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ABSTRACT:

Multi-operand adders, which are also found in paral-
lel multipliers, usually consist of the compression trees 
which reduce the number of operands per a bit to two, 
and the carry propagate adder for the two operands in 
ASIC implementation. The former part is usually realized 
using full adders or(3;2) counters like Wallace-trees in 
ASIC, though adder trees or dedicated hardware are used 
in FPGA. In this paper, an approach to realize compres-
sion trees on FPGAs is proposed. In case of FPGA with 
m-input LUT, any larger or generalized parallel counters 
with up to m inputs can be realized with one LUT per an 
output. Our approach utilizes generalized parallel coun-
ters with up to m inputs and synthesizes the compres-
sion trees to implement high-performance multi-operand 
adders by setting some intermediate height limits in the 
compression process like Dadda multipliers. The goal of 
this research is to design arithmetic circuits that meet the 
challenges faced by computer architects during the design 
of high performance embedded systems.The focus is nar-
rowed down to addition algorithms and the design of high 
speed adder architectures. Addition is one of the most ba-
sic operations performed in all computing units, including 
microprocessors and digital signal processors. It is also a 
basic unit utilized in various complicated algorithms of 
multiplication and division.
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I. INTRODUCTION:

Multi-operand addition, which is often found in partial 
product reduction of multipliers, or some combinations 
of addition and multiplication, is a fundamental and fre-
quently used arithmetic operation.
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Though it can be realized with carry-propagate adder 
(CPA) trees, fast multi-operand addition usually consists 
of two phases, where the number of addends is compressed 
to 2 such as a Wallace tree and a Dadda tree, and then the 
final CPA generates the result of multiplication for ASIC 
implementation. Such trees are often constructed using 
3-input 2-output counters (also called carry-save adder or 
full adder) and 2-input 2-output counters (half adder) as 
basic components.In this paper we prove that there is pos-
sibility to implement carry-save adders on FPGA devices 
with a similar hardware cost to that of carry-propagate 
adders, while keeping a constant computation time, in 
such a way that considering operands with number of bits 
greater or equal to 16, the speed gain is notorious, this 
process is similar to an ASIC-based design.

II. CARRY SAVE ADDERS ON FPGA:

This paper focuses mainly on the inner architecture of 
FPGAs with specialized carry-logic like Virtex 2, 4and 
Spartan 2, 3 of Xilinx and 4-input Look up tables. In spite 
of new generation Field programmable gate arrays which 
are having new inner architecture, FPGAs with four-input 
LUTs are widely used for medium complex applications 
due to low cost and low power consumption

Fig.1. General scheme of dedicated carry-chain re-
sources included in modern FPGA devices.

In carry save addition (CSA) implementation on FPGA, 
the carry-out bit and the sum bit are generated using two 
LUTs whereas a carry propagate addition (CPA) we need 
only one LUT. Thus, the hardware required for a Carry 
save adder is double than that for a CPA. Besides, the 
CSA implementation does not take advantage of the carry 
propagation logic.

Design and Implementation of Multi Level Carry Save 
Adders on FPGA
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In an attempt to use the available carry-logic while keep-
ing an adder maximum delay bounded regardless of the 
word length, authors from [1] present a solution making 
use of a high radix carry-save representation.Due to this 
high radix representation, initially introduced to reduce 
the number of wires and registers required to store a val-
ue, the sum word from a carry-save number is represented 
in radix- r (i. e. log2r bits per digit) and the carry word 
requires one only bit per radix- r digit.This representa-
tion allows the use of standard CPAs to add each of the 
sum word radix- r digits, connecting the carry word to the 
Carry propagate adder carry-in inputs, hence obtaining 
the final carry word at the CPA carry-out outputs.When 
this adder is implemented in an FPGA, we use the whole 
slice resources, including the carry logic, while increasing 
the addition delay.

However, due to the great optimization of FPGAs carry 
logic, this delay increase is not very significative if the 
radix r is not high.The main drawback in high radix car-
ries save representation is that, the numbers shifts are not 
an easy task. In this case, complete shifts are only avail-
able for radix- r digits, i.e., shifts are only allowed for 
multiple of r numbers. This restriction comes from the 
carry word processing, since it is only available at some 
specific positions within the addition operation.This limi-
tation becomes an important obstacle when applying the 
high radix carry save representation to many shift and add 
based algorithms, and even the work presented in [1] has 
to deal with this problem. For this reason, it is interesting 
to look for some other ways of using the carry logic when 
implementing carry save adders.

III. Efficient Mapping Of Carry - Save Adder 
in FPGA:

Two different solutions to obtain a more efficient imple-
mentation of carry-save adders on FPGAs than the one 
presented are shown in this section.

A. Using half of a slice for a 3:2 counter:

The first proposed solution makes use of only half of a 
slice for a 1-bit 3:2 carry-save adder implementation. 
However, the remaining half of slice cannot be fully used, 
since the carry bit produced by 3:2 counter computation 
is feeded into it, disabling a possible use for the rest of the 
carry propagation logic.

In this solution it is not possible to implement two 1-bit 
3:2 CSAs within a single FPGA slice.Nevertheless, the 
free semi-slice resources can still be used by some other 
type of logic computation which does not need to take ad-
vantage of the carry logic. Fig. 2 depicts how this solution 
is mapped into a slice.

Fig 2. Efficient Slice mapping for 1-bit 3:2 CSA

The main drawback in this case is that the upper semi-
slice (the one left free) often remains unused within their 
application. As a consequence, the area requirements for 
this approach is higher than the one obtained by the solu-
tion described by them. Some other example applications, 
such as a constant multiplier and an additive range reduc-
tion are developed. 

Where we have successfully taken advantage of the upper 
semi-slice using it as a table look-up. From the results 
obtained, we can conclude that this solution is convenient 
for those applications where the upper semi-slice can be 
used.

B. Implementing a 4:2 compressor:

To overcome the drawback shown in Section III-A, i.e. 
we cannot always guarantee a successful use of the up-
per semi-slice, for example for the commonly used multi 
operand addition. For this reason, here we propose a new 
type of mapping where we fully use a whole slice hard-
ware resources. The new approach lies in a 4:2 compres-
sor implementation instead of a single 3:2 counter. Fig. 
3 depicts a typical 4:2 compressor scheme based on 3:2 
counters, and Fig. 4 shows how this 4:2 compressor can 
be efficiently mapped into an FPGA slice.

In order to achieve this goal, we have to map some parts 
from the addition of different weighted bits within the 
same slice. Specifically, the piece of hardwarehighlighted 
in Fig. 3 is implemented into asingle slice.
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The upper semi-slice implements a second level 
3:2CSA,whereas the bottom semi-slice is in charge of 
implementing a first level 3:2 CSA In order to take advan-
tage of the carry propagation logic, a single slice imple-
ments the first level addition for bits with weight 2^i and 
the second level addition for bits with weight 2^i+1. In 
this way, all the slice resources are used.

IV. Linear Array Structure:

In the previous approach, specialized carry resources are 
only used in the design of a single 4:2 compressor, but 
these resources have not been considered in the design 
of the whole compressor tree structure. To optimize the 
use of the carry resources, we propose a compressor tree 
structure similar to the classic linear array of CSAs. How-
ever, in our case, given the two output words of each ad-
der (sum-word and carry-word), only the carry-word is 
connected from each CSA to the next, whereas the sum 
words are connected to lower levels of the array.

Fig.5. N-bit width CS 9:2 compressor tree based on a 
linear array of CSAs.

Fig. 5 shows an example for a 9:2 compressor tree de-
signed using the proposed linear structure, where all 
lines are N bit width buses, and carry signal are correctly 
shifted.For the CSA, we have to distinguish between the 
regular inputs (A and B) and the carry input (Ci in the fig-
ure), whereas the dashed line between the carry input and 
output represents the fast carry resources. With the excep-
tion of the first CSA, where Ci is used to introduce an 
input operand, on each CSA Ci is connected to the carry 
output (Co) of the previous CSA, as shown in Fig. 5.Thus, 
the whole carry-chain is preserved from the input to the 
output of the compressor tree (from I0 to Cf). First, the 
two regular inputs on each CSA are used to add all the in-
put operands (Ii). When all the input operands have been 
introduced in the array, the partial sum-words (Si) previ-
ously generated are then added in order (i.e., the first gen-
erated partial sums are added first) as shown in Fig.5.In 
this way, we maximize the overlap between propagation 
through regular signals and carry-chains.

Nop-2 of these elements (because each CSA eliminates 
one input signal).Therefore, considering that a CSA could 
be implemented using the same number of resources as 
a binary CPA (as shown below), the proposed linear ar-
ray, the 4:2 compressor tree, and the binary CPA tree have 
approximately the same hardware cost. In relation to the 
delay analysis, from a classic point of view our compres-
sor tree has Nop-2 levels.This is much more than a clas-
sic Wallace tree structure and, thus, a longer critical path. 
Nevertheless, because we are targeting an FPGA imple-
mentation, we temporarily assume that there is no delay 
for the carry-chain path. Under this assumption, the carry 
signal connections could be eliminated from the critical 
path analysis and our linear array could be represented as 
a hypothetical tree, as shown in Fig. 6 (where the carry-
chain is represented in gray).

To compute the number of effective time levels (ETL) of 
this hypothetical tree, each CSA is considered a 2:1 adder, 
except for the first, which is considered a 3:1 adder. Thus, 
the first level of adders is formed by the first [Nop-1]/2 
CSAs (which correspond to partial addition of the input 
operands).This first ETL produces [Nop-1]/2 partial sum-
words that are added to a second level of CSAs (together 
with the last input operand if Nop is even) and so on, in 
such a way that This design can be used as a replacement 
to carry-save each ETL of CSAs halves the number of 
inputs to the next level. Therefore, the total ETLs in this 
hypothetical tree are and the delay of this tree is approxi-
mately L times the delay of a single ETL.
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Fig.6. Time model of the proposed CS 9:2 compressor 
tree.

Fig.7. Critical path of the proposed 9:2 compressor 
tree for linear array behavior.

V.SIMULATION RESULTS:

To evaluate the performance of the proposed compress-
ing elements, we designed and synthesized pipelined 
compression trees with eight 10-bit inputs using differ-
ent techniques. Even for this relatively low word size, the 
ternary adder and the 4:2 compressor lead to the best ef-
ficiency of Ek =1.8 using k =10 BLEs. The ternary adder 
tree requires two stages with four ternary adders in total 
while the compressor tree with 4:2 compressors requires 
three stages with three 4:2 compressors in total plus one 
common two-input adder to merge the result.

VI.CONCLUSIONS AND FUTURE WORK:

Prefix adder architectures capable of three – operand ad-
dition for cell based design and their synthesis have been 
designed and investigates in this thesis. Binary adders ca-
pable of constant addition have also been presented and 
their performance investigated. The design is possible 
due to the generation of a new set of intermediate outputs 
called “flag” bits. adders with the possibility of having the 
third operand as a constant or a variable binary number. 
The hardware will be optimized by gate sizing in order to 
achieve better performance results.
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tree for linear array behavior.
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