
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 980

ABSTRACT:

Carry select adder (CSLA) is known to be the fastest ad-
der among the conventional adder structures. Due to the
rapidly growing mobile industry not only the faster arith-
metic unit but also less area and low power arithmetic
units are needed. The modified CSLA architecture has de-
veloped using Binary to Excess-1 converter (BEC). This
paper proposes an efficient method which replaces the
BEC using D latch. Experimental results are compared
and the result analysis shows that the proposed architec-
ture achieves the three folded advantages in terms of area,
delay and power

Keywords:

area efficient, CSLA, low power and BEC

1. INTRODUCTION:

Design of area- and power-efficient high-speed data path
logic systems are one of the most substantial areas of re-
search in VLSI system design. In digital adders, the speed
of addition is limited by the time required to propagate a
carry through the adder. The sum for each bit position in
an elementary adder is generated sequentially only after
the previous bit position has been summed and a carry
propagated into the next position .The CSLA is used in
many computational systems to alleviate the problem
of carry propagation delay by independently generating
multiple carries and then select a carry to generate the
sum. The carry-select adder (CSLA) provides a compro-
mise between small area but longer delay ripple carry ad-
der (RCA) and larger area with shorter delay carry look-
ahead adder. CSLA uses multiple pairs of ripple carry
adder (RCA)

to generate partial sum and carry by considering carry in-
put Cin=0 and Cin=1, then the final sum and carry are
selected by multiplexers. The modified CSLA using BEC
has reduced area and power consumption with slight in-
crease in delay. The basic idea of the proposed architec-
ture is that which replaces the BEC by D latch with enable
signal. The proposed architecture reduces the area, delay
and power. This paper is organized as follows; section III
presents the detailed structure and the function of the bi-
nary to excess-1 converter logic. Section IV and section
V explains the regular and modified CSLA respectively.
Section VI deals with the proposed architecture. Results
are analyzed in the section VII. Section VIII concludes.

2. METHODOLOGY:

Bedriji 1962 proposes [3] that the problem of carry prop-
agation delay is overcome by independently generating
multiple radix carries and using these carries to select
between simultaneously generated sums. Akhilash Tyagi
1993 introduces a scheme to generate carry bits with block
carryin 1 from the carries of a block with block carryin 0
[8]. Chang and Hsiao 1998 [4] propose that instead of us-
ing dual carry ripple adder a carry select adder scheme
using an addone circuit to replace one carry ripple adder.
Youngioon Kim and Lee Sup Kim 2001 [6] introduces a
multiplexer based add one circuit is proposed to reduce
the area with negligible speed penalty. Yajuan He et al
2005 proposed an area efficient square root carry select
adder scheme based on a new first zero detection logic
[5]. Ramkumar et al 2010 proposed a BEC method to
reduce the maximum delay of carry propagation in final
stage of carry save adder [2]. Ramkumar and Harish 2011
propose [11] BEC technique which is a simple and ef-
ficient gate level modification to significantly reduce the
area and power of square root CSLA.

B.Sindhurmai
M.Tech Student,

Department of ECE,
KITS for Women’s, kodad, T.S, India.

Mr. B. Naresh Reddy
Associate Professor,
Department of ECE,

KITS for Women’s, kodad, T.S, India.

Implementations of Low-Power and Area-Efficient
Carry Select Adder

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 981

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 982

Padma Devi et al 2010 proposed [7] modified carry select
adder designed in different stages which reduces the area
and power consumption.

A few weeks ago, probably due to my recent Arduino
and D-CPU obsessions, I started thinking about with this
topic: How do modern computer CPUs add numbers? I
took classes on this in school, so I had a basic understand-
ing, but the more I thought about it, the more I realized
that my ideas about how this would scale up to 64-bit
computers would be too slow to actually work.I started
digging around, and even though wikipedia is usually ex-
haustive (and often inscrutable) about obscure topics, I
had reached the edge of the internet. Only context-less
names like “Kogge-Stone” and unexplained box diagrams
greeted me. I had to do actual research of the 20th-century
kind.So come with me over the precipice and learn — in
great detail — how to add numbers!I’m going to start out
as if you’ve never taken a class in computer engineering.
If you’re familiar with the basics of binary addition, skip
below to get to the good stuff.

Adding in binary:

For big numbers, addition by hand means starting on the
rightmost digit, adding all the digits in the column, and
then writing down the units digit and carrying the tens
over. In the example below, 8 plus 4 is 12, so we carry the
1, which I’ve indicated with a precious tiny blue 1 over
the left column:

1
 482
+345

 827

We memorize this in school, but the reason it works is that
each column is the same power of ten: 8 tens plus 4 tens is
12 tens. And 12 tens is really 1 hundred and 2 tens, so the
1 hundred is shifted/carried over to the hundreds column.

This works the same in binary, but the digits can only ever
be 0 or 1, so the biggest number we can add is 1 plus 1.
This would be 2, or “10” in binary (1 two and 0 ones),
so there’s a carry of 1. In fact, if we have a carry, 1 plus
1 with a carried 1 is 3: “11” (1 two and 1 one). That still
only carries a 1, which is convenient, because it means
the carry can be represented in binary just like every other
digit.
 1 1
 0110 (6)
+0111 (7)

 1101 (13)
So, to add two binary numbers, we just need to add 3 bi-
nary digits (one digit from each of the numbers, plus a
possible incoming carry), and produce a sum bit and an
outgoing carry bit. We can make a logic table for this:

Sum and Carry bits. In logic circuit equations, “+” means
OR, means AND, and means XOR. (Programmers usu-
ally use “&” to mean AND, and “|” to mean OR, but I
think in this case it’s important to use the symbols that
professional circuit designers use. It gives you a bit more
intuition when dealing with logical equations, which will
come up later.)One way to think of it is: According to the
logic table we just made, the sum should be 1 if there are
an odd number of incoming 1s. XOR is the operation that
matches odd inputs. And the carry should be 1 if at least
two of the incoming digits are 1.

Adding in circuitry:

The most straightforward logic circuit for this is

assuming you have a 3-input XOR gate. If you don’t, you
can just hook two 2-input XOR gates together.Now re-
name C to Cin, and Carry to Cout, and we have a “full ad-
der” block that can add two binary digits, including an in-
coming carry, and generate a sum and an outgoing carry.

And if we put a bunch of them in a row, we can add any
N-bit numbers together!

Starting along the top, there are four inputs each of A and
B, which allows us to add two 4-bit numbers. The right-
most bit, A0, is the “ones”, A1 is the “twos”, and so on
through the “fours” and “eights” (powers of two instead of
ten). On the far right, we have a dangling carry-in which
we’ll just set to zero so that it doesn’t matter.

Starting along the top, there are four inputs each of A and
B, which allows us to add two 4-bit numbers. The right-
most bit, A0, is the “ones”, A1 is the “twos”, and so on
through the “fours” and “eights” (powers of two instead
of ten). On the far right, we have a dangling carry-in
which we’ll just set to zero so that it doesn’t matter. The
carry-out from the right-most adder is passed along to the
second adder, just like in long addition: any carry from
the “ones” is added to the “twos” column. Finally, on the
far left, we get an “extra” carry out, because the addition
of two 4-bit numbers may require 5 bits.

Normally this is considered an “overflow”, but the carry-
out bit is stored in some kind of status register by every
CPU that I know of. It just usually can’t be accessed from
C or any other language directly, so it gets lost.

Adding in slow-motion:

But here’s where the problems come in. Imagine setting
up 64 of those adders in a chain, so you could add two 64-
bit numbers together. How long would it take? The circuit
diagram above shows that each sum goes through one or
two gates, and each carry-out goes through two. And the
carry-out of one adder becomes the carry-in for the next
one. So to generate the entire sum and the final carry-out
bit, we need to go through 64 2 = 128 gates.Uh oh.Spoiler
alert: No CPU has time to wait for 128 gates to flip in
sequence, so no CPU actually adds this way. The prob-
lem is that the carry bit needs to “ripple” across each bit,
and will only scale linearly with the number of bits being
added. We’ll need some way to break out of linearity.

3. IMPLEMENTATION:
Carry-select adder:

The trick that seems most obvious to me — and the only
one I thought of before doing research — was apparently
invented in 1960 by Sklansky. If you’re willing to add
more circuitry in exchange for speed, you can put two
adders in parallel. One computes the sum with a carry-in
of 0, and the other computes with a carry-in of 1. When
the real carry-in signal arrives, it selects which addition to
use. Here’s an example of a 4-bit carry-select adder:

The weird rhombus-shapes are multiplexers, or “mux” for
short. A mux takes two inputs and selects one or the other,
based on a control signal. In this case, each mux uses the
carry-in signal to determine which adder output to use,
for each of the four sum bits (along the bottom), and the
carry-out bit (on the left).The diagram gets simpler if we
make a shortcut box for a series of connected adder units,
and draw each group of 4 input or output bits as a thick
gray bus:

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 981

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 982

Padma Devi et al 2010 proposed [7] modified carry select
adder designed in different stages which reduces the area
and power consumption.

A few weeks ago, probably due to my recent Arduino
and D-CPU obsessions, I started thinking about with this
topic: How do modern computer CPUs add numbers? I
took classes on this in school, so I had a basic understand-
ing, but the more I thought about it, the more I realized
that my ideas about how this would scale up to 64-bit
computers would be too slow to actually work.I started
digging around, and even though wikipedia is usually ex-
haustive (and often inscrutable) about obscure topics, I
had reached the edge of the internet. Only context-less
names like “Kogge-Stone” and unexplained box diagrams
greeted me. I had to do actual research of the 20th-century
kind.So come with me over the precipice and learn — in
great detail — how to add numbers!I’m going to start out
as if you’ve never taken a class in computer engineering.
If you’re familiar with the basics of binary addition, skip
below to get to the good stuff.

Adding in binary:

For big numbers, addition by hand means starting on the
rightmost digit, adding all the digits in the column, and
then writing down the units digit and carrying the tens
over. In the example below, 8 plus 4 is 12, so we carry the
1, which I’ve indicated with a precious tiny blue 1 over
the left column:

1
 482
+345

 827

We memorize this in school, but the reason it works is that
each column is the same power of ten: 8 tens plus 4 tens is
12 tens. And 12 tens is really 1 hundred and 2 tens, so the
1 hundred is shifted/carried over to the hundreds column.

This works the same in binary, but the digits can only ever
be 0 or 1, so the biggest number we can add is 1 plus 1.
This would be 2, or “10” in binary (1 two and 0 ones),
so there’s a carry of 1. In fact, if we have a carry, 1 plus
1 with a carried 1 is 3: “11” (1 two and 1 one). That still
only carries a 1, which is convenient, because it means
the carry can be represented in binary just like every other
digit.
 1 1
 0110 (6)
+0111 (7)

 1101 (13)
So, to add two binary numbers, we just need to add 3 bi-
nary digits (one digit from each of the numbers, plus a
possible incoming carry), and produce a sum bit and an
outgoing carry bit. We can make a logic table for this:

Sum and Carry bits. In logic circuit equations, “+” means
OR, means AND, and means XOR. (Programmers usu-
ally use “&” to mean AND, and “|” to mean OR, but I
think in this case it’s important to use the symbols that
professional circuit designers use. It gives you a bit more
intuition when dealing with logical equations, which will
come up later.)One way to think of it is: According to the
logic table we just made, the sum should be 1 if there are
an odd number of incoming 1s. XOR is the operation that
matches odd inputs. And the carry should be 1 if at least
two of the incoming digits are 1.

Adding in circuitry:

The most straightforward logic circuit for this is

assuming you have a 3-input XOR gate. If you don’t, you
can just hook two 2-input XOR gates together.Now re-
name C to Cin, and Carry to Cout, and we have a “full ad-
der” block that can add two binary digits, including an in-
coming carry, and generate a sum and an outgoing carry.

And if we put a bunch of them in a row, we can add any
N-bit numbers together!

Starting along the top, there are four inputs each of A and
B, which allows us to add two 4-bit numbers. The right-
most bit, A0, is the “ones”, A1 is the “twos”, and so on
through the “fours” and “eights” (powers of two instead of
ten). On the far right, we have a dangling carry-in which
we’ll just set to zero so that it doesn’t matter.

Starting along the top, there are four inputs each of A and
B, which allows us to add two 4-bit numbers. The right-
most bit, A0, is the “ones”, A1 is the “twos”, and so on
through the “fours” and “eights” (powers of two instead
of ten). On the far right, we have a dangling carry-in
which we’ll just set to zero so that it doesn’t matter. The
carry-out from the right-most adder is passed along to the
second adder, just like in long addition: any carry from
the “ones” is added to the “twos” column. Finally, on the
far left, we get an “extra” carry out, because the addition
of two 4-bit numbers may require 5 bits.

Normally this is considered an “overflow”, but the carry-
out bit is stored in some kind of status register by every
CPU that I know of. It just usually can’t be accessed from
C or any other language directly, so it gets lost.

Adding in slow-motion:

But here’s where the problems come in. Imagine setting
up 64 of those adders in a chain, so you could add two 64-
bit numbers together. How long would it take? The circuit
diagram above shows that each sum goes through one or
two gates, and each carry-out goes through two. And the
carry-out of one adder becomes the carry-in for the next
one. So to generate the entire sum and the final carry-out
bit, we need to go through 64 2 = 128 gates.Uh oh.Spoiler
alert: No CPU has time to wait for 128 gates to flip in
sequence, so no CPU actually adds this way. The prob-
lem is that the carry bit needs to “ripple” across each bit,
and will only scale linearly with the number of bits being
added. We’ll need some way to break out of linearity.

3. IMPLEMENTATION:
Carry-select adder:

The trick that seems most obvious to me — and the only
one I thought of before doing research — was apparently
invented in 1960 by Sklansky. If you’re willing to add
more circuitry in exchange for speed, you can put two
adders in parallel. One computes the sum with a carry-in
of 0, and the other computes with a carry-in of 1. When
the real carry-in signal arrives, it selects which addition to
use. Here’s an example of a 4-bit carry-select adder:

The weird rhombus-shapes are multiplexers, or “mux” for
short. A mux takes two inputs and selects one or the other,
based on a control signal. In this case, each mux uses the
carry-in signal to determine which adder output to use,
for each of the four sum bits (along the bottom), and the
carry-out bit (on the left).The diagram gets simpler if we
make a shortcut box for a series of connected adder units,
and draw each group of 4 input or output bits as a thick
gray bus:

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 983

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 984

Now, for example, to compute the sum of two 16-bit num-
bers, we can split each number into four chunks of four
bits each, and let each of these 4-bit chunks add in parallel.
When the adders are finished, the carry-out bit from the
lowest (rightmost) adder is used to select which adder’s
result to use for the next four bits, and then that selected
carry-out is used to select the next adder’s result, and so
on. Simplifying the diagram a bit more, it looks like:

If we assume a mux takes as long as a logic gate, then this
circuit can compute a 16-bit addition in 2 4 + 4 = 12 gate
delays: 8 for all the adders to finish, and 4 for the muxs
to ripple the carry bits across. For a 64-bit adder, it would
take 24 delays, because it would have 16 muxes instead of
4. Going from 128 to 24 is a great start, and it only cost us
a little less than twice as many gates!We can fuss with this
and make it a little faster. The leftmost adder unit waits a
long time to get its incoming carry bit, and the first 75%
of the time is spent waiting for the first adder to finish. If
we compute only one bit at a time on the right, then two,
then three, and so on as it goes left, we can shave off a
few more.

4. DISCUSSION:

To remove the duplicate adder cells in the conventional
CSLA, an area efficient SQRT CSLA

is proposed by sharing Common Boolean Logic (CBL)
term. While analysing the truth table of single bit full
adder, results show that the output of summation signal
as carry-in signal is logic “0” isinverse signal of itself as
carry-in signal is logic “1”. It is illustrated by red circles
in Table II. To share the Common Boolean Logic term,
we only need to implement a XOR gate and one INV gate
to generate the summation pair. And to generate the carry
pair, we need to implement one OR gate and one AND
gate. In this way, the summation and carry circuits can be
kept parallel.

This method replaces the Binary to Excess-1 converter
add one circuit by common Boolean logic. As compared
with modified SQRT CSLA, the proposed structure is
little bit faster. Internal structure of proposed CSLA is
shown in Fig.

In the proposed SQRT CSLA, the transistor count is trade-
off with the speed in order to achieve lower powerdelay
product. Thus the proposed SQRT CSLA using CBL is
better than all the other designed adders. Fig. 9 shows the
block diagram of Proposed SQRT CSLA.

5. Experimental Results:

This work has been developed using Xilinx tool. Table
III shows the comparison between the various adders
like conventional CSLA, Modified CSLA, regular SQRT
CSLA, modified SQRT CSLA and proposed SQRT CSLA
for 8-bit, 16-bit, 32-bit and 64-bit. The parameters on
which they are compared are area, delay and power. Fig.
10 depicts that the proposed SQRT CSLA has less num-
ber of gates and hence less area. Fig. 11 shows the adder
circuit for delay comparison. The results compared in Fig.
12 shows that the power consumption of proposed SQRT
CSLA is reduced. It is clear that power, area and delay of
proposed SQRT CSLA for 8-bit, 16-bit, 32-bit and 64-bit
is reduced as compared to other adder.

Regular SQRT CSLA Simulation

CSLA using BEC

Modified CSLA using D-Latch

6. Concluding Remarks :

Power, delay and area are the constituent factors in VLSI
design that limits the performance of any circuit. This
work presents a simple approach to reduce the area, de-
lay and power of CSLA architecture. The conventional
carry select adder has the disadvantage of more power
consumption and occupying more chip area.

The proposed SQRT CSLA using common Boolean logic
has low power, less delay and reduced area than all the
other adder structures. It is also little bit faster than all the
other adders. In this way, the transistor count of proposed
SQRT CSLA is reduced having less area and low power
which makes it simple and efficient for VLSI hardware
implementations.

7.ACKNOWLEDGMENTS:

I am B.Sindhurmai and would like to thank the publish-
ers, researchers for making their resources material avail-
able. I am greatly thankful to Associate Prof: Mr. B. Na-
resh Reddy for their guidance. We also thank the college
authorities, PG coordinator and Principal for providing
the required infrastructure and support. Finally, we would
like to extend a heartfelt gratitude to friends and family
members.

8.REFERENCES:

1] M. C. C¸ avu¸so˘glu. Telesurgery and Surgical Simu-
lation: Design, Modeling, and Evaluation of Haptic In-
terfaces to Real and Virtual Surgical Environments. PhD
thesis, University ofCalifornia, Berkeley, August 2000.

[2] M. C. C¸ avu¸so˘glu, F. Tendick, M. Cohn, and S. S.
Sastry. A laparoscopic telesurgical workstation. IEEE
Transactions on Robotics and Automation, 15(4):728–
739, August 1999.

[3] E. Graves. Vital and Health Statistics. Data f rom the
National Health Survey No. 122. U.S. Department of-
Health and Human Services, Hyattsville, MD, 1993.

[4] J. W. Hill, P. S. Green, J. F. Jensen, Y. Gorfu, and A.
S. Shah. Telepresence surgery demonstration system. In
Proceedings of the IEEE International Conference on Ro-
botics and Automation, pages 2302–2307, 1994.

[5] A. J. Madhani. Design of Teleoperated Surgical In-
struments for Minimally Invasive Surgery. PhD thesis,
Massachusetts Institute ofTechnology, 1998.

[6] A. J. Madhani, G. Niemeyer, and J. K. Salisbury. The
black falcon: a teleoperated surgical instrument for mini-
mally invasive surgery. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS’98), volume 2, pages 936–944, 1998

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 983

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 984

Now, for example, to compute the sum of two 16-bit num-
bers, we can split each number into four chunks of four
bits each, and let each of these 4-bit chunks add in parallel.
When the adders are finished, the carry-out bit from the
lowest (rightmost) adder is used to select which adder’s
result to use for the next four bits, and then that selected
carry-out is used to select the next adder’s result, and so
on. Simplifying the diagram a bit more, it looks like:

If we assume a mux takes as long as a logic gate, then this
circuit can compute a 16-bit addition in 2 4 + 4 = 12 gate
delays: 8 for all the adders to finish, and 4 for the muxs
to ripple the carry bits across. For a 64-bit adder, it would
take 24 delays, because it would have 16 muxes instead of
4. Going from 128 to 24 is a great start, and it only cost us
a little less than twice as many gates!We can fuss with this
and make it a little faster. The leftmost adder unit waits a
long time to get its incoming carry bit, and the first 75%
of the time is spent waiting for the first adder to finish. If
we compute only one bit at a time on the right, then two,
then three, and so on as it goes left, we can shave off a
few more.

4. DISCUSSION:

To remove the duplicate adder cells in the conventional
CSLA, an area efficient SQRT CSLA

is proposed by sharing Common Boolean Logic (CBL)
term. While analysing the truth table of single bit full
adder, results show that the output of summation signal
as carry-in signal is logic “0” isinverse signal of itself as
carry-in signal is logic “1”. It is illustrated by red circles
in Table II. To share the Common Boolean Logic term,
we only need to implement a XOR gate and one INV gate
to generate the summation pair. And to generate the carry
pair, we need to implement one OR gate and one AND
gate. In this way, the summation and carry circuits can be
kept parallel.

This method replaces the Binary to Excess-1 converter
add one circuit by common Boolean logic. As compared
with modified SQRT CSLA, the proposed structure is
little bit faster. Internal structure of proposed CSLA is
shown in Fig.

In the proposed SQRT CSLA, the transistor count is trade-
off with the speed in order to achieve lower powerdelay
product. Thus the proposed SQRT CSLA using CBL is
better than all the other designed adders. Fig. 9 shows the
block diagram of Proposed SQRT CSLA.

5. Experimental Results:

This work has been developed using Xilinx tool. Table
III shows the comparison between the various adders
like conventional CSLA, Modified CSLA, regular SQRT
CSLA, modified SQRT CSLA and proposed SQRT CSLA
for 8-bit, 16-bit, 32-bit and 64-bit. The parameters on
which they are compared are area, delay and power. Fig.
10 depicts that the proposed SQRT CSLA has less num-
ber of gates and hence less area. Fig. 11 shows the adder
circuit for delay comparison. The results compared in Fig.
12 shows that the power consumption of proposed SQRT
CSLA is reduced. It is clear that power, area and delay of
proposed SQRT CSLA for 8-bit, 16-bit, 32-bit and 64-bit
is reduced as compared to other adder.

Regular SQRT CSLA Simulation

CSLA using BEC

Modified CSLA using D-Latch

6. Concluding Remarks :

Power, delay and area are the constituent factors in VLSI
design that limits the performance of any circuit. This
work presents a simple approach to reduce the area, de-
lay and power of CSLA architecture. The conventional
carry select adder has the disadvantage of more power
consumption and occupying more chip area.

The proposed SQRT CSLA using common Boolean logic
has low power, less delay and reduced area than all the
other adder structures. It is also little bit faster than all the
other adders. In this way, the transistor count of proposed
SQRT CSLA is reduced having less area and low power
which makes it simple and efficient for VLSI hardware
implementations.

7.ACKNOWLEDGMENTS:

I am B.Sindhurmai and would like to thank the publish-
ers, researchers for making their resources material avail-
able. I am greatly thankful to Associate Prof: Mr. B. Na-
resh Reddy for their guidance. We also thank the college
authorities, PG coordinator and Principal for providing
the required infrastructure and support. Finally, we would
like to extend a heartfelt gratitude to friends and family
members.

8.REFERENCES:

1] M. C. C¸ avu¸so˘glu. Telesurgery and Surgical Simu-
lation: Design, Modeling, and Evaluation of Haptic In-
terfaces to Real and Virtual Surgical Environments. PhD
thesis, University ofCalifornia, Berkeley, August 2000.

[2] M. C. C¸ avu¸so˘glu, F. Tendick, M. Cohn, and S. S.
Sastry. A laparoscopic telesurgical workstation. IEEE
Transactions on Robotics and Automation, 15(4):728–
739, August 1999.

[3] E. Graves. Vital and Health Statistics. Data f rom the
National Health Survey No. 122. U.S. Department of-
Health and Human Services, Hyattsville, MD, 1993.

[4] J. W. Hill, P. S. Green, J. F. Jensen, Y. Gorfu, and A.
S. Shah. Telepresence surgery demonstration system. In
Proceedings of the IEEE International Conference on Ro-
botics and Automation, pages 2302–2307, 1994.

[5] A. J. Madhani. Design of Teleoperated Surgical In-
struments for Minimally Invasive Surgery. PhD thesis,
Massachusetts Institute ofTechnology, 1998.

[6] A. J. Madhani, G. Niemeyer, and J. K. Salisbury. The
black falcon: a teleoperated surgical instrument for mini-
mally invasive surgery. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS’98), volume 2, pages 936–944, 1998

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 985

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 986

[7] J.W.Hill, P. S. Green, J. F. Jensen,Y. Gorfu, and A.
S. Shah, “Telepresencesurgery demonstration system,”
in Proc. IEEE Int. Conf. Robot. Autom.,San Diego, CA,
May 1994, vol. 3, pp. 2302–2307.

[8] P. Dario, E. Guglielmelli, B. Allotta, and M. C. Car-
rozza, “Robotics formedical applications,” IEEE Robot.
Autom.Mag., vol. 3, no. 3, pp. 44–56,Sep. 1996.

Author’s Details:

Ms. B.Sindhurmai MTech student, in M.Tech Stu-
dent, Dept of CSE in KITS for women’s,kodad, T.S, In-
dia.

Mr. B. Naresh Reddy working as a Assistant at ECE
in KITS for women’s,kodad, T.S, IndiaJNTUH Hydera-
bad. he has 6 years of UG/PG Teaching Experience.

.

