
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

INTRODUCTION:

ONE of the often cited benefits of cloud computing ser-
vice is the resource elasticity: a business customer can
scale up and down its resource usage as needed without
upfront capital investment or long term commitment. The
Amazon EC2 service [1], for example, allows users to
buy as many virtual machine (VM) instances as they want
and operate them much like physical hardware. However,
the users still need to decide how much resources are nec-
essary and for how long. We believe many Internet appli-
cations can benefit from an auto scaling property where
their resource usage can be scaled up and down automati-
cally by the cloud service provider. A user only needs to
upload the application onto a single server in the cloud,
and the cloud servicewill replicate the application onto
more or fewer servers as its demand comes and goes. The
users are charged only for what they actually use – the so-
called “pay as you go” model.

Figure 1 shows the typical architecture of data center
servers for Internet applications.

ABSTRACT:

Many Internet applications can benefit from an automatic
scaling property where their resource usage can be scaled
up and down automatically by the cloud service provider.
We present a system that provides automatic scaling for
Internet applications in the cloud environment. We encap-
sulate each application instance inside a virtual machine
(VM) and use virtualization technology to provide fault
isolation. We model it as the Class Constrained Bin Pack-
ing (CCBP) problem where each server is a bin and each
class represents an application. The class constraint re-
flects the practical limit on the number of applications a
server can run simultaneously.

We develop an efficient semi-online color set algorithm
that achieves good demand satisfaction ratio and saves
energy by reducing the number of servers used when the
load is low. Experiment results demonstrate that our sys-
tem can improve the throughput by 180% over an open
source implementation of Amazon EC2 and restore the
normal QoS five times as fast during flash crowds. Large
scale simulations demonstrate that our algorithm is ex-
tremely scalable: the decision time remains under 4 sec-
onds for a system with 10,000 servers and 10,000 appli-
cations. This is an order of magnitude improvement over
traditional application placement algorithms in enterprise
environments.

Index Terms:

cloud computing, virtualization, auto scaling, CCBP,
green computing.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 391

E.Sravani
M.Tech Student,

Department of CSE,
Sree Rama institute of Technology and Science,
Kuppenakuntla, Penuballi, Khammam,TS India.

B.R.M.Reddy
Assistant Professor,
Department of CSE,

Sree Rama institute of Technology and Science,
Kuppenakuntla, Penuballi, Khammam,TS India.

Random Scaling of Internet Applications for Cloud
Computing Services

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Proposed System:

In this paper, we present a system that provides automatic
scaling for Internet applications in the cloud environment.
Our contributions include the following:
• We summarize the automatic scaling problem in the
cloud environment, and model it as a modified Class Con-
strained Bin Packing (CCBP) problem where each server
is a bin and each class represents
an application. We develop an innovative auto scaling al-
gorithm to solve the problem and present a rigorous analy-
sis on the quality of it with provable bounds. Compared to
the existing Bin Packing solutions, we creatively support
item departure which can effectively avoid the frequent
placement changes 1 caused by repacking.
• We support green computing by adjusting the placement
of application instances adaptively and putting idle ma-
chines into the standby mode. Experiments and simula-
tions show that our algorithm is highly efficient and scal-
able which can achieve high demand satisfaction ratio,
low placement change
frequency, short request response time, and good energy
saving.

• We build a real cloud computing system which supports
our auto scaling algorithm. We compare the performance
of our system with an open source implementation of the
Amazon EC2 auto scaling system in a testbed of 30 Dell
PowerEdge blade servers. Experiments show that our sys-
tem can restore the normal QoS five times as fast when a
flash crowd happens.
• We use a fast restart technique based on virtual machine
(VM) suspend and resume that reduces the application
start up time dramatically for Internet
Services.

It consists of a load balancing switch, a set of applica-
tion servers, and a set of backend storage servers. The
front end switch is typically a Layer 7 switch [2] which
parses application level information in Web requests and
forwards them to the servers with the corresponding ap-
plications running.The switch sometimes runs in a redun-
dant pair for fault tolerance. Each application can run on
multiple server machines and the set of their running in-
stances are often managed by some clustering software
such as WebLogic [3]. Each server machine can host mul-
tiple applications. The applications store their state infor-
mation in the backend storage servers. It is important that
the applications themselves are stateless so that they can
be replicated safely. The storage servers may also become
overloaded, but the focus of this work is on the appli-
cation tier. The Google AppEngine service, for example,
requires that the applications be structured in such a two
tier architecture and uses the BigTable as its scalable stor-
age solution [4].

Existing System:

Even though the cloud computing model is sometimes
advocated as providing infinite capacity on demand, the
capacity of data centers in the real world is finite.The illu-
sion of infinite capacity in the cloud is provided through
statistical multiplexing. When a large number of appli-
cations experience their peak demand around the same
time, the available resources in the cloud can become
constrained and some of the demand may not be satisfied.
We define the demand satisfaction ratio as the percentage
of application demand that is satisfied successfully. The
amount of computing capacity available to an application
is limited by the placement of its running instances on the
servers. The more instances an application has and the
more powerful the underlying servers are, the higher the
potential capacity for satisfying the application demand.
On the other hand, when the demand of the applications
is low, it is important to conserve energy by reducing the
number of servers used.Various studies have found that
the cost of electricity is a major portion of the operation
cost of large data centers. At the same time, the average
server utilization in many Internet data centers is very
low: real world estimates range from 5% to 20% [5] [6].
Moreover, work [7] has found that the most effective way
to conserve energy is to turn the whole server off. The
application placement problem is essential to achieving a
high demand satisfaction ratio without wasting energy.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 392

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

– load distribution: for each application, we need to pre-
dict its future resource demands based on the request rate
and past statistics, and then decide how to allocate its
load among the set of running instances. The load of an
Internet application is largely driven by the rate of user
requests. We profile the application to estimate the aver-
age load incurred by each request. Then we analyze the
queues of pending requests in L7 switch to predict the
load on the servers.
• The decisions are forwarded to the LNM and the L7
switch for execution. The list of action items for each
node includes:
– standby or wake up instructions
– application starts and stops
– the allocation of local resource among the applications
The LNM at the node adjusts the local resource allocation
of the VMs encapsulating the applications.
Xen can change the CPU allocation among the VMs by
adjusting their weights in its CPU scheduler. Memory al-
location among the VMs can be adjusted using the bal-
looning technique. After that the Scheduler notifies the L7
switch of the new configuration including:
– the list of applications
– for each application, the location of its running instances
and the probability of request distribution among them
The L7 switch then starts processing Web requests ac-
cording to the new configuration.
The decision interval of the Scheduler depends on how
responsive we want to be to application demand change.
Frequent placement changes are disruptive to application
performance and should be avoided.

RELATED WORK:

The traditional bin packing problem has been extensive-
ly studied in the literature (see the survey in[19]). The
vector bin packing problem considers multidimensional
constraints when packing items into a minimum number
of bins [20]. One may think we can consider the CPU de-
mand and the memory requirement of an Internet applica-
tion as individual elements in thevector and use vector bin
packing to solve our problem. Unfortunately, the memory
requirement of Internet applications has to be satisfied as
a whole: a major portion of the memory is consumed any-
way even when the application receives little load. This is
especially true for Java applications whose memory usage
may depend on the past load due to garbage collection.
Hence, we cannot divide the memory requirement and
satisfy it in a piecemeal manner across the servers.

SYSTEM ARCHITECTURE:

The architecture of our system is shown in figure 2. We
encapsulate each application instance inside a virtual
machine (VM). The use of VMs is necessary to provide
isolation among untrusted users. Both Amazon EC2 and
Microsoft Azure use VMs in their cloud computing offer-
ing. Each server in the system runs the Xen hypervisor
which supports a privileged domain 0 and one or more
domain U [8]. Each domain U encapsulates an application
instance, which is connected to a shared network storage
(i.e., the storage tier). The multiplexing of VMs to PMs
(Physical Machines) is managed using the Usher frame-
work [9]. (We use the terms “server”, “PM”, and “node”
interchangeably in this paper.) The main logic of our sys-
tem is implemented as a set of plug-ins to Usher.

Each node runs a Usher local node manager (LNM) on
domain 0 which keeps track of the This article has been
accepted for publication in a future issue of this journal,
but has not been fully edited. Content may change prior to
final publication. set of applications running on that node
and the resource usage of each application. A L7 switch
is in charge of forwarding requests and responses. The
schedule procedure of our system can be described as fol-
lows:
• The LNM at each node and the L7 switch collect the ap-
plication placement, the resource usage of each instance,
and the total request number of each application peri-
odically. Then the information is forwarded to the Usher
central controller (Usher CTRL) where our “Application
Scheduler” runs.

• The Application Scheduler is invoked periodically to
make the following decisions:
– application placement: for each application, we need to
decide the set of servers its instances run on.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 393

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

It is not suitable for a cloud environment where applica-
tions come from untrusted users. Unlike ours, their deci-
sion algorithm has no concern on green computing and is
based on a set of heuristics with no provable bounds or
optimality. Our algorithm can scale to an order of mag-
nitude more servers than those in [28], [29] because the
complexity of our algorithm is much lower.Like our sys-
tem, the Google AppEngine service provides automatic
scaling for Web applications. The users are charged by
the CPU cycles consumed, not by the number of applica-
tion instances. Its internal algorithm used is not disclosed.
Our algorithm potentially can be used to implement such
a service.

The applications in AppEngine must run inside a sandbox
with severe restrictions on what they can do. At the time
of this writing, it supports mostly applications written in
Java and Python 5 or Google’s own Go programming lan-
guage.This makes it difficult to port legacy applications
onto their platform. In contrast, porting an existing appli-
cation onto our VM platform is much easier. Itgives the
users great flexibility in choosing their favorite program-
ming languages, operating systems, libraries,etc.. There
are also some cloud vendors providing autoscaling solu-
tions for cloud users (see the survey in [32]). Users are al-
lowed to define a set of rules to control the scaling actions.
However, the rules and the load balancing strategies they
used are very simple. Just like the Scalr in Amazon EC2
[17], they perform the scaling actions simply when some
conditions are met and balance the load evenly across all
instances. Since they do not take the state of the whole
system into consideration, they cannot reach a globally
optimal decision.

CONCLUSIONS:

We presented the design and implementation of a system
that can scale up and down the number of application in-
stances automatically based on demand.We developed a
color set algorithm to decide the application placement
and the load distribution. Our system achieves high sat-
isfaction ratio of application demand even when the load
is very high. It saves energy by reducing the number of
running instances when the load is low.There are several
directions for future work. Some cloud service providers
may provide multiple levels of services to their custom-
ers. When the resources become tight, they may want to
give their premium customers a higher demand satisfac-
tion ratio than other customers.

None of theexisting bin packing problems can be ap-
plied in our environment. The Class Constrained Multiple
Knapsack problem (CCMK) aims to maximize the total
number of packed items under the restriction that each
knapsack has a limited capacity and a bound on the num-
ber of different types of items it can hold [21], [22]. Un-
like CCBP, it does not attempt to minimize the number of
knapsacks used. Hence, unlike our algorithm, it does not
support green computing when the system load is low.A
number of approximation algorithms have been developed
for CCBP. Most of them are offline algorithms which do
not support item departure. The rest are strict online algo-
rithms which do not allow movements of already packed
items. In the case of item departure, thedeparted item is
removed but the rest of the items in the bins are not re-
packed. When a color set becomes unfilled due to applica-
tion leaves, those algorithms do not maintain the property
that there is at most one unfilled color set in the system.
This can degrade the performance severely because each
color set is packed independently. It has been shown that
the existing color set algorithms perform poorly in the
face of frequent item departure [13]. They cannot be ap-
plied in a cloud computing environment where the appli-
cation demands change dynamically.

Resource provisioning for Web server farms has been
investigated in [23], [24], [25], [26]. Some allocate re-
sourcesin the granularity of whole servers which can lead
to inefficient resource usage. Some do not consider the
practical limit on the number of applications a server can
run simultaneously [25]. Bhuvan et al. support shared
hosting, but manage each application instance indepen-
dently [23]. They do not provide the auto-scaling property.
Mohit et al. group applications into service classes which
are then mapped onto server clusters [24]. However, they
do not attempt to minimize the placement changes when
application demands vary and is mostlyfor offline use.
Zhang et al. organize a set of shared clusters into a net-
work and study resource allocation across shared clusters
[26], which is not the focus of this paper.Process migra-
tion has been studied in various contexts, e.g., [27]. Un-
like virtualization technology, it does not capture the ex-
ecution environment of the running processes. Nor does
it support the auto scaling of the processes based on the
observed demand. Application placement in enterprise
environments has been studied in [28], [29], [30], [31].
They run multiple applications on the same set of servers
directly without using VMs or Sandbox. Their approach
is suitable when the applications are trustworthy (e.g., en-
terprise applications).

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 394

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[11] “RUBiS, http://rubis.ow2.org/.”
[12] “Linux Documentation, http://www.kernel.org/doc/
documentation/power/states.txt.”
[13] H. Shachnai and T. Tamir, “Tight bounds for online
classconstrainedpacking,” Theor. Comput. Sci., vol. 321,
no. 1, pp. 103–123, 2004.
[14] L. Epstein, C. Imreh, and A. Levin, “Class con-
strained bin packingrevisited,” Theor. Comput. Sci., vol.
411, no. 34-36, pp. 3073–3089,2010.
[15] E. C. Xavier and F. K. Miyazawa, “The class con-
strained binpacking problem with applications to video-
on-demand,” Theor.Comput. Sci., vol. 393, no. 1-3, pp.
240–259, 2008.
[16] M. R. Garey and D. S. Johnson, “A 71/60 theorem
for binpacking,” Journal of Complexity, vol. 1, 1985.
[17] “Scalr: the auto scaling open source Amazon EC2
effort,https://www.scalr.net/.”
[18] D. Magenheimer, “Transcendent memory: A new ap-
proach tomanaging RAM in a virtualized environment,”
in Linux Symposium,2009.
[19] G. Galambos and G. J. Woeginger, “On-line bin
packing-a restrictedsurvey,” Physica Verlag, vol. 42, no.
1, 1995.
[20] C. Chekuri and S. Khanna, “On multidimensional
packing problems,”SIAM J. Comput. Issue 4, vol. 33,
2004.
[21] H. Shachnai and T. Tamir, “Noah’s bagels-some
combinatorial aspects,” in Proc. 1st Int. Conf. on Fun with
Algorithms, 1998.
[22] ——, “On two class-constrained versions of the mul-
tiple knapsackproblem,” Algorithmica, vol. 29, no. 3, pp.
442–467, 2001.
[23] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource
overbookingand application profiling in shared hosting
platforms,” SIGOPSOper. Syst. Rev., vol. 36, no. SI, pp.
239–254, 2002.
[24] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster
reserves: amechanism for resource management in clus-
ter-based networkservers,” SIGMETRICS Perform. Eval.
Rev., vol. 28, no. 1, pp. 90–101, 2000.
[25] J. L. Wolf and P. S. Yu, “On balancing the load in a
clustered webfarm,” ACM Trans. Internet Technol., vol.
1, no. 2, pp. 231–261, 2001.
[26] C. Zhang, V. Lesser, and P. Shenoy, “A Multi-Agent
LearningApproach to Online Distributed Resource Allo-
cation,” in Proc. ofthe International Joint Conference on
Artificial Intelligence (IJCAI’09),2009.
[27] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The
design andimplementation of zap:

In the future, we plan to extend our system to support
differentiated services but also consider fairness when al-
locating the resources across the applications. We men-
tionedin the paper that we can divide multiple generations
of hardware in a data center into “equivalence classes”
and run our algorithm within each class. Our future work
is to develop an efficient algorithm to distribute incoming
requests among the set of equivalence classes and to bal-
ance the load across those server clusters adaptively. As
analyzed in the paper, CCBP works well when the aggre-
gate load of applications in a color set is high. Another di-
rection for future work is to extend the algorithm to pack
applications with complementary bottleneck resources to-
gether, e.g., to co-locate a CPU intensive application with
a memory intensive one so that different dimensions of
server resources can be adequately utilized.

REFERENCES:

[1] “Amazon elastic compute cloud (Amazon EC2), http://
aws.amazon.com/ec2/.”
[2] A. Cohen, S. Rangarajan, and H. Slye, “On the perfor-
mance of tcpsplicing for url-aware redirection,” in Proc.
of the 2nd conference onUSENIX Symposium on Internet
Technologies and Systems, 1999.
[3] “WebLogic, http://www.oracle.com/appserver/we-
blogic/weblogicsuite.html.”[4] “Google App Engine,
http://code.google.com/appengine/.”
[5] M. Armbrust et al., “Above the clouds: A berkeley
view ofcloud computing,” EECS Department, University
of California,Berkeley, Tech. Rep. UCB/EECS-2009-28,
Feb 2009.
[6] L. Siegele, “Let it rise: A special report on corporate
IT,” in TheEconomist, Oct. 2008.
[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
andR. P. Doyle, “Managing energy and server resources
in hostingcenters,” in Proc. of the ACM Symposium on
Operating SystemPrinciples (SOSP’01), Oct. 2001.
[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho,R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the artof virtualization,” in Proc. of the ACM Symposium
on OperatingSystems Principles (SOSP’03), Oct. 2003.
[9] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker,
“Usher: Anextensible framework for managing clusters of
virtual machines,”in Proc. of the Large Installation Sys-
tem Administration Conference(LISA’07), Nov. 2007.
[10] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the
performanceof virtual machine synchronization for fault
tolerance,” IEEETransactions on Computers, Dec. 2011.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 395

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

It is not suitable for a cloud environment where applica-
tions come from untrusted users. Unlike ours, their deci-
sion algorithm has no concern on green computing and is
based on a set of heuristics with no provable bounds or
optimality. Our algorithm can scale to an order of mag-
nitude more servers than those in [28], [29] because the
complexity of our algorithm is much lower.Like our sys-
tem, the Google AppEngine service provides automatic
scaling for Web applications. The users are charged by
the CPU cycles consumed, not by the number of applica-
tion instances. Its internal algorithm used is not disclosed.
Our algorithm potentially can be used to implement such
a service.

The applications in AppEngine must run inside a sandbox
with severe restrictions on what they can do. At the time
of this writing, it supports mostly applications written in
Java and Python 5 or Google’s own Go programming lan-
guage.This makes it difficult to port legacy applications
onto their platform. In contrast, porting an existing appli-
cation onto our VM platform is much easier. Itgives the
users great flexibility in choosing their favorite program-
ming languages, operating systems, libraries,etc.. There
are also some cloud vendors providing autoscaling solu-
tions for cloud users (see the survey in [32]). Users are al-
lowed to define a set of rules to control the scaling actions.
However, the rules and the load balancing strategies they
used are very simple. Just like the Scalr in Amazon EC2
[17], they perform the scaling actions simply when some
conditions are met and balance the load evenly across all
instances. Since they do not take the state of the whole
system into consideration, they cannot reach a globally
optimal decision.

CONCLUSIONS:

We presented the design and implementation of a system
that can scale up and down the number of application in-
stances automatically based on demand.We developed a
color set algorithm to decide the application placement
and the load distribution. Our system achieves high sat-
isfaction ratio of application demand even when the load
is very high. It saves energy by reducing the number of
running instances when the load is low.There are several
directions for future work. Some cloud service providers
may provide multiple levels of services to their custom-
ers. When the resources become tight, they may want to
give their premium customers a higher demand satisfac-
tion ratio than other customers.

None of theexisting bin packing problems can be ap-
plied in our environment. The Class Constrained Multiple
Knapsack problem (CCMK) aims to maximize the total
number of packed items under the restriction that each
knapsack has a limited capacity and a bound on the num-
ber of different types of items it can hold [21], [22]. Un-
like CCBP, it does not attempt to minimize the number of
knapsacks used. Hence, unlike our algorithm, it does not
support green computing when the system load is low.A
number of approximation algorithms have been developed
for CCBP. Most of them are offline algorithms which do
not support item departure. The rest are strict online algo-
rithms which do not allow movements of already packed
items. In the case of item departure, thedeparted item is
removed but the rest of the items in the bins are not re-
packed. When a color set becomes unfilled due to applica-
tion leaves, those algorithms do not maintain the property
that there is at most one unfilled color set in the system.
This can degrade the performance severely because each
color set is packed independently. It has been shown that
the existing color set algorithms perform poorly in the
face of frequent item departure [13]. They cannot be ap-
plied in a cloud computing environment where the appli-
cation demands change dynamically.

Resource provisioning for Web server farms has been
investigated in [23], [24], [25], [26]. Some allocate re-
sourcesin the granularity of whole servers which can lead
to inefficient resource usage. Some do not consider the
practical limit on the number of applications a server can
run simultaneously [25]. Bhuvan et al. support shared
hosting, but manage each application instance indepen-
dently [23]. They do not provide the auto-scaling property.
Mohit et al. group applications into service classes which
are then mapped onto server clusters [24]. However, they
do not attempt to minimize the placement changes when
application demands vary and is mostlyfor offline use.
Zhang et al. organize a set of shared clusters into a net-
work and study resource allocation across shared clusters
[26], which is not the focus of this paper.Process migra-
tion has been studied in various contexts, e.g., [27]. Un-
like virtualization technology, it does not capture the ex-
ecution environment of the running processes. Nor does
it support the auto scaling of the processes based on the
observed demand. Application placement in enterprise
environments has been studied in [28], [29], [30], [31].
They run multiple applications on the same set of servers
directly without using VMs or Sandbox. Their approach
is suitable when the applications are trustworthy (e.g., en-
terprise applications).

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 394

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[11] “RUBiS, http://rubis.ow2.org/.”
[12] “Linux Documentation, http://www.kernel.org/doc/
documentation/power/states.txt.”
[13] H. Shachnai and T. Tamir, “Tight bounds for online
classconstrainedpacking,” Theor. Comput. Sci., vol. 321,
no. 1, pp. 103–123, 2004.
[14] L. Epstein, C. Imreh, and A. Levin, “Class con-
strained bin packingrevisited,” Theor. Comput. Sci., vol.
411, no. 34-36, pp. 3073–3089,2010.
[15] E. C. Xavier and F. K. Miyazawa, “The class con-
strained binpacking problem with applications to video-
on-demand,” Theor.Comput. Sci., vol. 393, no. 1-3, pp.
240–259, 2008.
[16] M. R. Garey and D. S. Johnson, “A 71/60 theorem
for binpacking,” Journal of Complexity, vol. 1, 1985.
[17] “Scalr: the auto scaling open source Amazon EC2
effort,https://www.scalr.net/.”
[18] D. Magenheimer, “Transcendent memory: A new ap-
proach tomanaging RAM in a virtualized environment,”
in Linux Symposium,2009.
[19] G. Galambos and G. J. Woeginger, “On-line bin
packing-a restrictedsurvey,” Physica Verlag, vol. 42, no.
1, 1995.
[20] C. Chekuri and S. Khanna, “On multidimensional
packing problems,”SIAM J. Comput. Issue 4, vol. 33,
2004.
[21] H. Shachnai and T. Tamir, “Noah’s bagels-some
combinatorial aspects,” in Proc. 1st Int. Conf. on Fun with
Algorithms, 1998.
[22] ——, “On two class-constrained versions of the mul-
tiple knapsackproblem,” Algorithmica, vol. 29, no. 3, pp.
442–467, 2001.
[23] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource
overbookingand application profiling in shared hosting
platforms,” SIGOPSOper. Syst. Rev., vol. 36, no. SI, pp.
239–254, 2002.
[24] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster
reserves: amechanism for resource management in clus-
ter-based networkservers,” SIGMETRICS Perform. Eval.
Rev., vol. 28, no. 1, pp. 90–101, 2000.
[25] J. L. Wolf and P. S. Yu, “On balancing the load in a
clustered webfarm,” ACM Trans. Internet Technol., vol.
1, no. 2, pp. 231–261, 2001.
[26] C. Zhang, V. Lesser, and P. Shenoy, “A Multi-Agent
LearningApproach to Online Distributed Resource Allo-
cation,” in Proc. ofthe International Joint Conference on
Artificial Intelligence (IJCAI’09),2009.
[27] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The
design andimplementation of zap:

In the future, we plan to extend our system to support
differentiated services but also consider fairness when al-
locating the resources across the applications. We men-
tionedin the paper that we can divide multiple generations
of hardware in a data center into “equivalence classes”
and run our algorithm within each class. Our future work
is to develop an efficient algorithm to distribute incoming
requests among the set of equivalence classes and to bal-
ance the load across those server clusters adaptively. As
analyzed in the paper, CCBP works well when the aggre-
gate load of applications in a color set is high. Another di-
rection for future work is to extend the algorithm to pack
applications with complementary bottleneck resources to-
gether, e.g., to co-locate a CPU intensive application with
a memory intensive one so that different dimensions of
server resources can be adequately utilized.

REFERENCES:

[1] “Amazon elastic compute cloud (Amazon EC2), http://
aws.amazon.com/ec2/.”
[2] A. Cohen, S. Rangarajan, and H. Slye, “On the perfor-
mance of tcpsplicing for url-aware redirection,” in Proc.
of the 2nd conference onUSENIX Symposium on Internet
Technologies and Systems, 1999.
[3] “WebLogic, http://www.oracle.com/appserver/we-
blogic/weblogicsuite.html.”[4] “Google App Engine,
http://code.google.com/appengine/.”
[5] M. Armbrust et al., “Above the clouds: A berkeley
view ofcloud computing,” EECS Department, University
of California,Berkeley, Tech. Rep. UCB/EECS-2009-28,
Feb 2009.
[6] L. Siegele, “Let it rise: A special report on corporate
IT,” in TheEconomist, Oct. 2008.
[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
andR. P. Doyle, “Managing energy and server resources
in hostingcenters,” in Proc. of the ACM Symposium on
Operating SystemPrinciples (SOSP’01), Oct. 2001.
[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho,R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the artof virtualization,” in Proc. of the ACM Symposium
on OperatingSystems Principles (SOSP’03), Oct. 2003.
[9] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker,
“Usher: Anextensible framework for managing clusters of
virtual machines,”in Proc. of the Large Installation Sys-
tem Administration Conference(LISA’07), Nov. 2007.
[10] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the
performanceof virtual machine synchronization for fault
tolerance,” IEEETransactions on Computers, Dec. 2011.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 395

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Author’s:

E.Sravani is a student of Sree Rama Institute of Tech-
nology & Science, Kuppenakuntla,Penuballi, Khammam,
TS,India.Presently she is Pursuing her M.Tech (CSE)
from this collegeHer area of interests includes Informa-
tion Security, Cloud Computing, Data Communication &
Networks.

Mr. B.R.M.Redy is an efficient teacher, received
M.Tech from JNTU Hyderabad is working as an Assistant
Professor in Department of C.S.E, Sree Rama Institute
of Technology & Science, Kuppenakuntla, Penuballi,
Khammam, AP,India. He has published many papers in
both National & International Journals. His area of Inter-
est includes Data Communications & Networks, Informa-
tion security, Database Management Systems, Computer
rganization, C Programming and other advances in Com-
puter Applications

a system for migrating computing environments,”SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, pp. 361–376,
2002.
[28] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.
Steinder,M. Sviridenko, and A. Tantawi, “Dynamic place-
ment for clusteredweb applications,” in Proc. of the Inter-
national World Wide WebConference (WWW’06), May
2006.
[29] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici,
“A scalableapplication placement controller for enterprise
data centers,” inProc. of the International World Wide
Web Conference (WWW’07),May 2007.
[30] C. Adam and R. Stadler, “Service middleware for
self-managinglarge-scale systems,” IEEE Transactions
on Network and ServiceManagement, vol. 4, no. 3, pp.
50–64, 2007.
[31] J. Famaey, W. D. Cock, T. Wauters, F. D. Turck, B.
Dhoedt, andP. Demeester, “A latency-aware algorithm
for dynamic serviceplacement in large-scale overlays,”
in Proc. of the IFIP/IEEE internationalconference on
Symposium on Integrated Network Management(IM’09),
2009.
[32] E. Caron, L. Rodero-Merino, F. Desprez, and A.
Muresan, “Autoscaling,load balancing and monitoring in
commercial and opensourceclouds,” INRIA, Rapport de
recherche RR-7857, Feb. 2012.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 396

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 397

