

 Page 1468

Implementation of Novel High Radix Multiplier Using KOGGE

Stone Adder

P. Naresh

M.Tech (VLSI-SD)

Department of ECE

Teegala Krishna Reddy

Engineering College, (Meerpet),

Hyderabad.

Ms. B. Ramya

Assistant professor

Department of ECE

Teegala Krishna Reddy

Engineering College, (Meerpet),

Hyderabad.

Dr.P.Ram Mohan Rao

FIE,CE(I), MISTE, MISH,

MISCEE, MASCE(I), MISNT

Principal,

TKREC, (Meerpet),

Hyderabad.

ABSTARCT

Higher radix values of the form _ = 2r havebeen

employed traditionally for recoding of multipliers,

andfor determining quotient- and root-digits in

iterative division and square root algorithms, usually

only for quite moderatevalues of r, like 2 or 3. For

fast additions, in particularfor the accumulation of

many terms, generally redundantrepresentations are

employed, most often binary carry-saveor borrow-

save, but in a number of publications it has

beensuggested to recode the addends into a higher

radix. It is shownthat there are no speed advantages

in doing so if the radix isa power of 2, on the

contrary, there are significant savings inusing

standard 4-to-2 adders, even saving half of the

operations in multi-operand addition.

Keywords: asymmetric high-radix signed-digit

number, computer arithmetic, numbersystem

conversion, redundant number system, signed-digit

numbers, VLSI design.

INTRODUCTION

Addition is the most important and frequently used

arithmetic operation in computer systems. Generally,

two methods can be used to speed up the addition

operation. One is to explicitly shorten the carry-

propagation chain by using circuit design techniques,

such as detecting the completion of the carry chain as

soon as possible, carry look-ahead, etc. [1-3]. Another

is to convert the operands from the binary number

system to a redundant number system, e.g., the signed-

digit number system or the residue number system, so

that the addition become carry-free (CF) [2-5]. This

implicitly eliminates the carry-propagation chain so

that fast addition can be done, at the expense of

conversion between the binary number system and the

redundant number system. In this paper we focus on

exploring signed-digit (SD) numbers.

tems are defined for any radix r ≥ 3 and for the digit

set {− α, …, − 1, 0, 1, …, α}, whereis an integer such

that r/2 <α<r. In an OSD number system, the

redundancy indexρ, defined as ρ = 2α − r + 1, ranges

from the minimal redundancy r/2 + 1 to the maximal

redundancy r − 1. The most important contribution of

OSD is to explore the possibility of performing carry-

free addition and borrow-free subtraction for fast

parallel arithmetic, if enough redundancy is used. The

OSD number system was later extended to the gener-

alized signed-digit (GSD) number system [6-9]. The

GSD number system for radix r > 1has the digit set {−

α, …, − 1, 0, 1, …, β}, where α ≥ 0 and β ≥ 0. The

redundancy is ρ = + β + 1 − r. So far, the most

important contribution of the works on GSD [6-9]

include unifying the redundant number representation

and sorting the CF addition schemes for the GSD

number system according to the radix r and

redundancy index ρ. However, ideal single-stage CF

addition has not been achieved, though two-stage CF

addition has been shown to be doable for any GSD

system with r> 2 and ρ> 2, or with r> 2 and ρ = 2

provided that α ≠ 1 and β ≠ 1. For any GSD system

with r = 2 and ρ = 1, or ρ = 2 and orβ equals 1, the

limited-carry addition must be used.

There are many applications for the SD number

representations, most notably in computer and digital

signal processing systems. Specifically, the CF adder

 Page 1469

has been in-vestigated based on the redundant positive-

digit numbers [10] and the symmetrical radix-4 SD

numbers [11, 12] for high-speed area-efficient

multipliers. The symmetrical radix-2 SD number

representation has been used in the implementation of

a RSA crypto-graphic chips [13], high-speed VLSI

multipliers [14, 15], FIR filters [16], IIR filters [17],

dividers [18], etc. Though arithmetic operations using

these number representations can be done carry free,

they have common difficulty in conversion to and

from the binary number representation. Hence, in the

past, many researchers have proposed specific ar-

chitectures for number system conversion [15, 17, 19-

22].

In this paper, we present the asymmetric high-radix

signed-digit (AHSD) number system. The idea of

AHSD is not new. A particular AHSD number system

was called the radix-r stored-borrow (SB) number

system in [7]. Most earlier works have focused on

binary stored-borrow (BSB) number systems, where r

= 2 [6, 14, 23-25]. Instead of pro-posing a new number

representation, our purpose is to explore the inherent

CF property of AHSD. The CF addition in AHSD is

the basis for our high-speed addition circuits. The

conversion of AHSD to and from binary will be

discussed in detail. By choosing r = 2m, where m is any

positive integer, a binary number can be converted to

its canonical AHSD representation in constant time.

We will also present two simple algorithms for

converting AHSD numbers to binary: the first stresses

high speed and the other provides hardware

reusability. Since the conversion from AHSD to binary

has been considered the bottleneck of AHSD-based

arithmetic computation, these algorithms greatly

improve the performance of AHSD systems. For

illustration, we will discuss in detail the example on

AHSD(4), i.e., the radix-4 AHSD number system. The

proposed approach is practical thanks to the simple

conversion.

MULTI-OPERAND ADDITION

When adding a multiple of operands, say k of n digits,

the fastest possible way to do it is to add them in a

binary tree,each addition performed using a redundant

representation ofthe intermediate sums, to allow

constant time addition at thenodes of the tree, with

bounded carry-propagation between positions, i.e,

without any “ripple-effect”. We will hereconcentrate

on adding a pair of digits from two operands,where it

alternatively is possible to accumulate several digitsof

the same weight in some redundant representation,

anddigits) back into the wanted digit set, as suggested

in [KS05]for decimal multi-operand addition.We are

assuming that the initial operands are in somenon-

redundant representation, at most needing some

constanttime conversion or recoding of the non-

redundantrepresentation. The leaves of the tree must

be able to addtwo such addends, with their sum in the

chosen redundantrepresentation employed internally in

the tree. At the root ofthe tree, the final result must in

general be converted back tosome non-redundant

representation, most likely the same asthat of the

original operands. The accumulation of k, n-

digitoperands can thus be performed in time O(log k),

with finalconversion in time O(log n).With radix _ _ 2,

when the operand representationis employing the

standard non-redundant digit set D =f0; 1; _ _ _ ; _ �

1g, very often the symmetric, maximallyredundant

digit set D0 = f�_ + 1; _ _ _ ;�1; 0; 1; _ _ _ ; _ � 1gis

used internally at the nodes, since then d 2 D) d 2

D0.Then at most a simple modification of the digit

encoding isnecessary at the leaf nodes. This also

permits some simplehandling of sign-magnitude or

complement representationsof operands.Although this

discussion applies to any value of _ _ 2,we will restrict

the detailed analysis to situations where _is a power of

2.For _ = 2 the situation is particularly simple, as a

pairingof the bits of two operands provides an

encoding of eithertheir sum or difference in a

redundant representation at theleaf nodes, also to be

used at the internal nodes of the tree.Let x =Pn�10

xi2i and y =Pn�10 yi2i be two binaryintegers, then

x�y =Pn�10 di2i with di = xi �yi being adigit in the

redundant digit set f�1; 0; 1g. The pair of bits(yi; xi)

then provides an encoding of the digit di, wherexi has

positive weight and yi has negative weight. If thesum

of the operands is wanted, y can easily be negated

byinversion. We denote this the borrow-save encoding,

and usethe notation di _ (dni;dpi) with the component

of negativeweight in the first position.Alternatively,

 Page 1470

with the same operands, x+y =Pn�10 si2i,where si =

xi +yi 2 f0; 1; 2g is representing the digit sum,the

digits can be encoded as the pairs si _ (xi; yi).

Thiscarry-save encoding can be employed in the rest

of the tree.

But since there is no principal difference between the

use ofthe carry-save and the borrow-save

representation, we willgenerally consider the

latter.Actual implementations of the internal radix 2, 4-

to-2addition nodes of the tree will be described in

Section 4below, but note that addition at the leaf nodes

essentiallycomes for free, thus halving the number of

operations to beperformed, as well as saving space.

THE DIGIT-WISE ADDITION PROCESS

Adding two numbers digit-wise in the maximally

redundantset D = f�2r+1 ; 0; 2r�1g for radix _ = 2r,r

_ 2, generates first an intermediate sum represented in

thedigit set D0 = f�2r+1+2 2r+1�2g, from which

carriesin the set C = f�1; 0; 1g are extracted, leaving

behind digitsfrom a much reduced digit set D" = f�2r

+22r �2g.Note that this digit set must contain at least

2r differentvalues. In a subsequent step, incoming

carries are added intothe positions, such that all digits

now are in the same digitset D as the operands.

Addition thus consists in a numberof parallel digit-

wise additions:

Figure 1. Maximally redundant radix 2r addition for r

_ 2

The first step consists in the digit-wise addition, the

nextin extracting the outgoing carry and modifying the

digitaccordingly. The last step is adding an incoming

carry tothe modified digit. The essential thing to

observe is that theoutgoing carry is independent of the

incoming.Note that this process is possible for any

value of r _ 2,but not for r = 1, the binary borrow-save

representation withD = f�1; 0; 1g, as we shall discuss

below. Also observethat it involves three sequential

digit-wise add or subtractoperations. However, the

carry-extraction takes place at themost-significant end

of the digit, and is thus in generalfaster than the add

operations. Unless the encoding of thedigit values

themselves is redundant, these operations willbe

slower, the larger the digit set is.For radix 2, with the

digit set f�1; 0; 1g, the situationseems more

complicated. Following Avizienis [Avi61], thedigit set

conversion here must take place in two phases fora

total of five steps, which takes two forms, depending

onthe sign of the incoming carry:

RADIX-2, 4-TO-2 ADDITION

Starting with the redundant radix 2 addition,

severalpossible (e.g., two-bit [PGK01], and even three-

bit [EL97])encodings of the digits are possible, some

of which wereinvestigated in [Kor05]. All of these

were shown to befeasible for addition in what has been

denoted 4-to-2 adders,realizable by simple

modifications of a carry-save, 4-to-2adder for the

addition of two operands over the digit setf0; 1; 2g, as

shown in Fig. 2. Using the two-bit encoding,with the

digit value being the sum of the encoding bits,this type

of adder was originally proposed by Weinburger

in[Wei81]. There are several possible implementations

of it,including some very efficient ones based on pass-

transistorbased selectors [OSY+95].

 Page 1471

Employing the binary borrow-save encoding as a bit-

pair(xn; xp), where the left-most bit xn has negative

weight, thepair encodes the digit value x = xp � xn 2

f�1; 0; 1g. Additionof (xn; xp) and (yn; yp) can be

realized by invertingsome of the connections as shown

in Fig. 3.

Figure 3. 4-to-2, borrow-save adder

Alternatively, the digit encoding could be 2’s

complement,

where a pair (xh; xl) encodes the digit value d = �2xh

+xl 2 f�1; 0; 1g (the pair (1; 0) excluded), with carry

inborrow-save encoding. Fig. 4 shows an

implementation, realizedby a carry-save adder with

some signals inverted. Notethat the adder is working

on signals from two neighboringpositions, due to the

encoding where one signal has a weighttwice that of

the other.

Figure 4. 4-to-2, 2’s complement adder

As shown in [Kor05], it may be noted that in a multi-

digitadder composed of a linear array of such adders,

the invertersare not needed on the internal carry

signals. Similarly, whensuch adders are connected in

an array (or tree) for multi operand addition, the

inverters are not needed anywhereinternally. This also

shows that an implementation usingborrow-save

representation is identical to one using

carrysave,except for some inverters at the boundary of

the array

One such possibility for adding radix-16 digits, is

combiningfour 4-to-2 borrow-save adders over the

digit-setf�1; 0; 1g, which together provides an

equivalent radix-16 digit adder over the same

maximally redundant digitset as above. Since each

digit now is encoded in 8 bits,compared to 5, a radix-

16 digit adder now has 16 inputand 8 output lines,

compared to respectively 10 and 5. Thusthe

interconnect structure of the adders is more

complexand requires more area. But note that only half

as manysuch adders may be needed in a multi-operand

additionarray, since the sum of two standard non-

redundant binaryoperands is simply obtained by

pairing the bits of theoperands, directly forming their

sum in carry-save encoding(or by inverting one

operand in borrow-save), to be used asfurther

input.Expanding the 4-to-2 adders in terms of

fulladders withtheir interconnections, as an equivalent

to the above digitadders in Fig. 5, using the borrow-

save encoding we findFig. 6, again not showing

inversions on negative signals. Forgeneral r the delay

of the circuit in Fig. 6 is independent ofthe radix 2r,

and identical to that of a single 4-to-2 adder.

Figure 5. A radix 16 digit-adder design in 4-to-2

borrow-save encoding

Extension:The Kogge–Stone adder is a parallel prefix

form carry look-ahead adder. It generates the carry

signals in O(log n) time, and is widely considered the

 Page 1472

fastest adder design possible. It is the common design

for high-performance adders in industry.

It takes more area to implement than the Brent–Kung

adder, but has a lower fan-out at each stage, which

increases performance. Wiring congestion is often a

problem for Kogge–Stone adders as well.

An example of a 4-bit Kogge–Stone adder is shown to

the right. Each vertical stage produces a "propagate"

and a "generate" bit, as shown. The culminating

generate bits (the carries) are produced in the last stage

(vertically), and these bits are XOR'd with the initial

propagate after the input (the red boxes) to produce the

sum bits. E.g., the first (least-significant) sum bit is

calculated by XORingthe propagate in the farthest-

right red box (a "1") with the carry-in (a "0"),

producing a "1". The second bit is calculated by

XORingthe propagate in second box from the right (a

"0") with C0 (a "0"), producing a "0".

The Kogge–Stone adder concept was developed

by Peter M. Koggeand Harold S. Stone, which they

published in 1973 in a seminal paper titled A Parallel

Algorithm for the Efficient Solution of a General Class

of Recurrence Equations.

RESULTS

CONCLUSIONS

It has been shown, that the proposed recoding of

addendsinto a higher radix of the form 2r for r _ 2, asin

[Par93], [MI99], [JPG05], [JP07], [JG10], [GJ11],

withdigits encoded in non-redundant 2’s complement

representation,can not provide faster addition than

using standardradix 2, carry-save or borrow-save

adders applied directlyon non-redundant binary

addends. On the contrary, formulti-operand addition

the delay is significantlylargerwhenusing such

recoding into a higher radix, despite the

claim“Ultrahigh-Speed” in the title of [JP07].

Furthermore, whenemploying the carry- or borrow-

save encoding, half of theadditions come for free,

since just pairing two non-redundantbinary numbers

forms their sum in carry-save, or (with oneof them

inverted) in borrow-save. It is noted that (exceptfor

some inverters at the boundary) the logic of the

adderarray is identical, whether the carry-save or the

borrow-saverepresentation is used.

REFERENCES

[Avi61] A. Avizienis. Signed-digit number

representations for fastparallel arithmetic. IRE

Transactions on Electronic Computers,EC-10:389–

400, September 1961.

[EL97] M.D. Ercegovac and T. Lang. Effective

Coding for FastRedundant Adders using the Radix-2

Digit Set f0; 1; 2; 3g.In Proc. 31st Asilomar Conf.

 Page 1473

Signals Systems and Computers,pages 1163–1167,

1997.

[GJ09] S. Gorgin and G. Jaberipur. Fully Redundant

Decimal Arithmetic.In Proc. 19th IEEE Symposium on

Computer Arithmetic,pages 145–152. IEEE, June

2009.

[GJ11] S. Gorgin and G. Jaberipur. A Family of High

Radix Signed

Digit Adders. In Proc. 20th IEEE Symposium on

ComputerArithmetic, pages 112–121. IEEE, July

2011.

[HNN+87] Y. Harata, Y. Nakamura, H. Nagase, M.

Takigawa, and N. Takagi.A High-Speed Multiplier

Using a Redundant Binary AdderTree. IEEE Journal

of Solid State Circuits, pages 28–34, 1987.

[JG10] G. Jaberipur and S. Gorgin. An Improved

Maximally RedundantSignedDigitAdder. Computers

and Electrical Engineering,36(3):491–502, May 2010.

[JP07] G. Jaberipur and B. Parhami. Stored-Transfer

Representationswith Weighted Digit-Set Encodings for

Ultrahigh-Speed Arithmetic.IET Circuits Devices

Systems, 1(1):102–110, February2007.

[JPG05] G. Jaberipur, B. Parhami, and M. Ghodsi.

Weighted Two-Valued Digit-Set Encodings: Unifying

Efficient HardwareRepresentation Schemes for

Redundant Number Systems.IEEE Transactions on

Circuits and Systems, Regular Papers,

52(7):1348–1357, July 2005.

[KM06] P. Kornerup and J-M. Muller.Leading Guard

Digits in FinitePrecision Redundant Representations.

IEEE Transactions onComputers, 55(5):541–548, May

2006.

[KM10] P. Kornerup and D.W. Matula. Finite

Precision NumberSystems and Arithmetic, volume 133

of Encyclopedia of Mathematicsand its Applications.

Cambridge University Press,Sept. 2010.

