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ABSTRACT 

A large number of cloud services requires users to 

share private data like electronic health records for 

the data analysis or mining, bringing privacy 

concerns. Unidentified datasets via generalization to 

satisfy certain privacy requirements such as k-

anonymity is a widely used category of privacy 

preserving techniques. At present, the scale of data in 

many cloud applications increases tremendously in 

accordance with the Big Data trend, thereby making 

it a challenge for commonly used software tools to 

capture, manage and process such large-scale data 

within a tolerable elapsed time. As a result is 

challenge for existing unidentification approaches to 

achieve privacy preservation on privacy-sensitive 

large-scale data sets due to their insufficiency of 

scalability. An introduce the scalable two-phase top-

down specialization approach to unidentified large-

scale data sets using the Map Reduce framework on 

cloud. In both phases of approach is deliberately 

design a group of innovative Map Reduce jobs to 

concretely accomplish the specialization computation 

in a highly scalable way. Experimental evaluation 

results demonstrate that with this approach. The 

scalability and efficiency of top-down specialization 

can be improved significantly over existing 

approaches. An introducing the scheduling 

mechanism called Optimized Balanced Scheduling to 

apply the Unidentification. Here the OBS means 

individual dataset have the separate sensitive field. 

Every data set sensitive field and give priority for this 

sensitive field. Then apply Unidentification on this 

sensitive field only depending upon the scheduling.  

Key Words: Data Unidentification, Top-Down 

specialization, Map-Reduce, Cloud, Privacy 

Preservation, OBS, Data Partition, Data Merging. 

INTRODUCTION 

Distributed computing is a field of computer science 

that studies distributed systems. A distributed system is 

a software system in which components located on 

networked computers communicate and coordinate 

their actions by passing messages.[1] The components 

interact with each other in order to achieve a common 

goal. There are many alternatives for the message 

passing mechanism, including RPC-like connectors 

and message queues. Three significant characteristics 

of distributed systems are: concurrency of components, 

lack of a global clock, and independent failure of 

components.[1] An important goal and challenge of 

distributed systems is location transparency. Examples 

of distributed systems vary from SOA-based systems 

to massively multiplayer online games to peer-to-peer 

applications. A computer program that runs in a 

distributed system is called a distributed program, and 

distributed programming is the process of writing such 

programs. Distributed computing also refers to the use 

of distributed systems to solve computational 

problems. In distributed computing, a problem is 

divided into many tasks, each of which is solved by 

one or more computers, which communicate with each 

other by message passing. The word distributed in 

terms such as "distributed system", "distributed 

programming", and "distributed algorithm" originally 

referred to computer networks where individual 

computers were physically distributed within some 

geographical area. The terms are nowadays used in a 

much wider sense, even referring to autonomous 
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processes that run on the same physical computer and 

interact with each other by message passing. While 

there is no single definition of a distributed system,[6] 

the following defining properties are commonly used: 

There are several autonomous computational entities, 

each of which has its own local memory. The entities 

communicate with each other by message passing.  In 

this article, the computational entities are called 

computers or nodes. A distributed system may have a 

common goal, such as solving a large computational 

problem. Alternatively, each computer may have its 

own user with individual needs, and the purpose of the 

distributed system is to coordinate the use of shared 

resources or provide communication services to the 

users. Other typical properties of distributed systems 

include the following: The system has to tolerate 

failures in individual computers. The structure of the 

system (network topology, network latency, number of 

computers) is not known in advance, the system may 

consist of different kinds of computers and network 

links, and the system may change during the execution 

of a distributed program. Each computer has only a 

limited, incomplete view of the system. Each computer 

may know only one part of the input. 

LITERATURE SURVEY 

DATA UNIDENTIFICATION:  

Technology that converts clear text data into a 

nonhuman readable and irreversible form, including 

but not limited to pre-image resistant hashes (e.g., one-

way hashes) and encryption techniques in which the 

decryption key has been discarded. Data is considered 

unidentified even when conjoined with pointer or 

pedigree values that direct the user to the originating 

system, record, and value (e.g., supporting selective 

revelation) and when unidentified records can be 

associated, matched, and/or conjoined with other 

unidentified records. Data unidentification enables the 

transfer of information across a boundary, such as 

between two departments within an agency or between 

two agencies, while reducing the risk of unintended 

disclosure, and in certain environments in a manner 

that enables evaluation and analytics post-

unidentification. 

TOP DOWN APPROACH: 

A top-down approach (also known as stepwise design 

and in some cases used as a synonym of 

decomposition) is essentially the breaking down of a 

system to gain insight into its compositional sub-

systems. In a top-down approach an overview of the 

system is formulated, specifying but not detailing any 

first-level subsystems. Each subsystem is then refined 

in yet greater detail, sometimes in many additional 

subsystem levels, until the entire specification is 

reduced to base elements. A top-down model is often 

specified with the assistance of "black boxes", these 

make it easier to manipulate. However, black boxes 

may fail to elucidate elementary mechanisms or be 

detailed enough to realistically validate the model. 

Top-down approach starts with the big picture. It 

breaks down from there into smaller segments. 

SPECIALIZATION: 

Specializations an important way to generate 

propositional knowledge, by applying general 

knowledge, such as the theory of gravity, to specific 

instances, such as "when I release this apple, it will fall 

to the floor". Specialization is the opposite of 

generalization. 

 

MAP REDUCE:  

Map Reduce is a programming model for processing 

large data sets with a parallel, distributed algorithm on 

a cluster.  A Map Reduce program is composed of a 

Map() procedure that performs filtering and sorting 

(such as sorting students by first name into queues, one 

queue for each name) and a Reduce() procedure that 

performs a summary operation (such as counting the 

number of students in each queue, yielding name 

frequencies). The "Map Reduce System" (also called 

"infrastructure", "framework") orchestrates by 

marshalling the distributed servers, running the various 

tasks in parallel, managing all communications and 

data transfers between the various parts of the system, 

providing for redundancy and fault tolerance, and 

overall management of the whole process. 
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Map Reduce is a framework for processing 

parallelizable problems across huge datasets using a 

large number of computers (nodes), collectively 

referred to as a cluster (if all nodes are on the same 

local network and use similar hardware) or a grid (if 

the nodes are shared across geographically and 

administratively distributed systems, and use more 

heterogeneous hardware). Computational processing 

can occur on data stored either in a file system 

(unstructured) or in a database (structured). Map 

Reduce can take advantage of locality of data, 

processing data on or near the storage assets to 

decrease transmission of data. 

"Map" step: The master node takes the input, divides it 

into smaller sub-problems, and distributes them to 

worker nodes. A worker node may do this again in 

turn, leading to a multi-level tree structure. The worker 

node processes the smaller problem, and passes the 

answer back to its master node. 

"Reduce" step: The master node then collects the 

answers to all the sub-problems and combines them in 

some way to form the output – the answer to the 

problem it was originally trying to solve. 

Map Reduce: allows for distributed processing of the 

map and reduction operations. Provided each mapping 

operation is independent of the others, all maps can be 

performed in parallel – though in practice it is limited 

by the number of independent data sources and/or the 

number of CPUs near each source. Similarly, a set of 

'reducers' can perform the reduction phase - provided 

all outputs of the map operation that share the same 

key are presented to the same reducer at the same time, 

or if the reduction function is associative. While this 

process can often appear inefficient compared to 

algorithms that are more sequential, Map Reduce can 

be applied to significantly larger datasets than 

"commodity" servers can handle – a large server farm 

can use Map Reduce to sort a pet byte of data in only a 

few hours.[citation needed]The parallelism also offers 

some possibility of recovering from partial failure of 

servers or storage during the operation: if one mapped 

or reducer fails, the work can be rescheduled – 

assuming the input data is still available. 

Another way to look at Map Reduce is as a 5-step 

parallel and distributed computation: 

1.Prepare the Map() input – the "Map Reduce system" 

designates Map processors, assigns the K1 input key 

value each processor would work on, and provides that 

processor with all the input data associated with that 

key value. 

2.Run the user-provided Map() code – Map() is run 

exactly once for each K1 key value, generating output 

organized by key values K2. 

3."Shuffle" the Map output to the Reduce processors – 

the Map Reduce system designates Reduce processors, 

assigns the K2 key value each processor would work 

on, and provides that processor with all the Map-

generated data associated with that key value. 

4.Run the user-provided Reduce() code – Reduce() is 

run exactly once for each K2 key value produced by 

the Map step. 

5.Produce the final output – the Map Reduce system 

collects all the Reduce output, and sorts it by K2 to 

produce the final outcome. 

 

RELATED WORK 

Recently, data privacy preservation has been 

extensively investigated. We briefly review related 

work below. Lefebvre et al. addressed the scalability 

problem of unidentification algorithms via introducing 

scalable decision trees and sampling techniques. 

Iwuchukwu and Naught on proposed an R - tree index 

- based approach by building a spatial index over 

datasets, achieving high efficiency. However, the 

above approaches aim at multidimensional 

generalization, there by failing to work in the TDS 

approach. Fung etal. proposed the TDS approach that 

produces anonymous data sets without the data 

exploration problem. A data structure Taxonomy 

Indexed Partitions (TIPS) is subjugated to improve the 

efficiency of TDS. But the approach is centralized, 

leading to its insufficiency in handling large-scale data 

sets. Several distributed algorithms are proposed to 

preserve privacy of multiple data sets retained by 
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multiple parties. Jiang and Clifton and Mohammed et 

al. proposed distributed algorithms to unidentified 

vertically partitioned data from different data sources 

without disclosing privacy information from one party 

to another. Jurczyk and Xiong and Mohammed et al. 

proposed distributed algorithms to unidentified 

horizontally partitioned data sets retained by multiple 

holders. However, the above distributed algorithms 

mainly aim at securely integrating and unidentifing 

multiple data sources. Our research mainly focuses on 

the scalability issue of TDS unidentification, and is, 

therefore, orthogonal and complementary to them. As 

to Map Reduce–relevant privacy protection, Roy et al. 

investigated the data privacy problem caused by Map 

Reduce and presented a system named Air vat 

incorporating mandatory access control with 

differential privacy. Further, Zhang et al. leveraged 

Map Reduce to automatically partition a computing 

job in terms of data security levels, protecting data 

privacy in hybrid cloud. Our research 

exploitsMapReduce itself to unidentified large-scale 

data sets before data are further processed by other 

Map Reduce jobs, arriving at privacy preservation 

 

PROBLEM STATEMENT 

 A widely adopted parallel data processing 

framework, to address the scalability problem 

of the top-down specialization (TDS) approach 

for large-scale data unidentification. The TDS 

approach, offering a good trade-off between 

data utility and data consistency, is widely 

applied for data unidentification. Most TDS 

algorithms are centralized, resulting in their 

inadequacy in handling large-scale data sets. 

Although some distributed algorithms have 

been proposed, they mainly focus on secure 

unidentification of data sets from multiple 

parties, rather than the scalability aspect. 

 

DRAWBACKS:- 

 The Map Reduce computation paradigm is still 

a challenge to design proper Map Reduce jobs 

for TDS. 

 The overall performance of the privacy 

provided is low. 

 It is only suitable for the small amount of data 

sets. 

 The unidentification of the each level is low. 

 

PROBLEM DEFINITION 

 In this paper, we propose a scalable two-phase 

top-down specialization (TDS) approach to 

unidentified large-scale data sets using the 

Map Reduce framework on cloud. 

 In both phases of our approach, we 

deliberately design a group of innovative Map 

Reduce jobs to concretely accomplish the 

specialization computation in a highly scalable 

way. 

 This approach gets input data’s and split into 

the small data sets.  Then we apply the 

UNIDENTIFICATION on small data sets to 

get intermediate result.  

 Then small data sets are merged and again 

apply the UNIDENTIFICATION. 

 We analyze the each and every data set 

sensitive field and give priority for this 

sensitive field.  Then we apply 

UNIDENTIFICATION on this sensitive field 

only depending upon the scheduling. 

 

ADVANTAGES:- 

 Accomplish the specializations in a highly 

scalable fashion. 

 Gain high scalability. 

 Significantly improve the scalability and 

efficiency of TDS for data unidentification 

over existing approaches. 

 The overall performance of the providing 

privacy is high. 

 Its ability to handles the large amount of data 

sets. 

 The unidentification is effective to provide the 

privacy on data sets. 

 Here we using the scheduling strategies to 

handle the high amount of datasets. 
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BLOCK DIAGRAM:- 

 

DATA PARTITION: 

 In this module the data partition is performed 

on the cloud. 

 Here we collect the large no of data sets. 

 We are split the large into small data sets. 

 Then we provide the random no for each data 

set. 

UNIDENTIFICATION: 

 After getting the individual data sets we apply 

the unidentification. 

 The unidentification means hide or remove the 

sensitive field in data sets. 

 Then we get the intermediate result for the 

small data sets 

 The intermediate results are used for the 

specialization process. 

 All intermediate unidentification levels are 

merged into one in the second phase. The 

merging of unidentification levels is 

completed by merging cuts. To ensure that the 

merged intermediate unidentification level 

ALI never violates privacy requirements, the 

more general one is selected as the merged one 

MERGING: 

 The intermediate results of the several small 

data sets are merged here. 

 The MRTDS driver is used to organizes the 

small intermediate result  

 For merging, the merged data sets are collected 

on cloud. 

 The merging result is again applied in 

unidentification called specialization.  

SPECIALIZATION: 

 After getting the intermediate result those 

results are merged into one. 

 Then we again applies the unidentification on 

the merged data it called specialization. 

 Here we are using the two kinds of jobs such 

as IGPL UPDATE AND IGPL 

INITIALIZATION. 

 The jobs are organized by web using the driver. 

OBS: 

 The OBS called optimized balancing 

scheduling. 

 Here we focus on the two kinds of the 

scheduling called time and size. 

 Here data sets are split in to the specified size 

and applied unidentification on specified time. 

 The OBS approach is to provide the high 

ability on handles the large data sets.  

CONCLUSION 

The conclusion of the proposed work is it using the 

two phase top down approach to provide ability to 

handles the high amount of the large data sets. And 

here it provides the privacy by effective 

unidentification approaches. In the future work is to 

reduce the handling effect of large amount of the data 

sets. It implements the optimized balancing 

scheduling. Where it’sdepends on the time and size of 

the data sets. In this paper it have investigated the 

scalability problem of large-scale data unidentification 

by Top-Down Specialization and proposed a highly 

scalable two-phase TDS approach using Map Reduce 
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on cloud. Datasets are partitioned and unidentified in 

parallel in the first phase producing intermediate 

results. Then, the intermediate results are merged and 

further unidentified to produce consistent k-

anonymous data sets in the second phase. It have 

creatively applied Map Reduce on cloud to data 

unidentification and deliberately designed a group of 

innovative Map Reduce jobs to concretely accomplish 

the specialization computation in a highly scalable 

way. Experimental results on real-world datasets have 

demonstrated that with our approach, the scalability 

and efficiency of TDS are improved significantly over 

existing approaches. 

 

FUTURE WORK 

It does not have the ability for handle the large scale 

datasets in cloud. Its overcome by we invent the two 

phase top-down specialization approach. This 

approach gets input data’s and split into the small data 

sets.  Then we apply the UNIDENTIFICATION on 

small data sets to get intermediate result. Then small 

data sets are merged and again apply the 

UNIDENTIFICATION. Here the drawback of 

proposed system is there is no priority for applying the 

UNIDENTIFICATION on datasets. So that it takes 

more time to UNIDENTIFIED the datasets. So we 

introduce the scheduling mechanism called 

OPTIMIZED BALANCED SCHEDULING(OBS) to 

apply the UNIDENTIFICATION. Here the OBS 

means individual dataset have the separate sensitive 

field. We analyze the each and every data set sensitive 

field and give priority for this sensitive field. Then we 

apply UNIDENTIFICATION on this sensitive field 

only depending upon the scheduling. 

 

REFERENCES 

[1] S. Chaudhuri, “What Next?: A Half-Dozen Data 

Management Research Goals for Big Data and the 

Cloud,” Proc. 31st Symp. Principles of Database 

Systems (PODS ’12), pp. 1-4, 2012. 

 

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. 

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, 

I. Stoica, and M. Zaharia, “A View of Cloud 

Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58, 

2010. 

 

[3] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In Cloud, 

Can Scientific Communities Benefit from the 

Economies of Scale?,” IEEE Trans. Parallel and 

Distributed Systems, vol. 23, no. 2, pp.296-303, 

Feb.2012. 

 

[4] H. Takabi, J.B.D. Joshi, and G. Ahn, “Security and 

Privacy Challenges in Cloud Computing 

Environments,” IEEE Security and Privacy, vol. 8, no. 

6, pp. 24-31, Nov. 2010. 

 

[5] D. Zissis and D. Lekkas, “Addressing Cloud 

Computing Security Issues,” Future Generation 

Computer Systems, vol. 28, no. 3, pp. 583- 592, 2011. 

 

[6] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen, 

“A Privacy Leakage Upper-Bound Constraint Based 

Approach for Cost- Effective Privacy Preserving of 

Intermediate Data Sets in Cloud,” IEEE Trans. Parallel 

and Distributed Systems, to be published, 2012. 

 

[7] L. Hsiao-Ying and W.G. Tzeng, “A Secure Erasure 

Code-Based Cloud Storage System with Secure Data 

Forwarding,” IEEE Trans. Parallel and Distributed 

Systems, vol. 23, no. 6, pp. 995-1003, 2012. 

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, 

“Privacy-Preserving Multi-Keyword Ranked Search 

over Encrypted Cloud Data,” Proc. IEEE INFOCOM, 

pp. 829-837, 2011. 

 

[9] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. 

Culler, “Gupt: Privacy Preserving Data Analysis Made 

Easy,” Proc. ACM SIGMOD Int’l Conf. Management 

of Data (SIGMOD ’12), pp. 349- 360, 2012. 

 

[10] Microsoft HealthVault, 

http://www.microsoft.com/health/ww/products/Pages/h

ealthvault.aspx, 2013. 

http://www.microsoft.com/health/ww/products/Pages/healthvault.aspx
http://www.microsoft.com/health/ww/products/Pages/healthvault.aspx


 
 

 Page 1065 
 

 

[11] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu, 

“Privacy-Preserving Data Publishing: A Survey of 

Recent Devel- opments,” ACM Computing Surveys, 

vol. 42, no. 4, pp. 1-53, 2010. 

 

[12] B.C.M. Fung, K. Wang, and P.S. Yu, 

“Anonymizing Classification Data for Privacy 

Preservation,” IEEE Trans. Knowledge and Data Eng., 

vol. 19, no. 5, pp. 711-725, May 2007. 

 

 [13] X. Xiao and Y. Tao, “Anatomy: Simple and 

Effective Privacy Preservation,” Proc. 32nd Int’l Conf. 

Very Large Data Bases (VLDB ’06), pp. 139-150, 

2006. 

 

[14] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan, 

“Incognito: Efficient Full-Domain K-Anonymity,” 

Proc. ACM SIGMOD Int’l Conf. Management of Data 

(SIGMOD ’05), pp. 49-60, 2005. 

 

[15] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan, 

“Mondrian Multidimensional K-Anonymity,” Proc. 

22nd Int’l Conf. Data Eng. (ICDE ’06), 2006. 

 

[16] V. Borkar, M.J. Carey, and C. Li, “Inside ‘Big 

Data Management’: Ogres, Onions, or Parfaits?,” Proc. 

15th Int’l Conf. Extending Database Technology 

(EDBT ’12), pp. 3-14, 2012. 

 

[17] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan, 

“Workload-Aware Anonymization Techniques for 

Large-Scale Data Sets,” ACM Trans. Database 

Systems, vol. 33, no. 3, pp. 1-47, 2008. 


