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ABSTARCT 

Higher radix values of the form _ = 2r havebeen 

employed traditionally for recoding of multipliers, 

andfor determining quotient- and root-digits in 

iterative division and square root algorithms, usually 

only for quite moderatevalues of r, like 2 or 3. For 

fast additions, in particularfor the accumulation of 

many terms, generally redundantrepresentations are 

employed, most often binary carry-saveor borrow-

save, but in a number of publications it has 

beensuggested to recode the addends into a higher 

radix. It is shownthat there are no speed advantages 

in doing so if the radix isa power of 2, on the 

contrary, there are significant savings inusing 

standard 4-to-2 adders, even saving half of the 

operations in multi-operand addition. 
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INTRODUCTION 

Addition is the most important and frequently used 

arithmetic operation in computer systems. Generally, 

two methods can be used to speed up the addition 

operation. One is to explicitly shorten the carry-

propagation chain by using circuit design techniques, 

such as detecting the completion of the carry chain as 

soon as possible, carry look-ahead, etc. [1-3]. Another 

is to convert the operands from the binary number 

system to a redundant number system, e.g., the signed-

digit number system or the residue number system, so 

that the addition become carry-free (CF) [2-5]. This 

implicitly eliminates the carry-propagation chain so 

that fast addition can be done, at the expense of 

conversion between the binary number system and the 

redundant number system. In this paper we focus on 

exploring signed-digit (SD) numbers. 

tems are defined for any radix r ≥ 3 and for the digit 

set {− α, …, − 1, 0, 1, …, α}, whereis an integer such 

that r/2 <α<r. In an OSD number system, the 

redundancy indexρ, defined as ρ = 2α − r + 1, ranges 

from the minimal redundancy r/2 + 1 to the maximal 

redundancy r − 1. The most important contribution of 

OSD is to explore the possibility of performing carry-

free addition and borrow-free subtraction for fast 

parallel arithmetic, if enough redundancy is used. The 

OSD number system was later extended to the gener-

alized signed-digit (GSD) number system [6-9]. The 

GSD number system for radix r > 1has the digit set {− 

α, …, − 1, 0, 1, …, β}, where α ≥ 0 and β ≥ 0. The 

redundancy is ρ = + β + 1 − r. So far, the most 

important contribution of the works on GSD [6-9] 

include unifying the redundant number representation 

and sorting the CF addition schemes for the GSD 

number system according to the radix r and 

redundancy index ρ. However, ideal single-stage CF 

addition has not been achieved, though two-stage CF 

addition has been shown to be doable for any GSD 

system with r> 2 and ρ> 2, or with r> 2 and ρ = 2 

provided that α ≠ 1 and β ≠ 1. For any GSD system 

with r = 2 and ρ = 1, or ρ = 2 and orβ equals 1, the 

limited-carry addition must be used. 

There are many applications for the SD number 

representations, most notably in computer and digital 

signal processing systems. Specifically, the CF adder 
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has been in-vestigated based on the redundant positive-

digit numbers [10] and the symmetrical radix-4 SD 

numbers [11, 12] for high-speed area-efficient 

multipliers. The symmetrical radix-2 SD number 

representation has been used in the implementation of 

a RSA crypto-graphic chips [13], high-speed VLSI 

multipliers [14, 15], FIR filters [16], IIR filters [17], 

dividers [18], etc. Though arithmetic operations using 

these number representations can be done carry free, 

they have common difficulty in conversion to and 

from the binary number representation. Hence, in the 

past, many researchers have proposed specific ar-

chitectures for number system conversion [15, 17, 19-

22]. 

In this paper, we present the asymmetric high-radix 

signed-digit (AHSD) number system. The idea of 

AHSD is not new. A particular AHSD number system 

was called the radix-r stored-borrow (SB) number 

system in [7]. Most earlier works have focused on 

binary stored-borrow (BSB) number systems, where r 

= 2 [6, 14, 23-25]. Instead of pro-posing a new number 

representation, our purpose is to explore the inherent 

CF property of AHSD. The CF addition in AHSD is 

the basis for our high-speed addition circuits. The 

conversion of AHSD to and from binary will be 

discussed in detail. By choosing r = 2m, where m is any 

positive integer, a binary number can be converted to 

its canonical AHSD representation in constant time. 

We will also present two simple algorithms for 

converting AHSD numbers to binary: the first stresses 

high speed and the other provides hardware 

reusability. Since the conversion from AHSD to binary 

has been considered the bottleneck of AHSD-based 

arithmetic computation, these algorithms greatly 

improve the performance of AHSD systems. For 

illustration, we will discuss in detail the example on 

AHSD(4), i.e., the radix-4 AHSD number system. The 

proposed approach is practical thanks to the simple 

conversion. 

MULTI-OPERAND ADDITION 

When adding a multiple of operands, say k of n digits, 

the fastest possible way to do it is to add them in a 

binary tree,each addition performed using a redundant 

representation ofthe intermediate sums, to allow 

constant time addition at thenodes of the tree, with 

bounded carry-propagation between positions, i.e, 

without any “ripple-effect”. We will hereconcentrate 

on adding a pair of digits from two operands,where it 

alternatively is possible to accumulate several digitsof 

the same weight in some redundant representation, 

anddigits) back into the wanted digit set, as suggested 

in [KS05]for decimal multi-operand addition.We are 

assuming that the initial operands are in somenon-

redundant representation, at most needing some 

constanttime conversion or recoding of the non-

redundantrepresentation. The leaves of the tree must 

be able to addtwo such addends, with their sum in the 

chosen redundantrepresentation employed internally in 

the tree. At the root ofthe tree, the final result must in 

general be converted back tosome non-redundant 

representation, most likely the same asthat of the 

original operands. The accumulation of k, n-

digitoperands can thus be performed in time O(log k), 

with finalconversion in time O(log n).With radix _ _ 2, 

when the operand representationis employing the 

standard non-redundant digit set D =f0; 1; _ _ _ ; _ � 

1g, very often the symmetric, maximallyredundant 

digit set D0 = f�_ + 1; _ _ _ ;�1; 0; 1; _ _ _ ; _ � 1gis 

used internally at the nodes, since then d 2 D ) d 2 

D0.Then at most a simple modification of the digit 

encoding isnecessary at the leaf nodes. This also 

permits some simplehandling of sign-magnitude or 

complement representationsof operands.Although this 

discussion applies to any value of _ _ 2,we will restrict 

the detailed analysis to situations where _is a power of 

2.For _ = 2 the situation is particularly simple, as a 

pairingof the bits of two operands provides an 

encoding of eithertheir sum or difference in a 

redundant representation at theleaf nodes, also to be 

used at the internal nodes of the tree.Let x =Pn�10 

xi2i and y =Pn�10 yi2i be two binaryintegers, then 

x�y =Pn�10 di2i with di = xi �yi being adigit in the 

redundant digit set f�1; 0; 1g. The pair of bits(yi; xi) 

then provides an encoding of the digit di, wherexi has 

positive weight and yi has negative weight. If thesum 

of the operands is wanted, y can easily be negated 

byinversion. We denote this the borrow-save encoding, 

and usethe notation di _ (dni;dpi ) with the component 

of negativeweight in the first position.Alternatively, 
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with the same operands, x+y =Pn�10 si2i,where si = 

xi +yi 2 f0; 1; 2g is representing the digit sum,the 

digits can be encoded as the pairs si _ (xi; yi). 

Thiscarry-save encoding can be employed in the rest 

of the tree. 

 

But since there is no principal difference between the 

use ofthe carry-save and the borrow-save 

representation, we willgenerally consider the 

latter.Actual implementations of the internal radix 2, 4-

to-2addition nodes of the tree will be described in 

Section 4below, but note that addition at the leaf nodes 

essentiallycomes for free, thus halving the number of 

operations to beperformed, as well as saving space. 

 

THE DIGIT-WISE ADDITION PROCESS 

Adding two numbers digit-wise in the maximally 

redundantset D = f�2r+1 ; 0; 2r�1g for radix _ = 2r,r 

_ 2, generates first an intermediate sum represented in 

thedigit set D0 = f�2r+1+2 2r+1�2g, from which 

carriesin the set C = f�1; 0; 1g are extracted, leaving 

behind digitsfrom a much reduced digit set D" = f�2r 

+22r �2g.Note that this digit set must contain at least 

2r differentvalues. In a subsequent step, incoming 

carries are added intothe positions, such that all digits 

now are in the same digitset D as the operands. 

Addition thus consists in a numberof parallel digit-

wise additions: 

 

Figure 1. Maximally redundant radix 2r addition for r 

_ 2 

The first step consists in the digit-wise addition, the 

nextin extracting the outgoing carry and modifying the 

digitaccordingly. The last step is adding an incoming 

carry tothe modified digit. The essential thing to 

observe is that theoutgoing carry is independent of the 

incoming.Note that this process is possible for any 

value of r _ 2,but not for r = 1, the binary borrow-save 

representation withD = f�1; 0; 1g, as we shall discuss 

below. Also observethat it involves three sequential 

digit-wise add or subtractoperations. However, the 

carry-extraction takes place at themost-significant end 

of the digit, and is thus in generalfaster than the add 

operations. Unless the encoding of thedigit values 

themselves is redundant, these operations willbe 

slower, the larger the digit set is.For radix 2, with the 

digit set f�1; 0; 1g, the situationseems more 

complicated. Following Avizienis [Avi61], thedigit set 

conversion here must take place in two phases fora 

total of five steps, which takes two forms, depending 

onthe sign of the incoming carry: 

 

RADIX-2, 4-TO-2 ADDITION 

Starting with the redundant radix 2 addition, 

severalpossible (e.g., two-bit [PGK01], and even three-

bit [EL97])encodings of the digits are possible, some 

of which wereinvestigated in [Kor05]. All of these 

were shown to befeasible for addition in what has been 

denoted 4-to-2 adders,realizable by simple 

modifications of a carry-save, 4-to-2adder for the 

addition of two operands over the digit setf0; 1; 2g, as 

shown in Fig. 2. Using the two-bit encoding,with the 

digit value being the sum of the encoding bits,this type 

of adder was originally proposed by Weinburger 

in[Wei81]. There are several possible implementations 

of it,including some very efficient ones based on pass-

transistorbased selectors [OSY+95]. 
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Employing the binary borrow-save encoding as a bit-

pair(xn; xp), where the left-most bit xn has negative 

weight, thepair encodes the digit value x = xp � xn 2 

f�1; 0; 1g. Additionof (xn; xp) and (yn; yp) can be 

realized by invertingsome of the connections as shown 

in Fig. 3. 

 

Figure 3. 4-to-2, borrow-save adder 

Alternatively, the digit encoding could be 2’s 

complement, 

where a pair (xh; xl) encodes the digit value d = �2xh 

+xl 2 f�1; 0; 1g (the pair (1; 0) excluded), with carry 

inborrow-save encoding. Fig. 4 shows an 

implementation, realizedby a carry-save adder with 

some signals inverted. Notethat the adder is working 

on signals from two neighboringpositions, due to the 

encoding where one signal has a weighttwice that of 

the other. 

 

Figure 4. 4-to-2, 2’s complement adder 

As shown in [Kor05], it may be noted that in a multi-

digitadder composed of a linear array of such adders, 

the invertersare not needed on the internal carry 

signals. Similarly, whensuch adders are connected in 

an array (or tree) for multi operand addition, the 

inverters are not needed anywhereinternally. This also 

shows that an implementation usingborrow-save 

representation is identical to one using 

carrysave,except for some inverters at the boundary of 

the array 

One such possibility for adding radix-16 digits, is 

combiningfour 4-to-2 borrow-save adders over the 

digit-setf�1; 0; 1g, which together provides an 

equivalent radix-16 digit adder over the same 

maximally redundant digitset as above. Since each 

digit now is encoded in 8 bits,compared to 5, a radix-

16 digit adder now has 16 inputand 8 output lines, 

compared to respectively 10 and 5. Thusthe 

interconnect structure of the adders is more 

complexand requires more area. But note that only half 

as manysuch adders may be needed in a multi-operand 

additionarray, since the sum of two standard non-

redundant binaryoperands is simply obtained by 

pairing the bits of theoperands, directly forming their 

sum in carry-save encoding(or by inverting one 

operand in borrow-save), to be used asfurther 

input.Expanding the 4-to-2 adders in terms of 

fulladders withtheir interconnections, as an equivalent 

to the above digitadders in Fig. 5, using the borrow-

save encoding we findFig. 6, again not showing 

inversions on negative signals. Forgeneral r the delay 

of the circuit in Fig. 6 is independent ofthe radix 2r, 

and identical to that of a single 4-to-2 adder. 

 

Figure 5. A radix 16 digit-adder design in 4-to-2 

borrow-save encoding 

Extension:The Kogge–Stone adder is a parallel prefix 

form carry look-ahead adder. It generates the carry 

signals in O(log n) time, and is widely considered the 
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fastest adder design possible. It is the common design 

for high-performance adders in industry. 

It takes more area to implement than the Brent–Kung 

adder, but has a lower fan-out at each stage, which 

increases performance. Wiring congestion is often a 

problem for Kogge–Stone adders as well. 

An example of a 4-bit Kogge–Stone adder is shown to 

the right. Each vertical stage produces a "propagate" 

and a "generate" bit, as shown. The culminating 

generate bits (the carries) are produced in the last stage 

(vertically), and these bits are XOR'd with the initial 

propagate after the input (the red boxes) to produce the 

sum bits. E.g., the first (least-significant) sum bit is 

calculated by XORingthe propagate in the farthest-

right red box (a "1") with the carry-in (a "0"), 

producing a "1". The second bit is calculated by 

XORingthe propagate in second box from the right (a 

"0") with C0 (a "0"), producing a "0". 

The Kogge–Stone adder concept was developed 

by Peter M. Koggeand Harold S. Stone, which they 

published in 1973 in a seminal paper titled A Parallel 

Algorithm for the Efficient Solution of a General Class 

of Recurrence Equations. 

 

RESULTS 

 

 

CONCLUSIONS 

It has been shown, that the proposed recoding of 

addendsinto a higher radix of the form 2r for r _ 2, asin 

[Par93], [MI99], [JPG05], [JP07], [JG10], [GJ11], 

withdigits encoded in non-redundant 2’s complement 

representation,can not provide faster addition than 

using standardradix 2, carry-save or borrow-save 

adders applied directlyon non-redundant binary 

addends. On the contrary, formulti-operand addition 

the delay is significantlylargerwhenusing such 

recoding into a higher radix, despite the 

claim“Ultrahigh-Speed” in the title of [JP07]. 

Furthermore, whenemploying the carry- or borrow-

save encoding, half of theadditions come for free, 

since just pairing two non-redundantbinary numbers 

forms their sum in carry-save, or (with oneof them 

inverted) in borrow-save. It is noted that (exceptfor 

some inverters at the boundary) the logic of the 

adderarray is identical, whether the carry-save or the 

borrow-saverepresentation is used. 
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