

 Page 1059

The Scalability Problem of Large-Scale Data Sets Using the Map

Reduce Framework on Cloud

Apathi Haripriya,

M.Tech,

Department of CSE,

Global Institute of Engineering and Technology,

Chilkur(V), RR District, Telangana

Mrs. M.Jhansi Lakshmi,

Associate professor,

HoD of CSE,

Global Institute of Engineering and Technology,

Chilkur(V), RRDistrict, Telangana

ABSTRACT

A large number of cloud services requires users to

share private data like electronic health records for

the data analysis or mining, bringing privacy

concerns. Unidentified datasets via generalization to

satisfy certain privacy requirements such as k-

anonymity is a widely used category of privacy

preserving techniques. At present, the scale of data in

many cloud applications increases tremendously in

accordance with the Big Data trend, thereby making

it a challenge for commonly used software tools to

capture, manage and process such large-scale data

within a tolerable elapsed time. As a result is

challenge for existing unidentification approaches to

achieve privacy preservation on privacy-sensitive

large-scale data sets due to their insufficiency of

scalability. An introduce the scalable two-phase top-

down specialization approach to unidentified large-

scale data sets using the Map Reduce framework on

cloud. In both phases of approach is deliberately

design a group of innovative Map Reduce jobs to

concretely accomplish the specialization computation

in a highly scalable way. Experimental evaluation

results demonstrate that with this approach. The

scalability and efficiency of top-down specialization

can be improved significantly over existing

approaches. An introducing the scheduling

mechanism called Optimized Balanced Scheduling to

apply the Unidentification. Here the OBS means

individual dataset have the separate sensitive field.

Every data set sensitive field and give priority for this

sensitive field. Then apply Unidentification on this

sensitive field only depending upon the scheduling.

Key Words: Data Unidentification, Top-Down

specialization, Map-Reduce, Cloud, Privacy

Preservation, OBS, Data Partition, Data Merging.

INTRODUCTION

Distributed computing is a field of computer science

that studies distributed systems. A distributed system is

a software system in which components located on

networked computers communicate and coordinate

their actions by passing messages.[1] The components

interact with each other in order to achieve a common

goal. There are many alternatives for the message

passing mechanism, including RPC-like connectors

and message queues. Three significant characteristics

of distributed systems are: concurrency of components,

lack of a global clock, and independent failure of

components.[1] An important goal and challenge of

distributed systems is location transparency. Examples

of distributed systems vary from SOA-based systems

to massively multiplayer online games to peer-to-peer

applications. A computer program that runs in a

distributed system is called a distributed program, and

distributed programming is the process of writing such

programs. Distributed computing also refers to the use

of distributed systems to solve computational

problems. In distributed computing, a problem is

divided into many tasks, each of which is solved by

one or more computers, which communicate with each

other by message passing. The word distributed in

terms such as "distributed system", "distributed

programming", and "distributed algorithm" originally

referred to computer networks where individual

computers were physically distributed within some

geographical area. The terms are nowadays used in a

much wider sense, even referring to autonomous

 Page 1060

processes that run on the same physical computer and

interact with each other by message passing. While

there is no single definition of a distributed system,[6]

the following defining properties are commonly used:

There are several autonomous computational entities,

each of which has its own local memory. The entities

communicate with each other by message passing. In

this article, the computational entities are called

computers or nodes. A distributed system may have a

common goal, such as solving a large computational

problem. Alternatively, each computer may have its

own user with individual needs, and the purpose of the

distributed system is to coordinate the use of shared

resources or provide communication services to the

users. Other typical properties of distributed systems

include the following: The system has to tolerate

failures in individual computers. The structure of the

system (network topology, network latency, number of

computers) is not known in advance, the system may

consist of different kinds of computers and network

links, and the system may change during the execution

of a distributed program. Each computer has only a

limited, incomplete view of the system. Each computer

may know only one part of the input.

LITERATURE SURVEY

DATA UNIDENTIFICATION:

Technology that converts clear text data into a

nonhuman readable and irreversible form, including

but not limited to pre-image resistant hashes (e.g., one-

way hashes) and encryption techniques in which the

decryption key has been discarded. Data is considered

unidentified even when conjoined with pointer or

pedigree values that direct the user to the originating

system, record, and value (e.g., supporting selective

revelation) and when unidentified records can be

associated, matched, and/or conjoined with other

unidentified records. Data unidentification enables the

transfer of information across a boundary, such as

between two departments within an agency or between

two agencies, while reducing the risk of unintended

disclosure, and in certain environments in a manner

that enables evaluation and analytics post-

unidentification.

TOP DOWN APPROACH:

A top-down approach (also known as stepwise design

and in some cases used as a synonym of

decomposition) is essentially the breaking down of a

system to gain insight into its compositional sub-

systems. In a top-down approach an overview of the

system is formulated, specifying but not detailing any

first-level subsystems. Each subsystem is then refined

in yet greater detail, sometimes in many additional

subsystem levels, until the entire specification is

reduced to base elements. A top-down model is often

specified with the assistance of "black boxes", these

make it easier to manipulate. However, black boxes

may fail to elucidate elementary mechanisms or be

detailed enough to realistically validate the model.

Top-down approach starts with the big picture. It

breaks down from there into smaller segments.

SPECIALIZATION:

Specializations an important way to generate

propositional knowledge, by applying general

knowledge, such as the theory of gravity, to specific

instances, such as "when I release this apple, it will fall

to the floor". Specialization is the opposite of

generalization.

MAP REDUCE:

Map Reduce is a programming model for processing

large data sets with a parallel, distributed algorithm on

a cluster. A Map Reduce program is composed of a

Map() procedure that performs filtering and sorting

(such as sorting students by first name into queues, one

queue for each name) and a Reduce() procedure that

performs a summary operation (such as counting the

number of students in each queue, yielding name

frequencies). The "Map Reduce System" (also called

"infrastructure", "framework") orchestrates by

marshalling the distributed servers, running the various

tasks in parallel, managing all communications and

data transfers between the various parts of the system,

providing for redundancy and fault tolerance, and

overall management of the whole process.

 Page 1061

Map Reduce is a framework for processing

parallelizable problems across huge datasets using a

large number of computers (nodes), collectively

referred to as a cluster (if all nodes are on the same

local network and use similar hardware) or a grid (if

the nodes are shared across geographically and

administratively distributed systems, and use more

heterogeneous hardware). Computational processing

can occur on data stored either in a file system

(unstructured) or in a database (structured). Map

Reduce can take advantage of locality of data,

processing data on or near the storage assets to

decrease transmission of data.

"Map" step: The master node takes the input, divides it

into smaller sub-problems, and distributes them to

worker nodes. A worker node may do this again in

turn, leading to a multi-level tree structure. The worker

node processes the smaller problem, and passes the

answer back to its master node.

"Reduce" step: The master node then collects the

answers to all the sub-problems and combines them in

some way to form the output – the answer to the

problem it was originally trying to solve.

Map Reduce: allows for distributed processing of the

map and reduction operations. Provided each mapping

operation is independent of the others, all maps can be

performed in parallel – though in practice it is limited

by the number of independent data sources and/or the

number of CPUs near each source. Similarly, a set of

'reducers' can perform the reduction phase - provided

all outputs of the map operation that share the same

key are presented to the same reducer at the same time,

or if the reduction function is associative. While this

process can often appear inefficient compared to

algorithms that are more sequential, Map Reduce can

be applied to significantly larger datasets than

"commodity" servers can handle – a large server farm

can use Map Reduce to sort a pet byte of data in only a

few hours.[citation needed]The parallelism also offers

some possibility of recovering from partial failure of

servers or storage during the operation: if one mapped

or reducer fails, the work can be rescheduled –

assuming the input data is still available.

Another way to look at Map Reduce is as a 5-step

parallel and distributed computation:

1.Prepare the Map() input – the "Map Reduce system"

designates Map processors, assigns the K1 input key

value each processor would work on, and provides that

processor with all the input data associated with that

key value.

2.Run the user-provided Map() code – Map() is run

exactly once for each K1 key value, generating output

organized by key values K2.

3."Shuffle" the Map output to the Reduce processors –

the Map Reduce system designates Reduce processors,

assigns the K2 key value each processor would work

on, and provides that processor with all the Map-

generated data associated with that key value.

4.Run the user-provided Reduce() code – Reduce() is

run exactly once for each K2 key value produced by

the Map step.

5.Produce the final output – the Map Reduce system

collects all the Reduce output, and sorts it by K2 to

produce the final outcome.

RELATED WORK

Recently, data privacy preservation has been

extensively investigated. We briefly review related

work below. Lefebvre et al. addressed the scalability

problem of unidentification algorithms via introducing

scalable decision trees and sampling techniques.

Iwuchukwu and Naught on proposed an R - tree index

- based approach by building a spatial index over

datasets, achieving high efficiency. However, the

above approaches aim at multidimensional

generalization, there by failing to work in the TDS

approach. Fung etal. proposed the TDS approach that

produces anonymous data sets without the data

exploration problem. A data structure Taxonomy

Indexed Partitions (TIPS) is subjugated to improve the

efficiency of TDS. But the approach is centralized,

leading to its insufficiency in handling large-scale data

sets. Several distributed algorithms are proposed to

preserve privacy of multiple data sets retained by

 Page 1062

multiple parties. Jiang and Clifton and Mohammed et

al. proposed distributed algorithms to unidentified

vertically partitioned data from different data sources

without disclosing privacy information from one party

to another. Jurczyk and Xiong and Mohammed et al.

proposed distributed algorithms to unidentified

horizontally partitioned data sets retained by multiple

holders. However, the above distributed algorithms

mainly aim at securely integrating and unidentifing

multiple data sources. Our research mainly focuses on

the scalability issue of TDS unidentification, and is,

therefore, orthogonal and complementary to them. As

to Map Reduce–relevant privacy protection, Roy et al.

investigated the data privacy problem caused by Map

Reduce and presented a system named Air vat

incorporating mandatory access control with

differential privacy. Further, Zhang et al. leveraged

Map Reduce to automatically partition a computing

job in terms of data security levels, protecting data

privacy in hybrid cloud. Our research

exploitsMapReduce itself to unidentified large-scale

data sets before data are further processed by other

Map Reduce jobs, arriving at privacy preservation

PROBLEM STATEMENT

 A widely adopted parallel data processing

framework, to address the scalability problem

of the top-down specialization (TDS) approach

for large-scale data unidentification. The TDS

approach, offering a good trade-off between

data utility and data consistency, is widely

applied for data unidentification. Most TDS

algorithms are centralized, resulting in their

inadequacy in handling large-scale data sets.

Although some distributed algorithms have

been proposed, they mainly focus on secure

unidentification of data sets from multiple

parties, rather than the scalability aspect.

DRAWBACKS:-

 The Map Reduce computation paradigm is still

a challenge to design proper Map Reduce jobs

for TDS.

 The overall performance of the privacy

provided is low.

 It is only suitable for the small amount of data

sets.

 The unidentification of the each level is low.

PROBLEM DEFINITION

 In this paper, we propose a scalable two-phase

top-down specialization (TDS) approach to

unidentified large-scale data sets using the

Map Reduce framework on cloud.

 In both phases of our approach, we

deliberately design a group of innovative Map

Reduce jobs to concretely accomplish the

specialization computation in a highly scalable

way.

 This approach gets input data’s and split into

the small data sets. Then we apply the

UNIDENTIFICATION on small data sets to

get intermediate result.

 Then small data sets are merged and again

apply the UNIDENTIFICATION.

 We analyze the each and every data set

sensitive field and give priority for this

sensitive field. Then we apply

UNIDENTIFICATION on this sensitive field

only depending upon the scheduling.

ADVANTAGES:-

 Accomplish the specializations in a highly

scalable fashion.

 Gain high scalability.

 Significantly improve the scalability and

efficiency of TDS for data unidentification

over existing approaches.

 The overall performance of the providing

privacy is high.

 Its ability to handles the large amount of data

sets.

 The unidentification is effective to provide the

privacy on data sets.

 Here we using the scheduling strategies to

handle the high amount of datasets.

 Page 1063

BLOCK DIAGRAM:-

DATA PARTITION:

 In this module the data partition is performed

on the cloud.

 Here we collect the large no of data sets.

 We are split the large into small data sets.

 Then we provide the random no for each data

set.

UNIDENTIFICATION:

 After getting the individual data sets we apply

the unidentification.

 The unidentification means hide or remove the

sensitive field in data sets.

 Then we get the intermediate result for the

small data sets

 The intermediate results are used for the

specialization process.

 All intermediate unidentification levels are

merged into one in the second phase. The

merging of unidentification levels is

completed by merging cuts. To ensure that the

merged intermediate unidentification level

ALI never violates privacy requirements, the

more general one is selected as the merged one

MERGING:

 The intermediate results of the several small

data sets are merged here.

 The MRTDS driver is used to organizes the

small intermediate result

 For merging, the merged data sets are collected

on cloud.

 The merging result is again applied in

unidentification called specialization.

SPECIALIZATION:

 After getting the intermediate result those

results are merged into one.

 Then we again applies the unidentification on

the merged data it called specialization.

 Here we are using the two kinds of jobs such

as IGPL UPDATE AND IGPL

INITIALIZATION.

 The jobs are organized by web using the driver.

OBS:

 The OBS called optimized balancing

scheduling.

 Here we focus on the two kinds of the

scheduling called time and size.

 Here data sets are split in to the specified size

and applied unidentification on specified time.

 The OBS approach is to provide the high

ability on handles the large data sets.

CONCLUSION

The conclusion of the proposed work is it using the

two phase top down approach to provide ability to

handles the high amount of the large data sets. And

here it provides the privacy by effective

unidentification approaches. In the future work is to

reduce the handling effect of large amount of the data

sets. It implements the optimized balancing

scheduling. Where it’sdepends on the time and size of

the data sets. In this paper it have investigated the

scalability problem of large-scale data unidentification

by Top-Down Specialization and proposed a highly

scalable two-phase TDS approach using Map Reduce

 Page 1064

on cloud. Datasets are partitioned and unidentified in

parallel in the first phase producing intermediate

results. Then, the intermediate results are merged and

further unidentified to produce consistent k-

anonymous data sets in the second phase. It have

creatively applied Map Reduce on cloud to data

unidentification and deliberately designed a group of

innovative Map Reduce jobs to concretely accomplish

the specialization computation in a highly scalable

way. Experimental results on real-world datasets have

demonstrated that with our approach, the scalability

and efficiency of TDS are improved significantly over

existing approaches.

FUTURE WORK

It does not have the ability for handle the large scale

datasets in cloud. Its overcome by we invent the two

phase top-down specialization approach. This

approach gets input data’s and split into the small data

sets. Then we apply the UNIDENTIFICATION on

small data sets to get intermediate result. Then small

data sets are merged and again apply the

UNIDENTIFICATION. Here the drawback of

proposed system is there is no priority for applying the

UNIDENTIFICATION on datasets. So that it takes

more time to UNIDENTIFIED the datasets. So we

introduce the scheduling mechanism called

OPTIMIZED BALANCED SCHEDULING(OBS) to

apply the UNIDENTIFICATION. Here the OBS

means individual dataset have the separate sensitive

field. We analyze the each and every data set sensitive

field and give priority for this sensitive field. Then we

apply UNIDENTIFICATION on this sensitive field

only depending upon the scheduling.

REFERENCES

[1] S. Chaudhuri, “What Next?: A Half-Dozen Data

Management Research Goals for Big Data and the

Cloud,” Proc. 31st Symp. Principles of Database

Systems (PODS ’12), pp. 1-4, 2012.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia, “A View of Cloud

Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58,

2010.

[3] L. Wang, J. Zhan, W. Shi, and Y. Liang, “In Cloud,

Can Scientific Communities Benefit from the

Economies of Scale?,” IEEE Trans. Parallel and

Distributed Systems, vol. 23, no. 2, pp.296-303,

Feb.2012.

[4] H. Takabi, J.B.D. Joshi, and G. Ahn, “Security and

Privacy Challenges in Cloud Computing

Environments,” IEEE Security and Privacy, vol. 8, no.

6, pp. 24-31, Nov. 2010.

[5] D. Zissis and D. Lekkas, “Addressing Cloud

Computing Security Issues,” Future Generation

Computer Systems, vol. 28, no. 3, pp. 583- 592, 2011.

[6] X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen,

“A Privacy Leakage Upper-Bound Constraint Based

Approach for Cost- Effective Privacy Preserving of

Intermediate Data Sets in Cloud,” IEEE Trans. Parallel

and Distributed Systems, to be published, 2012.

[7] L. Hsiao-Ying and W.G. Tzeng, “A Secure Erasure

Code-Based Cloud Storage System with Secure Data

Forwarding,” IEEE Trans. Parallel and Distributed

Systems, vol. 23, no. 6, pp. 995-1003, 2012.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou,

“Privacy-Preserving Multi-Keyword Ranked Search

over Encrypted Cloud Data,” Proc. IEEE INFOCOM,

pp. 829-837, 2011.

[9] P. Mohan, A. Thakurta, E. Shi, D. Song, and D.

Culler, “Gupt: Privacy Preserving Data Analysis Made

Easy,” Proc. ACM SIGMOD Int’l Conf. Management

of Data (SIGMOD ’12), pp. 349- 360, 2012.

[10] Microsoft HealthVault,

http://www.microsoft.com/health/ww/products/Pages/h

ealthvault.aspx, 2013.

http://www.microsoft.com/health/ww/products/Pages/healthvault.aspx
http://www.microsoft.com/health/ww/products/Pages/healthvault.aspx

 Page 1065

[11] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu,

“Privacy-Preserving Data Publishing: A Survey of

Recent Devel- opments,” ACM Computing Surveys,

vol. 42, no. 4, pp. 1-53, 2010.

[12] B.C.M. Fung, K. Wang, and P.S. Yu,

“Anonymizing Classification Data for Privacy

Preservation,” IEEE Trans. Knowledge and Data Eng.,

vol. 19, no. 5, pp. 711-725, May 2007.

 [13] X. Xiao and Y. Tao, “Anatomy: Simple and

Effective Privacy Preservation,” Proc. 32nd Int’l Conf.

Very Large Data Bases (VLDB ’06), pp. 139-150,

2006.

[14] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan,

“Incognito: Efficient Full-Domain K-Anonymity,”

Proc. ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’05), pp. 49-60, 2005.

[15] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan,

“Mondrian Multidimensional K-Anonymity,” Proc.

22nd Int’l Conf. Data Eng. (ICDE ’06), 2006.

[16] V. Borkar, M.J. Carey, and C. Li, “Inside ‘Big

Data Management’: Ogres, Onions, or Parfaits?,” Proc.

15th Int’l Conf. Extending Database Technology

(EDBT ’12), pp. 3-14, 2012.

[17] K. Lefebvre, D.J. DeWitt, and R. Ramakrishnan,

“Workload-Aware Anonymization Techniques for

Large-Scale Data Sets,” ACM Trans. Database

Systems, vol. 33, no. 3, pp. 1-47, 2008.

