Abstract:

High speed data transmission is the current scenario in networking environment. Cyclic redundancy check (CRC) is essential method for detecting error when the data is transmitted. With challenging the speed of transmitting data, to synchronize with speed, it’s necessary to increase speed of CRC generation. Starting from the serial architecture identified a recursive formula from which parallel design is derived. This paper presents 64 bits parallel CRC architecture based on F matrix with order of generator polynomial is 32. Proposed design is hardware efficient and required 50% less cycles to generate CRC with same order of generator polynomial. The whole design is functionally verified using Xilinx ISE Simulator.

Keywords:
Cyclic Redundancy Check, Parallel CRC Calculation, Linear Feedback Shift Register, LFSR, F matrix.

I. INTRODUCTION:

Cyclic redundancy check is commonly used in data communication and other fields such as data storage, data compression, as a vital method for dealing with data errors [6]. Usually, the hardware implementation of CRC computations is based on the linear feedback shift registers (LFSRs), which handle the data in a serial way. Though, the serial calculation of the CRC codes cannot achieve a high throughput. In contrast, parallel CRC calculation can significantly increase the throughput of CRC computations. For example, the throughput of the 32-bit parallel calculation of CRC-32 can achieve several gigabits per second [1]. However, that is still not enough for high speed application such as Ethernet networks. A possible solution is to process more bits in parallel; Variants of CRCs are used in applications like CRC-16 BISYNC protocols, CRC32 in Ethernet frame for error detection, CRC8 in ATM, CRC-CCITT in X-25 protocol, disc storage, SDLC, and XMODEM.

II. SERIAL CRC:

Traditional method for generating serial CRC is based on linear feedback shift registers (LFSR). The main operation of LFSR for CRC calculations is nothing more than the binary divisions. Binary divisions generally can be performed by a sequence of shifts and subtractions. In modulo 2 arithmetic the addition and subtraction are equivalent to bitwise XORs (denoted by “⊕” in this paper) and multiplication is equivalent to AND (denoted by “⊗” in this paper). Figure 1 illustrates the basic architecture of LFSRs for serial CRC calculation.

Fig1. Basic LFSR Architecture
As shown in fig.1 d is serial data input, X is present state (generated CRC), X’ is next state and p is generator polynomial. Working of basic LFSR architecture is expressed in terms of following equations.

\[X_0 = (P_0 \otimes X_{n-1}) \oplus d \]
\[X_1 = (P_0 \otimes X_{n-1}) \oplus X_{n-1} \]

The generator polynomial for CRC-32 is as follows

\[G(x) = x^{32} + x^{28} + x^{24} + x^{20} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 \]

We can extract the coefficients of \(G(x) \) and represent it in binary form as

\[p = \{p_{32}, p_{31}, \ldots, p_0\} \]
\[p = \{100000100110000010001110110111\} \]

Frame Check sequence (FCS) will be generated after \((k+m)\) cycle, where \(k\) indicates number of data bit and \(m\) indicates the order of generator polynomial. For 32 bits serial CRC if order of generator polynomial is 32 then serial CRC will be generated after 64 cycles. Frame Check sequence (FCS) will be generated after \((k+m)\) cycle, where \(k\) indicates number of data bit and \(m\) indicates the order of generator polynomial. For 32 bits serial CRC if order of generator polynomial is 32 then serial CRC will be generated after 64 cycles.

III. PARALLEL CRC:

There are different techniques for parallel CRC generation given as follow.

1. A Table-Based Algorithm for Pipelined CRC Calculation.
2. Fast CRC Update
3. F matrix based parallel CRC generation.
4. Unfolding, Retiming and pipelining Algorithm

LUT base architecture provides lower memory LUT and by the high pipelining Table base architecture has input, LUT3, LUT2, and LUT1. LUT3 contains CRC values for the input followed by 12 bytes of zeros, LUT2 8 bytes, and LUT4 4 bytes. Basically this algorithm it can be obtain higher throughput. The main problem it with pre-calculating CRC and store it in LUT so, every time required to change LUT when changing the polynomial. Pipelining algorithm used to reducing critical path by adding the delay element.

Parallel processing used to increasing the throughput by producing the no. of output same time. Retiming used to increasing clock rate of circuit by reducing the computation time of critical path. In fast CRC update technique not required to calculate CRC each time for all the data bits, instead of that calculating CRC for only those bits that are change. There are different approaches to generate the parallel CRC having advantages and disadvantages for each technique. Table based architecture required pre-calculated LUT, so, it will not used for generalized CRC, fast CRC update technique required buffer to store the old CRC and data. In unfolding architecture increases the no. of iteration bound. The F matrix based architecture more simple and low complex. Below algorithm and its’ implementation is given.

![Fast CRC update architecture](image)

A. Algorithm for F matrix based architecture:

Algorithm and Parallel architecture for CRC generation based on F matrix is discussed in this section. As shown in fig. 2 it is basic algorithm for F matrix based parallel CRC generation
Here \(w = m = 4 \), for that \(F_w \) matrix calculated as follow.

C. Parallel architecture:

Parallel architecture based on \(F \) matrix illustrated in fig. 2. As shown in fig. 2, \(d \) is data that is parallel processed (i.e., 32 bits), \(X' \) is next state, \(X \) is current state (generated CRC), \(F(i)(j) \) is the \(i \)th row and \(j \)th column of \(F_w \) matrix. If \(X = [x_m-1 \ldots x_1 x_0]^T \) is utilized to denote the state of the shift registers, in linear system theory, the state equation for LFSRs can be expressed in modular 2 arithmetic as follow.

\[
X' = (P_3 \otimes X_{m-3}) \oplus X_{m-1} \tag{5}
\]

Where, \(X(i) \) represents the \(i \)th state of the registers, \(X(i + 1) \) denotes the \((i + 1) \)th state of the registers, \(d \) denotes the one bit shift-in serial input. \(F \) is an \(m \times m \) matrix and \(G \) is a \(1 \times m \) matrix.

\[
G = [0 \ 0 \ldots \ldots \ 0 \ 1]^T \tag{6}
\]

Furthermore, if \(F \) and \(G \) are substituted by Equations (4) and (5), we can rewrite equation (4) in the matrix form as:

\[
\begin{bmatrix}
X'_n \\
X'_{n-1} \\
X'_{n-2} \\
X'_{n-3} \\
X'_0
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0
\end{bmatrix}_{m \times m}
\begin{bmatrix}
X_{m-1} \\
X_{m-2} \\
X_{m-3} \\
X_0
\end{bmatrix}_{m \times 1} \oplus
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 1
\end{bmatrix}_{m \times m}
\begin{bmatrix}
d_n \\
d_{n-1} \\
d_{n-2} \\
d_{n-3} \\
\vdots \\
d_0
\end{bmatrix}_{m \times 1} \tag{7}
\]

Finally, equation (6) can be written in matrix form as

\[
X' = F^w \otimes X \oplus d \tag{8}
\]

Equation (7) is illustrated in fig. 2. If \(w \) bits are parallel processed, then CRC will be generated after \((k + m)/w \) cycle. Equation (8) can be expanded for CRC4 given below.

\[
\begin{align*}
X_3' &= X_3 \otimes X_2 \oplus X_0 \oplus d_3 \\
X_2' &= X_2 \otimes X_1 \oplus d_2 \\
X_1' &= X_1 \otimes X_0 \oplus d_1 \\
X_0' &= X_0 \oplus d_0
\end{align*} \tag{9}
\]

Fig. 5 demonstrates an example of parallel CRC calculation with multiple input bits \(w = m = 4 \). The dividend is divided into three 4-bit fields, acting as the parallel input vectors \(D(0), D(1), D(2) \), respectively. The initial state is \(X(0) = [0 \ 0 \ 0 \ 0]^T \).

From Equation (8), we have,

\[
\begin{align*}
X(4) &= F_4 \otimes X(0) \oplus D(0) \\
X(8) &= F_4 \otimes X(4) \oplus D(1) \\
X(12) &= F_4 \otimes X(8) \oplus D(2)
\end{align*} \tag{10}
\]
Here \(w = m = 4 \), for that \(F_w \) matrix calculated as follow.

1} and \(w \) bits are parallel processed.

For example, the generator polynomial for CRC4 is \{1, 0, 0, 1, 0\}, where \{\(p_0 \ldots p_{m-1} \}\} is generator polynomial. For example, \(p_0 \ldots p_{m-1} \) are the parallel input bits.

The final result generated after \((k + m)/w \) cycle.

The result of that will xoring with present state of CRC check.

Parallel data input and each element of \(F \) matrix, which is a function of \(F \) and \(G \) matrixes.

Fig: 4 Algorithms for \(F \)-matrix based Architecture

Fig: 5 Parallel Calculation CRC 32 for 32 bit

Property of the \(F_w \) matrix and the previously mentioned fact that Equation (8) can be regarded as a recursive calculation of the next state \(X' \) by matrix \(F_w \), current state \(X \) and parallel input \(D \), make the 32-bit parallel input vector suitable for any length of messages besides the multiple of 32 bits. Remember that the length of the message is byte based. If the length of message is not the multiple of 32, after a sequence of 32-bit parallel calculation, the final remaining number of bits of the message could be 8, 16, or 24.

For all these situations, an additional parallel calculation \(w = 8, 16, 24 \) is needed by choosing the corresponding \(F \) w. Since \(F_w \) can be easily derived from \(F_{32} \), the calculation can be performed using Equation (8) within the same circuit as 32-bit parallel calculation, the only difference is the \(F_w \) matrix. If the length of the message is not the multiple of the number of parallel processing bits \(w = 4 \) i.e. data bit is 1 1 0 1 1 1 0 1 0 1 1. Then last two more bits \(D \). (3) need to be calculated after getting \(X \) (12).

Therefore, \(F_2 \) must be obtained from matrix \(F_4 \), and the extra two bits are stored at the lower significant bits of the input vector \(D \). Equation (8) can then be applied to calculate the final state \(X' \) (14), which is the CRC code. Therefore, only an extra cycle is needed for calculating the extra bits if the data message length is not the multiple of \(w \), the number of parallel processing bits.

It is worth to notice that in CRC-32 algorithm, the initial state of the shift registers is preset to all ‘1’s. Therefore, \(X(0) = 0xFFFF \). However, the initial state \(X(0) \) does not affect the correctness of the design. In order for better understanding, the initial state \(X(0) \) is still set to 0x0000 when the circuit is implemented.

IV. PROPOSED PARALLEL ARCHITECTURE:

In proposed architecture \(w = 64 \) bits are parallel processed and order of generator polynomial is \(m = 32 \) as shown in Fig. 3. As discussed in section 3, if 32 bits are processed parallel then CRC-32 will be generated after \((k + m)/w \) cycles. If we increase number of bits to be processed parallel, number of cycles required to calculate CRC can be reduced. Proposed architecture can be realized by below equation.

\[
X_{\text{temp}} = F_w \otimes D(0 \text{to} 31) \oplus D(32 \text{to} 63)
\]

\[
X' = F_w \otimes X' \oplus X_{\text{temp}}
\]

Where,

- \(D(0 \text{ to } 31) \) = first 32 bits of parallel data input
- \(D(0 \text{ to } 63) \) = next 32 bits of parallel data input
- \(X' \) = next state
- \(X \) = present state

Fig: 6 Block diagram of 64-bit parallel calculation of CRC-32.

In proposed architecture \(d_i \) is the parallel input and \(F(i) \) \((j) \) is the element of \(F_{32} \) matrix located at \(i \)th row and \(j \)th column. As shown in figure 3 input data bits \(d_0 \ldots d_31 \) anded with each row of \(F_w \) matrix and result will be xored individually with \(d_{32}, d_{33} \ldots \ldots \ldots d_{63} \). Then each xored result is then xored with the \(X' \) (i) term of CRC32. Finally \(X \) will bethe CRC generated after \((k + m)/w \) cycle, where \(w=64 \).

V. RESULT AND ANALYSIS:

The proposed architecture is synthesized in Xilinx-10.1 and simulated in Xilinx ISE Simulator, which required half cycle then the previous 32bit design[1][5]. In our programming in Verilog by specifying only generator polynomial, it directly gives \(F \) matrix useful for parallel CRC generation that is not available in previous methods.
In proposed architecture di is the parallel input and F(i)(j) is the element of F32 matrix located at ith row and jth column. As shown in figure 3 input data bits d0….d31 anded with each row of FW matrix and result will be xored The proposed CRC-32 architecture with 64bit parallel bit simulated in Xilinx 9.2i ISE simulator. Input data bit to system is FFFFFFFFFFFFFFF (64 bit).

VI. CONCLUSION:

32bit parallel architecture required 17 ((k + m)/w) clock cycles for 64 byte data [1][5]. Proposed design (64bit) required only 9 cycles to generate CRC with same order of generator polynomial. So, it drastically reduces computation time to 50% and same time increases the throughput. Pre calculation of F matrix is not required in proposed architecture. Hence, this is compact and easy method for fast CRC generation.

REFERENCES:

