
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2166

ABSTRACT:

Multi-operand adders, which are also found in paral-
lel multipliers, usually consist of the compression trees
which reduce the number of operands per a bit to two,
and the carry propagate adder for the two operands in
ASIC implementation. The former part is usually realized
using full adders or(3;2) counters like Wallace-trees in
ASIC, though adder trees or dedicated hardware are used
in FPGA. In this paper, an approach to realize compres-
sion trees on FPGAs is proposed. In case of FPGA with
m-input LUT, any larger or generalized parallel counters
with up to m inputs can be realized with one LUT per an
output. Our approach utilizes generalized parallel coun-
ters with up to m inputs and synthesizes the compres-
sion trees to implement high-performance multi-operand
adders by setting some intermediate height limits in the
compression process like Dadda multipliers. The goal of
this research is to design arithmetic circuits that meet the
challenges faced by computer architects during the design
of high performance embedded systems.The focus is nar-
rowed down to addition algorithms and the design of high
speed adder architectures. Addition is one of the most ba-
sic operations performed in all computing units, including
microprocessors and digital signal processors. It is also a
basic unit utilized in various complicated algorithms of
multiplication and division.

Keywords:

Computer arithmetic, reconfigurable hardware, multi op-
erand addition, redundant representation, carry-save ad-
ders .

I. INTRODUCTION:

Multi-operand addition, which is often found in partial
product reduction of multipliers, or some combinations
of addition and multiplication, is a fundamental and fre-
quently used arithmetic operation.

B.Muni Kiran
M.Tech Student,

Department of VLSI,
Sir C.V.Raman Institute of Technology and Sciences,

Anantapur, India.

R.Jafer Vali
Assistant Professor,

Department of VLSI,
Sir C.V.Raman Institute of Technology and Sciences,

Anantapur, India.

Though it can be realized with carry-propagate adder
(CPA) trees, fast multi-operand addition usually consists
of two phases, where the number of addends is compressed
to 2 such as a Wallace tree and a Dadda tree, and then the
final CPA generates the result of multiplication for ASIC
implementation. Such trees are often constructed using
3-input 2-output counters (also called carry-save adder or
full adder) and 2-input 2-output counters (half adder) as
basic components.In this paper we prove that there is pos-
sibility to implement carry-save adders on FPGA devices
with a similar hardware cost to that of carry-propagate
adders, while keeping a constant computation time, in
such a way that considering operands with number of bits
greater or equal to 16, the speed gain is notorious, this
process is similar to an ASIC-based design.

II. CARRY SAVE ADDERS ON FPGA:

This paper focuses mainly on the inner architecture of
FPGAs with specialized carry-logic like Virtex 2, 4and
Spartan 2, 3 of Xilinx and 4-input Look up tables. In spite
of new generation Field programmable gate arrays which
are having new inner architecture, FPGAs with four-input
LUTs are widely used for medium complex applications
due to low cost and low power consumption

Fig.1. General scheme of dedicated carry-chain re-
sources included in modern FPGA devices.

In carry save addition (CSA) implementation on FPGA,
the carry-out bit and the sum bit are generated using two
LUTs whereas a carry propagate addition (CPA) we need
only one LUT. Thus, the hardware required for a Carry
save adder is double than that for a CPA. Besides, the
CSA implementation does not take advantage of the carry
propagation logic.

Design and Implementation of Multi Level Carry Save
Adders on FPGA

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2167

In an attempt to use the available carry-logic while keep-
ing an adder maximum delay bounded regardless of the
word length, authors from [1] present a solution making
use of a high radix carry-save representation.Due to this
high radix representation, initially introduced to reduce
the number of wires and registers required to store a val-
ue, the sum word from a carry-save number is represented
in radix- r (i. e. log2r bits per digit) and the carry word
requires one only bit per radix- r digit.This representa-
tion allows the use of standard CPAs to add each of the
sum word radix- r digits, connecting the carry word to the
Carry propagate adder carry-in inputs, hence obtaining
the final carry word at the CPA carry-out outputs.When
this adder is implemented in an FPGA, we use the whole
slice resources, including the carry logic, while increasing
the addition delay.

However, due to the great optimization of FPGAs carry
logic, this delay increase is not very significative if the
radix r is not high.The main drawback in high radix car-
ries save representation is that, the numbers shifts are not
an easy task. In this case, complete shifts are only avail-
able for radix- r digits, i.e., shifts are only allowed for
multiple of r numbers. This restriction comes from the
carry word processing, since it is only available at some
specific positions within the addition operation.This limi-
tation becomes an important obstacle when applying the
high radix carry save representation to many shift and add
based algorithms, and even the work presented in [1] has
to deal with this problem. For this reason, it is interesting
to look for some other ways of using the carry logic when
implementing carry save adders.

III. Efficient Mapping Of Carry - Save Adder
in FPGA:

Two different solutions to obtain a more efficient imple-
mentation of carry-save adders on FPGAs than the one
presented are shown in this section.

A. Using half of a slice for a 3:2 counter:

The first proposed solution makes use of only half of a
slice for a 1-bit 3:2 carry-save adder implementation.
However, the remaining half of slice cannot be fully used,
since the carry bit produced by 3:2 counter computation
is feeded into it, disabling a possible use for the rest of the
carry propagation logic.

In this solution it is not possible to implement two 1-bit
3:2 CSAs within a single FPGA slice.Nevertheless, the
free semi-slice resources can still be used by some other
type of logic computation which does not need to take ad-
vantage of the carry logic. Fig. 2 depicts how this solution
is mapped into a slice.

Fig 2. Efficient Slice mapping for 1-bit 3:2 CSA

The main drawback in this case is that the upper semi-
slice (the one left free) often remains unused within their
application. As a consequence, the area requirements for
this approach is higher than the one obtained by the solu-
tion described by them. Some other example applications,
such as a constant multiplier and an additive range reduc-
tion are developed.

Where we have successfully taken advantage of the upper
semi-slice using it as a table look-up. From the results
obtained, we can conclude that this solution is convenient
for those applications where the upper semi-slice can be
used.

B. Implementing a 4:2 compressor:

To overcome the drawback shown in Section III-A, i.e.
we cannot always guarantee a successful use of the up-
per semi-slice, for example for the commonly used multi
operand addition. For this reason, here we propose a new
type of mapping where we fully use a whole slice hard-
ware resources. The new approach lies in a 4:2 compres-
sor implementation instead of a single 3:2 counter. Fig.
3 depicts a typical 4:2 compressor scheme based on 3:2
counters, and Fig. 4 shows how this 4:2 compressor can
be efficiently mapped into an FPGA slice.

In order to achieve this goal, we have to map some parts
from the addition of different weighted bits within the
same slice. Specifically, the piece of hardwarehighlighted
in Fig. 3 is implemented into asingle slice.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2168

The upper semi-slice implements a second level
3:2CSA,whereas the bottom semi-slice is in charge of
implementing a first level 3:2 CSA In order to take advan-
tage of the carry propagation logic, a single slice imple-
ments the first level addition for bits with weight 2^i and
the second level addition for bits with weight 2^i+1. In
this way, all the slice resources are used.

IV. Linear Array Structure:

In the previous approach, specialized carry resources are
only used in the design of a single 4:2 compressor, but
these resources have not been considered in the design
of the whole compressor tree structure. To optimize the
use of the carry resources, we propose a compressor tree
structure similar to the classic linear array of CSAs. How-
ever, in our case, given the two output words of each ad-
der (sum-word and carry-word), only the carry-word is
connected from each CSA to the next, whereas the sum
words are connected to lower levels of the array.

Fig.5. N-bit width CS 9:2 compressor tree based on a
linear array of CSAs.

Fig. 5 shows an example for a 9:2 compressor tree de-
signed using the proposed linear structure, where all
lines are N bit width buses, and carry signal are correctly
shifted.For the CSA, we have to distinguish between the
regular inputs (A and B) and the carry input (Ci in the fig-
ure), whereas the dashed line between the carry input and
output represents the fast carry resources. With the excep-
tion of the first CSA, where Ci is used to introduce an
input operand, on each CSA Ci is connected to the carry
output (Co) of the previous CSA, as shown in Fig. 5.Thus,
the whole carry-chain is preserved from the input to the
output of the compressor tree (from I0 to Cf). First, the
two regular inputs on each CSA are used to add all the in-
put operands (Ii). When all the input operands have been
introduced in the array, the partial sum-words (Si) previ-
ously generated are then added in order (i.e., the first gen-
erated partial sums are added first) as shown in Fig.5.In
this way, we maximize the overlap between propagation
through regular signals and carry-chains.

Nop-2 of these elements (because each CSA eliminates
one input signal).Therefore, considering that a CSA could
be implemented using the same number of resources as
a binary CPA (as shown below), the proposed linear ar-
ray, the 4:2 compressor tree, and the binary CPA tree have
approximately the same hardware cost. In relation to the
delay analysis, from a classic point of view our compres-
sor tree has Nop-2 levels.This is much more than a clas-
sic Wallace tree structure and, thus, a longer critical path.
Nevertheless, because we are targeting an FPGA imple-
mentation, we temporarily assume that there is no delay
for the carry-chain path. Under this assumption, the carry
signal connections could be eliminated from the critical
path analysis and our linear array could be represented as
a hypothetical tree, as shown in Fig. 6 (where the carry-
chain is represented in gray).

To compute the number of effective time levels (ETL) of
this hypothetical tree, each CSA is considered a 2:1 adder,
except for the first, which is considered a 3:1 adder. Thus,
the first level of adders is formed by the first [Nop-1]/2
CSAs (which correspond to partial addition of the input
operands).This first ETL produces [Nop-1]/2 partial sum-
words that are added to a second level of CSAs (together
with the last input operand if Nop is even) and so on, in
such a way that This design can be used as a replacement
to carry-save each ETL of CSAs halves the number of
inputs to the next level. Therefore, the total ETLs in this
hypothetical tree are and the delay of this tree is approxi-
mately L times the delay of a single ETL.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2169

Fig.6. Time model of the proposed CS 9:2 compressor
tree.

Fig.7. Critical path of the proposed 9:2 compressor
tree for linear array behavior.

V.SIMULATION RESULTS:

To evaluate the performance of the proposed compress-
ing elements, we designed and synthesized pipelined
compression trees with eight 10-bit inputs using differ-
ent techniques. Even for this relatively low word size, the
ternary adder and the 4:2 compressor lead to the best ef-
ficiency of Ek =1.8 using k =10 BLEs. The ternary adder
tree requires two stages with four ternary adders in total
while the compressor tree with 4:2 compressors requires
three stages with three 4:2 compressors in total plus one
common two-input adder to merge the result.

VI.CONCLUSIONS AND FUTURE WORK:

Prefix adder architectures capable of three – operand ad-
dition for cell based design and their synthesis have been
designed and investigates in this thesis. Binary adders ca-
pable of constant addition have also been presented and
their performance investigated. The design is possible
due to the generation of a new set of intermediate outputs
called “flag” bits. adders with the possibility of having the
third operand as a constant or a variable binary number.
The hardware will be optimized by gate sizing in order to
achieve better performance results.

VII.REFERENCES:

[1]J.-L. Beuchat and J.-M. Muller, “Automatic genera-
tion of modular mul-tipliers for fpga applications,” IEEE
Transactions on Computers, vol. 57, no. 12, pp. 1600–
1613, December 2008.

[2]J. Detrey, F. de Dinechin, and X. Pujol, “Return of the
hardware floating-point elementary function,” in Proceed-
ingsof the 18th IEEE Symposium on Computer Arithme-
tic (Montpellier, France), Kornerup and Muller, Eds. Los
Alamitos, CA: IEEE Computer Society Press, June 2007,
pp. 161–168.

[3]H. Eberle, G. N., S. Shantz, V. G upta, L. Rarick, and
S. Sundaram, “A public-key cryptographic processor for
RSA and ECC,” in Proceedings of the International Con-
ference on Application-Specific Systems, Architectures
and Processors (ASAP2004), September 2004.

[4]H. R. Ismail, R.C., “High performance complex num-
ber multiplier using booth-wallace algorithm,” in IEEE
International Conference on Semiconductor Electronics
ICSE, November 2006.

[5]K. Manochehri and S. Pourmozafari, “Modified radix-2
montgomery modular multiplication to make it faster and
simpler,” in IEEE International Conference on Informa-
tion Technology: Coding and Computing, ITCC 2005 ,
April 2005.

[6]M.D.ErcegovacandT.Lang, Digital Arithmetic. Mor-
gan Kaufmann Publishers, 2004.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2168

The upper semi-slice implements a second level
3:2CSA,whereas the bottom semi-slice is in charge of
implementing a first level 3:2 CSA In order to take advan-
tage of the carry propagation logic, a single slice imple-
ments the first level addition for bits with weight 2^i and
the second level addition for bits with weight 2^i+1. In
this way, all the slice resources are used.

IV. Linear Array Structure:

In the previous approach, specialized carry resources are
only used in the design of a single 4:2 compressor, but
these resources have not been considered in the design
of the whole compressor tree structure. To optimize the
use of the carry resources, we propose a compressor tree
structure similar to the classic linear array of CSAs. How-
ever, in our case, given the two output words of each ad-
der (sum-word and carry-word), only the carry-word is
connected from each CSA to the next, whereas the sum
words are connected to lower levels of the array.

Fig.5. N-bit width CS 9:2 compressor tree based on a
linear array of CSAs.

Fig. 5 shows an example for a 9:2 compressor tree de-
signed using the proposed linear structure, where all
lines are N bit width buses, and carry signal are correctly
shifted.For the CSA, we have to distinguish between the
regular inputs (A and B) and the carry input (Ci in the fig-
ure), whereas the dashed line between the carry input and
output represents the fast carry resources. With the excep-
tion of the first CSA, where Ci is used to introduce an
input operand, on each CSA Ci is connected to the carry
output (Co) of the previous CSA, as shown in Fig. 5.Thus,
the whole carry-chain is preserved from the input to the
output of the compressor tree (from I0 to Cf). First, the
two regular inputs on each CSA are used to add all the in-
put operands (Ii). When all the input operands have been
introduced in the array, the partial sum-words (Si) previ-
ously generated are then added in order (i.e., the first gen-
erated partial sums are added first) as shown in Fig.5.In
this way, we maximize the overlap between propagation
through regular signals and carry-chains.

Nop-2 of these elements (because each CSA eliminates
one input signal).Therefore, considering that a CSA could
be implemented using the same number of resources as
a binary CPA (as shown below), the proposed linear ar-
ray, the 4:2 compressor tree, and the binary CPA tree have
approximately the same hardware cost. In relation to the
delay analysis, from a classic point of view our compres-
sor tree has Nop-2 levels.This is much more than a clas-
sic Wallace tree structure and, thus, a longer critical path.
Nevertheless, because we are targeting an FPGA imple-
mentation, we temporarily assume that there is no delay
for the carry-chain path. Under this assumption, the carry
signal connections could be eliminated from the critical
path analysis and our linear array could be represented as
a hypothetical tree, as shown in Fig. 6 (where the carry-
chain is represented in gray).

To compute the number of effective time levels (ETL) of
this hypothetical tree, each CSA is considered a 2:1 adder,
except for the first, which is considered a 3:1 adder. Thus,
the first level of adders is formed by the first [Nop-1]/2
CSAs (which correspond to partial addition of the input
operands).This first ETL produces [Nop-1]/2 partial sum-
words that are added to a second level of CSAs (together
with the last input operand if Nop is even) and so on, in
such a way that This design can be used as a replacement
to carry-save each ETL of CSAs halves the number of
inputs to the next level. Therefore, the total ETLs in this
hypothetical tree are and the delay of this tree is approxi-
mately L times the delay of a single ETL.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 2169

Fig.6. Time model of the proposed CS 9:2 compressor
tree.

Fig.7. Critical path of the proposed 9:2 compressor
tree for linear array behavior.

V.SIMULATION RESULTS:

To evaluate the performance of the proposed compress-
ing elements, we designed and synthesized pipelined
compression trees with eight 10-bit inputs using differ-
ent techniques. Even for this relatively low word size, the
ternary adder and the 4:2 compressor lead to the best ef-
ficiency of Ek =1.8 using k =10 BLEs. The ternary adder
tree requires two stages with four ternary adders in total
while the compressor tree with 4:2 compressors requires
three stages with three 4:2 compressors in total plus one
common two-input adder to merge the result.

VI.CONCLUSIONS AND FUTURE WORK:

Prefix adder architectures capable of three – operand ad-
dition for cell based design and their synthesis have been
designed and investigates in this thesis. Binary adders ca-
pable of constant addition have also been presented and
their performance investigated. The design is possible
due to the generation of a new set of intermediate outputs
called “flag” bits. adders with the possibility of having the
third operand as a constant or a variable binary number.
The hardware will be optimized by gate sizing in order to
achieve better performance results.

VII.REFERENCES:

[1]J.-L. Beuchat and J.-M. Muller, “Automatic genera-
tion of modular mul-tipliers for fpga applications,” IEEE
Transactions on Computers, vol. 57, no. 12, pp. 1600–
1613, December 2008.

[2]J. Detrey, F. de Dinechin, and X. Pujol, “Return of the
hardware floating-point elementary function,” in Proceed-
ingsof the 18th IEEE Symposium on Computer Arithme-
tic (Montpellier, France), Kornerup and Muller, Eds. Los
Alamitos, CA: IEEE Computer Society Press, June 2007,
pp. 161–168.

[3]H. Eberle, G. N., S. Shantz, V. G upta, L. Rarick, and
S. Sundaram, “A public-key cryptographic processor for
RSA and ECC,” in Proceedings of the International Con-
ference on Application-Specific Systems, Architectures
and Processors (ASAP2004), September 2004.

[4]H. R. Ismail, R.C., “High performance complex num-
ber multiplier using booth-wallace algorithm,” in IEEE
International Conference on Semiconductor Electronics
ICSE, November 2006.

[5]K. Manochehri and S. Pourmozafari, “Modified radix-2
montgomery modular multiplication to make it faster and
simpler,” in IEEE International Conference on Informa-
tion Technology: Coding and Computing, ITCC 2005 ,
April 2005.

[6]M.D.ErcegovacandT.Lang, Digital Arithmetic. Mor-
gan Kaufmann Publishers, 2004.

