher block chaining (CBC) mode, where the

convergent key is from SHA-256 Hashing of the file;

and FileUploadReq(FileID, File, Token) – It uploads

the File Data to the Storage Server if the file is Unique

and updates the File Token stored. Our implementation

of the Private Server includes corresponding request

handlers for the token generation and maintains a key

storage with Hash Map. TokenGen(Tag, UserID) - It

loads the associated privilege keys of the user and

generate the token with HMAC-SHA-1 algorithm; and

This article has been accepted for publication in a

future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TPDS.2014.2318320, IEEE Transactions on

Parallel and Distributed Systems

ShareTokenGen (Tag, {Priv.}) - It generates the share

token with the corresponding privilege keys of the

sharing privilege set with HMAC-SHA-1algorithm.

Our implementation of the Storage Server provides

deduplication and data storage with following handlers

and maintains a map between existing files and

associated token with Hash Map. DupCheck(Token) -

It searches the File to Token Map for Duplicate; and

FileStore(FileID, File, Token) - It stores the File on

Disk and updates the Mapping.

7 Evaluation

We conduct testbed evaluation on our prototype. Our

evaluation focuses on comparing the overhead induced

by authorization steps, including file token generation

and share token generation, against the convergent

encryption and file upload steps. We evaluate the

overhead by varying different factors, including 1) File

Size 2) Number of Stored Files 3) Deduplication Ratio

4) Privilege Set Size . We also evaluate the prototype

with a real-world workload based on VM images. We

conduct the experiments with three machines equipped

with an Intel Core-2-Quad 2.66GHz Quad Core CPU,

4GB RAM and installed with Ubuntu 12.04 32- Bit

Operation System. The machines are connected with

1Gbps Ethernet network. We break down the upload

process into 6 steps, 1) Tagging 2) Token Generation

3) Duplicate Check 4) Share Token Generation 5)

Encryption 6) Transfer . For each step, we record the

start and end time of it and therefore obtain the

 Page 1260

breakdown of the total time spent. We present the

average time taken in each data set in the figures.

7.1 File Size

To evaluate the effect of file size to the time spent on

different steps, we upload 100 unique files of

particular file size and record the time break down.

Using the unique files enables us to evaluate the worst-

case scenario whre we have to upload all file data. The

average time of the steps from test sets of different file

size are plotted in Figure 2. The time spent on tagging,

encryption, upload increases linearly with the file size,

since these operations involve the actual file data and

incur file I/O with the whole file. In contrast, other

steps such as token generation and duplicate check

only use the file metadata for computation and

therefore the time spent remains constant.With the file

size increasing from 10MB to 400MB, the overhead of

the proposed authorization steps decreases from 14.9%

to 0.483%.

7.2 Number of Stored Files

To evaluate the effect of number of stored files in the

system, we upload 10000 10MB unique files to the

system and record the breakdown for every file upload.

From Figure 3, every step remains constant along the

time. Token checking is done with a hash table and a

linear search would be carried out in case of collision.

Despite of the possibility of a linear search, the time

taken in duplicate check remains stable due to the low

collision probability.

7.3 Deduplication Ratio

To evaluate the effect of the deduplication ratio, we

prepare two unique data sets, each of which consists of

50 100MB files. We first upload the first set as an

initial upload. For the second upload, we pick a portion

of 50 files, according to the given deduplication ratio,

from the initial set as duplicate files and remaining

files from the second set as unique files. The average

time of uploading the second set is presented in Figure

4. As uploading and encryption would be skipped in

case of duplicate files, the time spent on both of them

decreases with increasing

Fig. 5. Time Breakdown for Different Privilege Set

Size deduplication ratio. The time spent on duplicate

check also decreases as the searching would be ended

when duplicate is found. Total time spent on uploading

the file with deduplication ratio at 100% is only 33.5%

with unique files.

 Page 1261

7.4 Privilege Set Size To evaluate the effect of

privilege set size, we upload 100 10MB unique files

with different size of the data owner and target share

privilege set size. In Figure 5, it shows the time taken

in token generation increases linearly as more keys are

associated with the file and also the duplicate check

time. While the number of keys increases 100 times

from 1000 to 100000, the total time spent only

increases to 3.81 times and it is noted that the file size

of the experiment is set at a small level (10MB), the

effect would become less significant in case of larger

files.

7.5 Real-World VM Images

To evaluate the overhead introduced under read-world

workload dataset, we consider a dataset of weekly VM

image snapshots collected over a 12-week span in a

university programming course, while the same dataset

is also used in the prior work [14]. We perform

blocklevel deduplication with a fixed block size of

4KB. The initial data size of an image is 3.2GB

(excluding all zero blocks).

8 Related Work

Secure Deduplication. With the advent of

cloudcomputing, secure data deduplication has

attracted much attention recently from research

community. Yuan et al. [24] proposed a deduplication

system in the cloud storage to reduce the storage size

of the tags for integrity check. To enhance the security

of deduplication and protect the data confidentiality,

Bellare et al. [3] showed how to protect the data

confidentiality by transforming the predicatable

message This article has been accepted for publication

in a future issue of this journal, but has not been fully

edited. Content may change prior to final publication.

Citation information: DOI

10.1109/TPDS.2014.2318320, IEEE Transactions on

Parallel and Distributed Systems 11 into

unpredicatable message. In their system, another third

party called key server is introduced to generate the

file tag for duplicate check. Stanek et al. [20] presented

a novel encryption scheme that provides differential

security for popular data and unpopular data. For

popular data that are not particularly sensitive, the

traditional conventional encryption is performed.

Another two-layered encryption scheme with stronger

security while supporting deduplication is proposed for

unpopular data. In this way, they achieved better

tradeoff between the efficiency and security of the

outsourced data. Li et al. [12] addressed the

keymanagement issue in block-level deduplication by

distributing these keys across multiple servers after

encrypting the files.

Convergent Encryption. Convergent encryption [8]

ensures data privacy in deduplication. Bellare et al. [4]

formalized this primitive as message-locked

encryption, and explored its application in space-

efficient secure outsourced storage. Xu et al. [23] also

addressed the problem and showed a secure

convergent encryption for efficient encryption, without

considering issues of the key-management and block-

level deduplication. There are also several

implementations of convergent implementations of

different convergent encryption variants for secure

deduplication (e.g., [2], [18], [21], [22]). It is known

that some commercial cloud storage providers, such as

Bitcasa, also deploy convergent encryption.

Proof of ownership. Halevi et al. [11] proposed the

notion of “proofs of ownership” (PoW) for

deduplication systems, such that a client can efficiently

prove to the cloud storage server that he/she owns a

file without uploading the file itself. Several PoW

constructions based on the Merkle-Hash Tree are

 Page 1262

proposed [11] to enable client-side deduplication,

which include the bounded leakage setting. Pietro and

Sorniotti [16] proposed another efficient PoW scheme

by choosing the projection of a file onto some

randomly selected bit-positions as the file proof. Note

that all the above schemes do not consider data

privacy. Recently, Ng et al. [15] extended PoW for

encrypted files, but they do not address how to

minimize the key management overhead.

Twin Clouds Architecture. Recently, Bugiel et al. [7]

provided an architecture consisting of twin clouds for

secure outsourcing of data and arbitrary computations

to an untrusted commodity cloud. Zhang et al. [25]

also presented the hybrid cloud techniques to support

privacy-aware data-intensive computing. In our work,

we consider to address the authorized deduplication

problem over data in public cloud. The security model

of our systems is similar to those related work, where

the private cloud is assume to be honest but curious.

9 Conclusion

In this paper, the notion of authorized data

deduplication was proposed to protect the data security

by including differential privileges of users in the

duplicate check. We also presented several new

deduplication constructions supporting authorized

duplicate check in hybrid cloud architecture, in which

the duplicate-check tokens of files are generated by the

private cloud server with private keys. Security

analysis demonstrates that our schemes are secure in

terms of insider and outsider attacks specified in the

proposed security model. As a proof of concept, we

implemented a prototype of our proposed authorized

duplicate check scheme and conduct testbed

experiments on our prototype. We showed that our

authorized duplicate check scheme incurs minimal

overhead compared to convergent encryption and

network transfer.

10.References

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart.

Dupless: Serveraided encryption for deduplicated

storage. In USENIX Security Symposium, 2013. [2] P.

Anderson and L. Zhang. Fast and secure laptop

backups with encrypted de-duplication. In Proc. of

USENIX LISA, 2010.

[3] J. Li, X. Chen, M. Li, J. Li, P. Lee, andW. Lou.

Secure de-duplication with efficient and reliable

convergent key management. In IEEE Transactions on

Parallel and Distributed Systems, 2013.

 [4] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-

Peleg. Proofs of ownership in remote storage systems.

In Y. Chen, G. Danezis, and V. Shmatikov, editors,

ACM Conference on Computer and Communications

Security, pages 491–500. ACM, 2011.

 [5] J. Li, X. Chen, M. Li, J. Li, P. Lee, andW. Lou.

Secure de-duplication with efficient and reliable

convergent key management. In IEEE Transactions on

Parallel and Distributed Systems, 2013.

 [6] C. Ng and P. Lee. Revdedup: A reverse de-

duplication storage system optimized for reads to latest

backups. In Proc. of APSYS, Apr 2013.

 [7] C.-K Huang, L.-F Chien, and Y.-J Oyang,

“Relevant Term Suggestion in Interactive Web Search

Based on Contextual Information in Query Session

Logs,” J. Am. Soc. for Information science and

Technology, vol. 54, no. 7, pp. 638-649, 2003.

 [8] S. Bugiel, S. Nurnberger, A. Sadeghi, and T.

Schneider. Twin clouds: An architecture for secure

cloud computing. In Workshop on Cryptography and

Security in Clouds (WCSC 2011), 2011 1217889).

multiplier follows steps such as delete non require bits,

reduce the level, truncation, round up result

