

 Page 1423

BestPeer++: A Peer-to-Peer based Large-scale

Data Processing Platform

Chatta Anilkumar

M.Tech Student

Sir C.V.Raman Institute of Technology and Sciences

Ch.Balaji

Guide

Sir C.V.Raman Institute of Technology and Sciences

ABSTRACT

The information sharing among the corporate

companies is done with corporate network and

facilitates collaboration in a certain industry sector

where companies share a common interest. It does

help the companies to reduce their costs and increase

the revenues. However, the inter-company data

sharing and processing poses unique challenges to

such a data management system including scalability,

performance, throughput, and security. Here, we

present BestPeer++, a system which delivers elastic

data sharing services for corporate network

applications in the cloud based on BestPeer – a peer-

to-peer (P2P) based data management platform.

BestPeer++ provides an economical, flexible and

scalable platform for corporate network applications

and delivers data sharing services to participants

based on the widely accepted pay-as-you-go business

model, by integrating cloud computing, database, and

P2P technologies into one system. We evaluate

BestPeer++ on Amazon EC2 Cloud platform. The

benchmarking results show that BestPeer++

outperforms HadoopDB, a recently proposed large-

scale data processing system, in performance when

both systems are employed to handle typical

corporate network workloads. The benchmarking

results also demonstrate that BestPeer++ achieves

near linear scalability for throughput with respect to

the number of peer nodes.

INTRODUCTION

Different companies of same sector are often

connected to a corporate network to collaborate with

one another; each company maintains its own site and

selectively shares a portion of its business data with

the others. From a technical perspective, the key for

the success of a corporate network is choosing the

right data sharing platform, a system which enables the

shared data (stored and maintained by different

companies) network-wide visible and supports

efficient analytical queries over those data.

Traditionally, data sharing is achieved by building a

centralized data warehouse, which periodically

extracts data from the internal production systems

(e.g., ERP) of each company for subsequent querying.

First, the corporate network needs to scale up to

support thousands of participants, while the installation

of a largescale centralized data warehouse system

entails nontrivial costs including huge

hardware/software investments (a.k.a Total Cost of

Ownership) and high maintenance cost (a.k.a Total

Cost of Operations. Second, companies want to fully

customize the access control policy to determine which

business partners can see which part of their shared

data.

Finally, to maximize the revenues, companies often

dynamically adjust their business process and may

change their business partners. Therefore, the

participants may join and leave the corporate networks

at will. The data warehouse solution has not been

designed to handle such dynamicity. To address the

aforementioned problems, this paper presents

BestPeer++, a cloud enabled data sharing platform

designed for corporate network applications. By

integrating cloud computing, database, and peer-to-

peer (P2P) technologies, Best-Peer++ achieves its

query processing efficiency and is a promising

approach for corporate network applications, with the

following distinguished features.

 BestPeer++ is deployed as a service in the cloud.

To form a corporate network, companies simply

register their sites with the BestPeer++ service

 Page 1424

provider, launch BestPeer++ instances in the cloud

and finally export data to those instances for

sharing. BestPeer++ adopts the pay-as-you-go

business model popularized by cloud computing.

The total cost of ownership is therefore

substantially reduced since companies do not have

to buy any hardware/software in advance. Instead,

they pay for what they use in terms of BestPeer++

instance’s hours and storage capacity. The

BestPeer++ service provider elastically scales up

the running instances and makes them always

available. Therefore, companies can use the ROI

driven approach to progressively invest on the data

sharing system.

 BestPeer++ extends the role-based access control

for the inherent distributed environment of

corporate networks. Through a web console

interface, companies can easily configure their

access control policies and prevent undesired

business partners to access their shared data

 BestPeer++ employs P2P technology to retrieve

data between business partners. BestPeer++

instances are organized as a structured P2P overlay

network named BATON. The data are indexed by

the table name, column name and data range for

efficient retrieval.

 BestPeer++ employs a hybrid design for achieving

high performance query processing. The major

workload of a corporate network is simple, low-

overhead queries. Such queries typically only

involve querying a very small number of business

partners and can be processed in short time.

BestPeer++ is mainly optimized for these queries.

For infrequent time-consuming analytical tasks,

we provide an interface for exporting the data from

BestPeer++ to Hadoop and allow users to analyze

those data using MapReduce.

OVERVIEW OF THE BESTPEER++ SYSTEM

While traditional P2P network has not been designed

for enterprise applications, the ultimate goal of

BestPeer is to bring the state-of-art database

techniques into P2P systems. In its early stage, Best-

Peer employs unstructured network and information

retrieval technique to match columns of different

tables automatically. After defining the mapping

functions, queries can be sent to different nodes for

processing. In its second stage, BestPeer introduces a

series of techniques for improving query performance

and result quality to enhance its suitability for

corporate network applications. In particular, BestPeer

provides efficient distributed search services with a

balanced tree structured overlay network and partial

indexing scheme for reducing the index size.

In the last stage of its evolution, BestPeer++ is

enhanced with distributed access control, multiple

types of indexes, and pay-as-you-go query processing

for delivering elastic data sharing services in the cloud.

The software components of BestPeer++ are separated

into two parts: core and adapter. The core contains all

the data sharing functionalities and is designed to be

platform independent. The adapter contains one

abstract adapter which defines the elastic infrastructure

service interface and a set of concrete adapter

components which implement such an interface

through APIs provided by specific cloud service

providers (e.g., Amazon).

Amazon Cloud Adapter

The Amazon Cloud Adapter provides an elastic

hardware infrastructure for BestPeer++ to operate on

by using Amazon Cloud services. We use Amazon

EC2 service to provision the database server. Each

time a new business joins the BestPeer++ network, we

launch a dedicated EC2 virtual server for that business.

The newly launched virtual server (called a

BestPeer++ instance) runs dedicated MySQL database

software and the BestPeer++ software. The

BestPeer++ instance is placed in a separate network

security group (i.e., a VPN) to prevent invalid data

access. Users can only use BestPeer++ software to

submit queries to the network to back up and scale

each BestPeer++ instance, we do use Amazon

Relational Data Service (RDS). The whole MySQL

database is backed up to Amazon’s reliable EBS

 Page 1425

storage devices in a four minute window. There will be

no service interrupt during the process since the

backup operation is performed asynchronously.

The BestPeer++ Core

It contains all platform-independent logic, including

query processing and P2P overlay. It runs on top of

adapter and consists of two software components:

bootstrap peer and normal peer. A BestPeer++ network

can only have a single bootstrap peer instance which is

always launched and maintained by the BestPeer++

service provider and a set of normal peer instances.

The architecture is depicted in Figure 1.

The entry point for whole network is bootstrap peer.

First it serves for various administration purposes,

including monitoring and managing normal peers

registration and also scheduling various network

management events, then it acts as acts as a central

repository for storing meta data of corporate network

applications, including shared global schema,

participant normal peer list, and role definitions. In

addition, BestPeer++ employs the standard PKI

encryption scheme to encrypt/decrypt data transmitted

between normal peers in order to further increase the

security of the system.

BOOTSTRAP PEER

is run by the BestPeer++ service provider, and its main

functionality is to manage the Best- Peer++ network.

Managing Normal Peer Join/Departure

All normal peers must connect to bootsrap first, (in

order to connect to corporate network). If the servce

provider did accept the join request, then the bootstrap

peer will put the newly joined peer into the peer list of

the corporate network.

At the same time, the joined peer will receive the

corporate network information including the current

participants, global schema, role definitions, and an

issued certificate. When the normal peer needs to leave

the network, it will also notify the bootstrap peer. The

bootstrap peer will put the departure peer on the black

list and mark the certificate of the departing peer

invalid. Then, the bootstrap peer will release all

resources allocated for the departing peer back to the

cloud and finally remove the departing peer from the

peer list.

Auto Fail-over and Auto-Scaling

The bootstrap peer is also responsible for monitoring

the health of normal peers and scheduling fail-over and

auto-scaling events. If some peers are malfunctioned

or crashed, the bootstrap peer will trigger an automatic

fail-over event for each failed normal peer. The

automatic fail-over is performed by first launching a

new instance from the cloud. Then, the bootstrap peer

asks the newly launched instance to perform database

recovery from the latest database backup stored in

Amazon EBS. Finally, the failed peer is put into the

blacklist.

NORMAL PEER

There are two data flows inside the normal peer: an

offline data flow and an online data flow and is shown

in figure 2. In the offline data flow, the data are

extracted periodically by a data loader from the

business production system to the normal peer

instance. In particular, the data loader extracts the data

from the business production system, transforms the

data format from its local schema to the shared global

schema of the corporate network according to the

schema mapping, and finally stores the results in the

MySQL databases hosted in the normal peer.

 Page 1426

Schema Mapping

It is a component that defines the mapping between the

local schemas employed by the production system of

each business and the global shared schema employed

by the corporate network. Currently, BestPeer++ only

supports relational schema mapping, namely both local

schema and the global schema are relational. In

general, the schema mapping process requires human

to be involved and is time consuming. However, it

only needs to perform once. Furthermore, Best-

Peer++ adopts templates to facilitate the mapping

process. For each popular production system (i.e., SAP

or PeopleSoft), we provide a mapping template which

defines the transformation of local schema of those

systems to the global schema. The business only needs

to modify the mapping template to meet its own needs.

Data Loader

Data Loader is a component that extracts data from

production systems to normal peer instances according

to the schema mappings. While the process of

extracting and transforming data is straightforward, the

main challenge is in maintaining the consistency

between raw data stored in the production systems and

extracted data stored in the normal peer instance (and

subsequently data indices created from these extracted

data) when the raw data are updated inside the

production systems.

When the data loader first extracts data from the

production system, besides storing the results in the

normal peer instance, the data loader also creates a

snapshot of the newly inserted data 3. After that, at

interval times, the data loader re-extracts data from the

production system to create a new snapshot. This

snapshot is then compared to the previously stored

snapshot to detect data changes. Finally, the changes

are used to update the MySQL database hosted in the

normal peer.

Data Indexer

Here, the data are stored in the local MySQL database

hosted by each normal peer. Thus, to process a query,

we need to locate which normal peers host the tables

involved in the query. For example, to process a

simple query like select R.a from R where R.b=x, we

need to know which peers store tuples belonging to the

global table R. We adopt the peer-to-peer technology

to solve the data locating problem and only send

queries to normal peers which host related data. In

particular, we employ BATON, a balanced binary tree

overlay protocol to organize all normal peers.

Figure 3 shows the structure of BATON. In

BestPeer++, the interface of BATON is abstracted as

Table I. We provide three ways to locate data required

for query evaluation: table index, column index, and

range index. Each of them is designed for a separate

purpose. Table II summarizes the index formats in

BestPeer++. In query processing, the priorities of

indices are (Range Index>Column Index>Table

Index). We will use the more accurate index whenever

possible

 Page 1427

PAY-AS-YOU-GO QUERY PROCESSING

Two services are provided by the BestPeer++

provides. The storage service and search service, both

of which are charged in a pay-as-you-go model. This

section presents the payas- you-go query processing

module which offers an optimal performance within

the user’s budget.

Definition: Let T denote the QoS set by the user. The

query latency must be less than T seconds with high

probability. BestPeer++ generates a plan to minimize

 while guaranteeing that

BestPeer++’s query engine iterates possible query

plans and selects the optimal one. The iteration

algorithm is similar to the one used in conventional

DBMS and thus is not repeated in the paper. The

intuition of the query engine is to exploit the

parallelism to meet the QoS and reduce the cost as

much as possible.

BENCHMARKING

Performance Benchmarking

Comparison of the performance of BestPeer++ with

HadoopDB can be done with this benchmark. We

consider HadoopDB as our benchmark target since it is

an alternative promising solution for our problem and

adopts architecture similar to ours. Comparing the two

systems (i.e., HadoopDB and BestPeer++) reveals the

performance gap between a general data warehousing

system and a data sharing system specially designed

for corporate network applications.

1) Benchmark Environment: We run our

experiments on Amazon m1.small DB instances

launched in the ap-southeast-1 region. Each DB small

instance has 1.7GB memory, 1 EC2 Compute Unit (1

CPU virtual core). We attach each instance with 50GB

storage space. We observe that the I/O performance of

Amazon cloud is not stable. The hdparm reports that

the buffered read performance of each instance ranges

from 30MB/sec to 120MB/sec. To produce a

consistent benchmark result, we run our experiments at

the weekend when most of the instances are idle.

Overall, the buffered read performance of each small

instance is about 90MB/sec during our benchmark.

The end-to-end network bandwidth between DB small

instances, measured by iperf, is approximately

100MB/sec.

2) BestPeer++ Settings: The configuration of a

BestPeer++ normal peer consists of two parts: the

underlying MySQL database server and the

BestPeer++ software. For MySQL database, we use

the default MyISAM storage engine which is

optimized for read-only queries since no transactional

processing overhead is introduced. We set up a large

index memory buffer (500MB) and the maximum

number of tables to be concurrently opened (50 tables).

For BestPeer++ software, we set the maximum

memory consumed by the MemTable to be 100MB.

We also configure each normal peer to use 20

concurrent threads for fetching data from remote peers.

Finally, we configure each normal peer to use the basic

query processing strategy.

3) HadoopDB Settings: We carefully follow the

instructions presented in the original HadoopDB paper

to configure HadoopDB. The setting consists of the

setup of a Hadoop cluster and the PostgreSQL

database server hosted at each worker node. We use

Hadoop version 0.19.2 running on Java 1.6.0 20. The

block size of HDFS is set to be 256MB. The

replication factor is set to 3. For each task tracker

node, we run one map task and one reduce task. The

maximum Java heap size consumed by the map task or

the reduce task is 1024MB. The buffer size of

read/write operations is set to 128KB. We also set the

sort buffer of the map task to 512MB with 200

concurrent streams for merging. For reduce task, we

set the number of threads used for parallel file copying

in the shuffle phase to be 50.

 Page 1428

4) Data loading: this process is performed by all

normal peers in parallel and consists of two steps. In

step 1, each normal peer invokes the data loader to

load raw TPC-H data into the local MySQL databases.

In addition to copying raw data, we also build indices

to speedup query processing. First, we build a primary

index for each TPC-H table on the primary key of that

table. Second, we build additional secondary indices

on selected columns of TPC-H tables. Table III

summarizes the secondary indices that we built. After

the data is loaded into the local MySQL database, each

normal peer invokes the data indexer to publish index

entries to the BestPeer++ network. For each table, the

data indexer publishes a table index entry and a

column index entry for each column.

5) The Q1 Query Results: The first benchmark query

Q1 evaluates a simple selection predicate on the

l_shipdate and l_commitdate attributes from the

LineItem table. The predicate yields approximately

3,000 tuples per normal peer.

Both systems (HadoopDB and BestPeer++) perform

this query within a short time. This is because both

systems benefit from the secondary indices built on l

shipdate and l commitdate columns. However, the

performance of BestPeer++ is significantly better than

HadoopDB. The performance gap between HadoopDB

and BestPeer++ is attributed to the startup costs of

MapReduce job introduced by the Hadoop layer,

including the cost of scheduling map tasks on available

task tracker nodes and the cost of launching a fresh

new Java process on each task tracker node to perform

the map task.

Figure 6 shows the performance of each benchmarked

system. BestPeer++ still outperforms HadoopDB by a

factor of ten. The performance gap between

HadoopDB and BestPeer++ comes from two factors.

First, the startup costs introduced by Hadoop layer still

dominates the execution time of HadoopDB. Second,

Hadoop (and generally MapReduce) employs a pull

based method to transfer intermediate data between

map tasks and reduce tasks. The reduce task must

periodically queries the job tracker for the map

completion events and start to pull data after it has

retrieved these completion events. We observe that, in

Hadoop, there is a noticeable delay between the time

point of map completion and the time point of those

completion events being retrieved by the reduce task.

Such delay slows down the query processing.

Figure 7 presents the performance of both systems.

From Figure 7, we can see that the performance gap

between BestPeer++ and HadoopDB becomes smaller.

This is because this query requires processing more

tuples than previous queries. Therefore, the Hadoop

startup costs are amortized by the increased workload.

We also see that as the number of nodes grows, the

scalability of HadoopDB is slightly better than

BestPeer++. Figure 8 presents the performance of both

systems. We can see that BestPeer++ still outperforms

HadoopDB. But the performance gaps between the

two systems are much smaller. Also, HadoopDB

achieves better scalability than BestPeer++.

This is because HadoopDB can benefit from

parallelism by distributing the join and aggregation

processing among worker nodes. However, to achieve

that, we must manually set the number of reducers to

be equal to the number of worker nodes. BestPeer++,

on the other hand, only performs the join and the final

aggregation at the query submitting peer. As more

 Page 1429

nodes are involved, more data need to be processed at

the query submitting peer, resulting in that peer to be

over-loaded. Again, the performance problem of

BestPeer++ can be mitigated by upgrading the normal

peer to a larger instance. Figure 9 presents the results

of this benchmark. Overall, HadoopDB performs

better than BestPeer++ in evaluating this query. The

fetching phase of BestPeer++ dominates the query

processing since it needs to fetch all qualified tuples to

the query submitting peer. HadoopDB, however, can

utilize multiple reducers for transferring the data in

parallel.

Figure 10 and Figure 11 present the results of this

benchmark. For each setting, the results are presented

in separate figures for suppliers and retailers,

respectively (e.g., in a 50 node cluster, we have 25

supplier peers and 25 retailer peers). We can see that

BestPeer++ achieves near linear scalability in both

heavy-weight workloads (i.e., retailer queries) and

lightweight workloads (i.e., supplier queries). The

main reason for this is that BestPeer++ adopts a single

peer optimization. In our benchmark, all queries will

only touch just one normal peer. In the peer searching

phase, if the query executor finds that a single normal

peer hosts all required data, the query executor

employs the single peer optimization and sends the

entire SQL to that normal peer for execution. The

results returned by that normal peer are directly sent

back to the user. The final processing phase is entirely

skipped.

CONCLUSION

Here, we proposed BestPeer++ a system which

delivers elastic data sharing services, by integrating

cloud computing, database, and peer-to-peer

technologies and have discussed the unique challenges

posed by sharing and processing data in an inter-

businesses environment. The benchmark conducted on

Amazon EC2 cloud platform proves that our system

can deliver near linear query throughput as the number

of normal peers grows, and thus can efficiently handle

typical workloads in a corporate network. Therefore,

BestPeer++ is a suitable solution for efficient data

sharing within corporate networks.

References

[1] K. Aberer, A. Datta, and M. Hauswirth. Route

Maintenance Overheads in DHT Overlays. In The 6th

Workshop on Distributed Data and Structures, 2004.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi,

A. Rasin, and A. Silberschatz. HadoopDB: An

Architectural Hybrid of MapReduce and DBMS

Technologies for Analytical Workloads. PVLDB,

2(1):922–933, 2009.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels.

Dynamo: Amazon’s Highly Available Key-Value

Store. In SOSP, pages 205–220, 2007.

[4] H. Garcia-Molina and W. J. Labio. Efficient

Snapshot Differential Algorithms for Data

Warehousing. Technical report, Stanford, CA, USA,

1996.

[5] Google Inc. Cloud Computing-What is its Potential

Value for Your Company? White Paper, 2010.

[6] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T.

Loo, S. Shenker, and I. Stoica. Querying the Internet

with PIER. In VLDB, pages 321–332, 2003.

[7] H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu,

and R. Zhang. Speeding up Search in Peer-to-Peer

Networks with a Multi-Way Tree Structure. In

SIGMOD, 2006.

[8] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R.

Zhang. iDistance: An adaptive b+-tree based indexing

method for nearest neighbor search. ACM Trans.

Database Syst., 30:364–397, June 2005.

[9] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON:

A Balanced Tree Structure for Peer-to-Peer Networks.

In VLDB, pages 661–672, 2005.

 Page 1430

[10] A. Lakshman and P. Malik. Cassandra: structured

storage system on a p2p network. In PODC, pages 5–

5, 2009.

[11] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou.

PeerDB: A P2P-based System for Distributed Data

Sharing. In ICDE, pages 633–644, 2003.

[12] Oracle Inc. Achieving the Cloud Computing

Vision. White Paper, 2010.

[13] V. Poosala and Y. E. Ioannidis. Selectivity

estimation without the attribute value independence

assumption. In VLDB, pages 486–495, 1997.

[14] M. O. Rabin. Fingerprinting by Random

Polynomials, 1981. Harvard Aiken Computational

Laboratory TR-15-81.

[15] P. Rodr´ıguez-Gianolli, M. Garzetti, L. Jiang, A.

Kementsietsidis, I. Kiringa, M. Masud, R. J. Miller,

and J. Mylopoulos. Data Sharing in the Hyperion Peer

Database System. In VLDB, pages 1291–1294, 2005.

[16] Saepio Technologies Inc. The Enterprise

Marketing Management Strategy Guide. White Paper,

2010.

[17] I. Tatarinov, Z. G. Ives, J. Madhavan, A. Y.

Halevy, D. Suciu, N. N. Dalvi, X. Dong, Y. Kadiyska,

G. Miklau, and P. Mork. The piazza peer data

management project. SIGMOD Record, 32(3):47–52,

2003.

[18] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic

transactional cloud storage with range query support.

PVLDB, 3(1):506–517, 2010.

[19] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan.

Distributed online aggregation. PVLDB, 2(1):443–

454, 2009.

[20] S. Wu, J. Li, B. C. Ooi, and K.-L. Tan. Just-in-

time query retrieval over partially indexed data on

structured p2p overlays. In SIGMOD, pages 279–290,

2008.

