
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

INTRODUCTION:

The goal is to facilitate and standardize the development,
deployment, and assembling of application components.
Application components are deployable on the J2EE ap-
plication server (AS) middleware. The middleware con-
tains a set of services for naming, messaging, transac-
tions, persistence, security, logging, and so on. However,
the specification does not impose any implementation
model in the construction of the middleware. This is left
to the AS providers. In this paper, we show that adopting
a component-based architecture of the middleware im-
proves the management functions. Indeed, a management
based on the knowledge of the system architecture allows
to handle the interdependence between the system com-
ponents and enables performing reconfiguration tasks.
The server embeds different Software from different
Object-Web members. Indeed, the services that offer the
non-functional properties to the J2EE applications encap-
sulate software from different developers.

This involves challenging management needs to handle
this heterogeneity, particularly handling the versioning is-
sues. The distribution aspect of the AS are not addressed
by J2EE standard. In addition, in a distributed environ-
ment, as a cluster, new levels of management abstractions
are needed. For example, it is interesting to expose the
Web tier, which contains a set of Web containers, as a sin-
gle virtual Web container to the manager to aggregate and
simplify some administration tasks. For example, instead
of deploying a same application on each Web container
replica, the manager needs a simpler operation: deploying
the application on the tier. This hides the distribution and
the modifications in the tier that will be handled at a lower
level. Furthermore, a J2EE cluster can run different J2EE
applications. It is important to group the resources used
by an application under a management unit to control the
application performance separately.

Abstract:

Recent client-server distributed computing systems may
be seen as implementations of N-tier architectures. Typi-
cally, the first tier consists of client applications contain-
ing browsers, with the remaining tiers deployed within
an enterprise representing the server side; the second tier
(Web tier) consists of web servers that receive requests
from clients and pass on the requests to specific applica-
tions residing in the third tier (middle tier) consisting of
application servers where the computations implementing
the business logic are performed; and the fourth tier (data-
base/back-end tier) contains databases that maintain per-
sistent data for applications. Existing application server
that are capable to handle entire architecture Web logic ,
JBOSS ,Web sphere .

A specification model should be develop that aloes ap-
proach to build N-tire architecture application. The per-
formance of the existing application server is proportional
to N-tier application developer’s expose and skills in tech-
nology this are the limitations of the existing application.
Is Enhancement of application server that would generate
an N-tier architecture template based on the given require-
ments so, develops enhance their template to fulfill there
business requirements. The focus of this project work has
been to combine existing techniques to provide a com-
plete working solution on a real platform. Our techniques
for replicating the database tier and that for replicating the
middle tier are not dependent on each other and can be
used together or separately without any difficulties.

Index Terms:

Application servers, availability, Enterprise Java Beans,
fault tolerance, middleware, replication, transactions.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 567

Madireddy Vijay Reddy
M.Tech,

Hyderabad.

Chintareddy Venkat Ramana Reddy
M.Tech,

Hyderabad.

The Design, Implementation and Performance Evaluation for
Middle Tier Based Replication Scheme

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

RELATED WORK:

Group communications plays a pivotal role in the evolu-
tion of availability solutions we see in a number of replica-
tion management schemes. The classic text discusses rep-
licated data management techniques that go hand in hand
with transactions with the Arjuna system demonstrating
the use of transactions in the support of replicated trans-
actional objects . With the advent of object-oriented stan-
dards for distributed computing, a number of replication
based solutions were developed, specifically in the area
of CORBA making extensive use of group communica-
tions to ensure consistency of replicas. Recent works have
seen transactions and group communications applied to
Web Services to aid recoverability. For example, configu-
rable durability to allow data persistence to survive crash
failure and utilizing group communications to provide
replication schemes for increased availability . Although
there are similar techniques used in both approaches (as
Web Services are often implemented using n-tier environ-
ments), the focus in this paper is an engineered solution
for availability in transactional n-tier systems.In the rest
of this section we will examine prior work on availabil-
ity measures for transactional data (objects) in n-tier ar-
chitectures, beginning with current industrial practice for
EJB application servers. We also describe how our work
differs from the relevant research work reported so far.

The key requirement here is to ensure exactly once execu-
tion of transactional requests. The interplay between rep-
lication and exactly once execution within the context of
multi-tier architectures is examined in , whilst describes
how replication and transactions can be incorporated
into three-tier CORBA architectures. The approachof us-
ing a backup transaction monitor to prevent transaction
blocking was implemented as early as 1980 in the SDD-1
distributed database system ; another implementation is
reported. A replicated transaction coordinator to provide
a non-blocking commit service has also been described.
Our paper deals with the case of replicating transaction
managers in the context of standards compliant Java ap-
plication servers (J2EE servers).There are several stud-
ies that deal with replication of application servers as a
mechanism to improve availability In , the authors pre-
cisely describe the concept of an exactly once transac-
tion (e-transaction) and develop server replication mecha-
nisms; their model assumes stateless application servers
(no session state is maintained by servers) that can access
multiple databases.

This architecture also allows flexible configuration us-
ing clustering for improved performance and scalability.
Availability measures, such as replication, can be intro-
duced in each tier in an application specific manner. In
a typical n-tier system, such as illustrated in the inter-
actions between clients and the web tier are performed
across the Internet. The infrastructures supporting these
interactions are generally beyond the direct control of an
application service provider. The middle and the database
tiers are the most important, as it is on these tiers that the
computations are performed and persistency provided.
These two tiers are considered in this paper.

Fig.: N-tier architecture

Further , availability measures, such as replication, can
be introduced in each tier in an application specific man-
ner. However, incorporation of availability measures in a
multi-tier system poses challenging system design prob-
lems of integrating open, non proprietary solutions to
transparent failover, exactly once execution of client re-
quests, non-blocking transaction processing and an ability
to work with clusters. This paper describes how replica-
tion for availability can be incorporated within the middle
and back-end tiers meeting all these challenges. The pa-
per develops an approach that requires enhancements to
the middle tier only for supporting replication of both the
middleware backend tiers. The design, implementation
and performance evaluation of such a middle tier based
replication scheme for multi-database transactions on a
widely deployed open source application server (JBoss)
are presented.The problem of exposing the relations be-
tween the AS services is also raised . A management sys-
tem is built on top of the AS (JBoss) to express the depen-
dencies between services. Our approach is to modify the
middleware itself and adopt a modular architecture where
dependencies are explicit. SmartFrog is a deployment
framework that is applicable to the ignition and deploy-
ment of AS in a cluster environment. The system proposes
a component model that allows encapsulating the cluster
parts (Apache, Tomcat, AS etc.) and expressing the de-
pendencies between these parts.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 568

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

interface) have been introduced (identified by the letter
P appended to their labels in the diagram; note that for
clarity, not all arrowed lines indicating communication
between proxy adaptors and their adaptors have been-
shown). The proxy resource adaptors reissue the opera-
tions arriving from the transaction manager and the con-
tainerto all replica resource managers via their resource
adaptors.

Fig.: An application server with state replication.

To ensure resource manager replicas remain mutually con-
sistent, the resource adaptor proxy maintains the receive
ordering of operation invocations when redirecting them
to the appropriate resource adaptor replicas. This guaran-
tees that each resource adaptor replica receives operations
in the same order, thus guaranteeing consistent locking of
resources across resource manager replicas.

Session State Replication:

The retry interceptor first identifies if this is a duplicated
invocation by comparing the timestamp on the incoming
client invocation with that in the timestamp log. If the in-
vocation timestamp is the same as the timestamp in the
timestamp log then the parameters held in the bean log
are sent back to the client. If the invocation timestamp is
higher than the timestamp in the timestamp log then the
invocation is passed along the interceptor chain towards
the bean. Upon delivery confirmation received from the
replication service, the primary and backups update their
bean and timestamp logs appropriately. Once such an up-
date has occurred, the invocation reply is returned to the
client.

Transaction failover management:

We assume container managed transaction demarcation.
Via this approach to managing transactions the applica-
tiondeveloper specifies the transaction demarcation for
each method via the transaction attribute in a bean

Their algorithm handles the transaction commitment
blocking problem by making the backup server take on
the role of transaction coordinator. As their model limits
the application servers to be stateless, the solution cannot
be directly implemented on stateful server architectures
such as J2EE. The approach described in specifically ad-
dressed the replication of J2EE application servers, where
components may possess session state in addition to per-
sistent state stored on a single database implements the
framework described in, therefore we concentrate our
discussion on the implementation details of only). The
approach assumes that an active transaction is always
aborted by the database whenever an application server
crashes. Our approach assumes the more general case of
access to multiple databases; hence two phase commit-
ment (2PC) is necessary. Application server failures that
occur during the 2PC process do not always cause abor-
tion of active transactions, since the backup transaction
manager can complete the commit process.

Exactly once transaction execution can also be imple-
mented by making the client transactional, and on web-
based e-services, this can be done by making the browser
a resource which can be controlled by the resource man-
ager from the server side, as shown . One can also employ
transactional queues to gain a similar result. In this way,
user requests are kept in a queue that are protected by
transactions, and clients submit requests and retrieve re-
sults from the queue as separate transactions. As a result,
three transactions are required for processing each client
request and developers must construct their application
so that no state is kept in the application servers between
successive requests from clients. The approach presented
in guarantees exactly once execution on internet-based e-
services by employing message logging. The authors de-
scribe which messages require logging, and how to do re-
covery on the application servers. The approach addresses
stateful application servers with single database process-
ing without replicating the application servers.

IMPLEMENTATION:
Replication with a single server:

By replicating state (resource managers) an application
server may continue to make forward progress as long as
a resource manager replica is correctly functioning and
reachable by the application server. RDBMSs A and B
are now replicated (replicas A1, A2 and B1, B2). Proxy
resource adaptors (JDBC driver and XAResource

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 569

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Using this attribute a container decides how a transaction
is to be handled. For example, if a new transaction has
to be created for an invocation, or to process the invoca-
tion as part of an existing transaction (i.e., the transaction
was started earlier in the execution chain). Based on this
mechanism, a single invocation of a method can be: a sin-
gle transaction unit (a transaction starts at the beginning
of the invocation and ends at the end of the invocation),
a part of a transaction unit originated from other invoca-
tion, or non transactional (e.g. the container can suspend
a transaction prior to executing a method, and resume the
transaction afterwards).The txinterceptor together with
the transaction manager accommodates transactions with-
in the application server. The replication service supports
inter-replica consistency and consensus services via the
use of JGroups. The replication service, retry interceptor,
txinspector interceptor and the replica interceptor, imple-
ments our replication scheme.

Fig:- Augmenting application server with replication
service

Replication logic at the server side makes use of four in-
memory logs that are maintained by the replicationser-
vice: (i) current primary and backup configuration (group
log), (ii) most recent state of session bean together with
the last parameters sent back as a reply to a client invoca-
tion (bean log), (iii) invocation timestamp associated to
most recent session bean state (timestamp log), (iv) state
related to the progress of a transaction (transaction log).
The replication service uses a single group via JGroups to
ensure these logs are consistent across replicas.

PERFORMANCE EVALUATION:

Experiments were carried out to determine the perfor-
mance of our system over a single LAN. Four experi-
ments were carried out to determine the performance of
the clustered (using JBoss clustering) and non-clustered
approaches with and without state replication:

deployment descriptor. Using this attribute a container
decides how a transaction is to be handled. For example,
if a new transaction has to be created for an invocation, or
to process the invocation as part of an existing transaction
(i.e., the transaction was started earlier in the execution
chain). Based on this mechanism, a single invocation of
a method can be: a single transaction unit (a transaction
starts at the beginning of the invocation and ends at the
end of the invocation), a part of a transaction unit origi-
nated from other invocation, or non transactional (e.g. the
container can suspend a transaction prior to executing a
method, and resume the transaction afterwards).

Load balancing:

The scheme described so far assumes a single primary
that services all clients. To allow the scalability from
clustering while benefiting from mid-tier replication, our
scheme must be extendable to support load balancing for
processing client requests. Extending our scheme to al-
low load balancing of client requests across a cluster of
servers is straightforward. This is due to the nature of a
session within J2EE: a session describes a relationship
between a single client and a server, commonly denoted
by the creation, usage and then deletion of a stateful ses-
sion bean (instances of session beans are not shared by
clients). To support load balancing, a client is attached to
a session bean on a server. The choice of server is made
in the normal way by the load balancer. This server is the
primary, with all other servers acting as backups.

Jboss Implementation:

We use interceptors, management beans (MBeans), and
Java Management Extensions (JMX) technologies to
integrate our replication service into JBoss. This is the
standard approach used when adding services to JBoss:
interceptors intercept JBoss invocations while MBeans
and JMX combine to allow systems level deployment of
services that act upon intercepted invocations. This ap-
proach ensures that we do not disturb the functionality of
existing services. The interceptors and associated services
that implement our replication scheme.

Transaction failover management:
We assume container managed transaction demarcation.
Via this approach to managing transactions the applica-
tiondeveloper specifies the transaction demarcation for
each method via the transaction attribute in a bean de-
ployment descriptor.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 570

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[4] A. I. Kistijantoro, G. Morgan and S. K. Shrivastava,
“Transaction Manager Failover: A Case Study Using
JBOSS Application Server”, Proc. International Work-
shop on Reliability in Decentralized Distributed systems
(RDDS), pp. 1555 - 1564, Montpellier, France, October
2006
[5] K. Birman, “The process group approach to reliable
computing”, CACM , 36(12), pp. 37 - 53, December
1993.
[6] P. A. Bernstein, V. Hadzilacos and Nathan Goodman,
“Concurrency Control and Recovery in Database Sys-
tems”, Addison- Wesley, 1987.
[7] M. C. Little, D. McCue and S. K. Shrivastava, “Main-
taining information about persistent replicated objects
in a distributed system”, Proc Int. Conf. on Distributed
Computing Systems (ICDCS), pp. 491 - 498, Pittsburgh,
May 1993
[8] M.C. Little and S K Shrivastava, “Implementing high
availability CORBA applications with Java”, Proc. IEEE
Workshop on Internet Applications (WIAPP ‘99), pp. 112
- 119, San Jose, July 1999
[9] P. Felber, R. Guerraoui, and A. Schiper, “The imple-
mentation of a CORBA object group service”, Theory
and Practice of Object Systems, 4(2), pp. 93 - 105, April
1998
[10] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
“Consistent Object Replication in the Eternal System”,
Theory and Practice of Object Systems, 4(2), pp. 81 - 92
April 1998
[11] R. Baldoni, C. Marchetti, “Three-tier replication for
FT-CORBA infrastructures”, Software Practice & Experi-
ence, 33(18), pp. 767 - 797, May 2003
[12] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
“A Fault Tolerance Framework for CORBA”, Proc. of the
IEEE Int. Symp. on Fault-Tolerant Computing (FTCS),
pp. 150 - 157, Madison, USA, June 1999
[13] X. Zhang, M. Hiltunen, K. Marzullo, R. Schlicht-
ing, “Customizable Service State Durability for Service
Oriented Architectures”, In Proc. of the Sixth European
Dependable Computing Conf. (EDCC), pp. 119 - 128,
Coimbra, Portugal, October 2006.
[14] Salas, J., Perez-Sorrosal, F., Patiño-Martínez, M.,
and Jiménez- Peris, “WS-Replication: a Framework for
Highly Available Web Services”, In Proc. of the 15th Int.
Conf. on World Wide Web (WWW), pp. 357 - 366, Edin-
burgh, Scotland, May 2006
[15] B. Roehm., “WebSphere Application Server V6 Scal-
ability and Performance Handbook“, IBM Red Books,
ibm.com/redbooks

1) Single application server with no replication - To en-
able comparative analysis of the performance figures, an
initial experiment was carried out to determine the time
required to satisfy a client request issued to the applica-
tion server using a single resource manager without state
replication.

2) Single application server with state replication – Ex-
periment 1 was repeated, with replica resource managers
accessed by our resource adaptor proxy.

3) Clustered application server with no replication – Two
application servers constituted the application server clus-
ter with a single resource manager providing persistent
storage.

4) Clustered application server with state replication –
We repeated experiment 1 with replica resource managers
ccessed by resource adaptor proxies from each of the ap-
plication servers.

CONCLUSION:

In this paper, we have presented a new approach to im-
prove the management features in a J2EE AS: adopting a
component-based architecture for the middleware and for
the management system. We selected Fractal model to rep-
resent the services in the middleware which allows hav-
ing fine-grained management features. The same model is
used to represent the management entities at different lev-
els of abstractions thanks to the notion of domains. This
allows aggregating and isolating different management
policies. Thus, the management system and the managed
services are represented in a uniform way to the manager
which simplifies significantly the administrator tasks.

REFERENCES:

[1] S. Frolund and R. Guerraoui, “e-transactions: End-to-
end reliability for three-tier architectures”, IEEE rans-
actions on Software Engineering 28(4): 378 - 395, April
2002
[2] www.jboss.org[3] A. I. Kistijantoro, G. Morgan, S. K.
Shrivastava and M.C. Little, “Component Replication in
Distributed Systems: a Case study using Enterprise Java
Beans”, Proc. IEEE Symp. on Reliable Distrinbuted Sys-
tems (SRDS), pp. 89 - 98, Florence, October 2003,

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 571

