
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 996

ABSTRACT:

A floating-point unit (FPU) colloquially is a math copro-
cessor, which is a part of a computer system specially
designed to carry out operations on floating point num-
bers [1]. Typical operations that are handled by FPU are
addition, subtraction, multiplication and division. The
aim was to build an efficient FPU that performs basic as
well as transcendental functions with reduced complex-
ity of the logic used reduced or at least comparable time
bounds as those of x87 family at similar clock speed and
reduced the memory requirement as far as possible. The
functions performed are handling of Floating Point data,
converting data to IEEE754 format, perform any one of
the following arithmetic operations like addition, subtrac-
tion, multiplication, division and shift operation and tran-
scendental operations like square Root, sine of an angle
and cosine of an angle. All the above algorithms have
been clocked and evaluated under Spartan 3E Synthesis
environment. All the functions are built by possible ef-
ficient algorithms with several changes incorporated at
our end as far as the scope permitted. Consequently all of
the unit functions are unique in certain aspects and given
the right environment(in terms of higher memory or say
clock speed or data width better than the FPGA Spartan
3E Synthesizing environment) these functions will tend
to show comparable efficiency and speed ,and if pipelined
then higher throughput.

1. INTRODUCTION:

Floating-point units (FPU) colloquially are a math copro-
cessor which is designed specially to carry out operations
on floating point numbers [1]. Typically FPUs can handle
operations like addition, subtraction, multiplication and
division. FPUs can also perform various transcendental
functions such as exponential or trigonometric

calculations, though these are done with software library
routines in most modern processors. Our FPU is basically
a single precision IEEE754 compliant integrated unit. In
this chapter we have basically introduced the basic con-
cept of what an FPU is, in the section 1.2. Following the
section we have given a brief introduction to the IEEE
754 standards in section 1.3. After describing the IEEE
754 standards, we have explained the motivation and ob-
jective behind this project in section 1.4. And finally the
section 1.5 contains the summary of the chapter .

FLOATING POINT UNIT:

When a CPU executes a program that is calling for a float-
ing-point (FP) operation, there are three ways by which it
can carry out the operation. Firstly, it may call a floating-
point unit emulator, which is a floating-point library, us-
ing a series of simple fixed-point arithmetic operations
which can run on the integer ALU. These emulators can
save the added hardware cost of a FPU but are signifi-
cantly slow. Secondly, it may use an add-on FPUs that are
entirely separate from the CPU, and are typically sold as
an optional add-ons which are purchased only when they
are needed to speed up math-intensive operations. Else
it may use integrated FPU present in the system [2].The
FPU designed by us is a single precision IEEE754 com-
pliant integrated unit. It can handle not only basic floating
point operations like addition, subtraction, multiplication
and division but can also handle operations like shifting,
square root determination and other transcendental func-
tions like sine, cosine and tangential function.

2. METHODOLOGY:

Our Floating Point Unit is a single precision IEEE754
compliant integrated unit. It incorporates various basic
operations like addition, subtraction,

P.Saritha
M.Tech Student,

Department of ECE,
KITS for Women’s, kodad, T.S, India.

Ms.Ch.Nirmala
Associate Professor,
Department of ECE,

KITS for Women’s, kodad, T.S, India.

An Efficient Implementation of Floating Point Multiplier

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 997

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 998

multiplication, division, shifting and other transcendental
functions like square root determination and trigonomet-
ric operations like sine, cosine and tangential value evalu-
ation.In this chapter, the section 2.2 gives a brief about
the literature review and the details of the related work in
the field of developing an efficient FPU. Section 2.3 gives
a brief description about the features implemented in our
FPU like the rounding modes it handles, the operations
it can carry out, the exceptions it can handle etc. After
this section we have section 2.4 which describes imple-
mentation in nutshell. This section describes a brief about
the algorithms implemented by us. This chapter also de-
scribes the basic algorithm of our initial FPU model in the
section 2.5. And lastly, the section 2.6 gives a summary
of the chapter.

 LITERATURE REVIEW:

When a CPU is executing a program that calls for a FP
operation, a separate FPU is called to carry out

the operation. So, the efficiency of the FPU is of great
importance. Though, not many have had great achieve-
ments in this field, but the work by the following two are
appreciable.

Open Floating Point Unit :

This was the open source project done by Rudolf Ussel-
mann [6]. His FPU described a single precision floating
point unit which could perform add, subtract, multiply,
divide, and conversion between FP number and integer.
It consists of two pre-normalization units that can adjust
the mantissa as well as the exponents of the given num-
bers, one for addition/subtraction and the other for mul-
tiplication/division operations. It also has a shared post
normalization unit that normalizes the fraction part. The
final result after post-normalization is directed to a valid
result which is in accordance to single precision FP for-
mat. The main drawback of this model was that most of
the codes were written in MATLAB and due to this it is
non-synthesizable.

GRFPU:

This high Performance IEEE754 FPU was designed at
Gaisler Research for the improvement of FP operations of
a LEON based systems [7]. It supports both single preci-
sion and double precision operands. It implements all FP
operations defined by the IEEE754 standard in hardware.
All operations are dealt with the exception of denormal-
ized numbers which are flushed to zero and supports all
rounding modes. This advanced design combines low la-
tency and high throughput. The most common operations
such as addition, subtraction and multiplication are fully
pipelined which has throughput of one CC and a latency
of three CC. More complex divide and square root opera-
tion takes between 1 to 24 CC to complete and execute
in parallel with other FP operations. It can also perform
operations like converse and compliment. It supports all
SPARC V8 FP instructions. The main drawback of this
model is that it is very expensive and complex to imple-
ment practically.

3. IMPLEMENTATION:
This document describes a single precision floating point
unit. The floating point unit is fully IEEE 754 compliant.
The design implemented here incorporates the following
modules. Both the module name and its functionality have
been specified in the table 2.1 in sequence of the manner
they appear in the attached code.

As our FPU works with floating point numbers, the op-
erations, intermediate calculations and output are con-
ventionally in the same floating point structure. But this
invariably increases the complexity of calculation and the
number of adjustments required at each level to obtain
the correct result. Our proposal is to convert the float-
ing point number into a simple yet quite precise integral
representation and perform the calculations on the same,
followed by the final conversion of the output into its ex-
pected floating point result format.The floating point data
is inputted in two parts.

The first part is a 32 bit binary value of the integer part
of the floating point operand and other is a 32 bit binary
value of fractional part of the floating point operand. This
is done because Verilog cannot deal with floating point
numbers. So we need to consolidate the two parts (inte-
gral and fractional) of the operand into a single 32 bit ef-
fective operand. This is done by the following algorithm
explained

4. DISCUSSION:

As our FPU is IEEE754 compliant, the next step is to con-
vert the input (here the effective operand into the IEEE
specified format.IEEE754 single precision can be encoded
into 32 bits using 1 bit for the sign bit (the most significant
i.e. 31st bit), next eight bits are used for the exponent part
and finally rest 23 bits are used for the mantissa part.
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
` 31 30 23 22 0

However, it uses an implicit bit, so the significant part
becomes 24 bits, even though it usually is encoded us-
ing 23 bits.This conversion can be done using the below
algorithm of figure 2.2:

Step1: Sign bit of the binary number becomes the sign bit
(31st bit) of the IEEE equivalent.

Step 2: 30th bit to 8th bit of the binary number becomes
the mantissa part of the IEEE equivalent.

Step 3: The exponent part is calculated by subtracting the
position of the 1st one obtained in the algorithm described
in section 2.2.1.

Step 4: A bias of 127 is added to the above exponent val-
ue.

Pre-normalization is the process of equalizing the expo-
nents of the operands and accordingly adjusting the en-
tire IEEE754 expression of the inputs to produce correct
results maintaining the IEEE754 standard throughout all
calculation steps inclusive of the intermediate calcula-
tions and their outputs Subtraction can be interpreted as
addition of a positive and a negative number. So using the
same algorithm as that of addition, we can complete the
subtraction operation by taking complement of the nega-
tive number and adding 1 to the complement. This is same
as taking the 2‟s complement of the negative number. Do-
ing this we interpreted the negative number as positive
and carry the addition operation.

5. Experimental Results:

The code was simulated in Xilinx 13.3. We have given
some of the screen shots of the simulations that were ob-
tained as a result of simulation in Xilinx software.

Float to Integer Conversion simulation result

ADD simulation result

Multiplication simulation result

6.CONCLUSIONS AND FUTURE WORK:

This paper presents an implementation of a floating point
multiplier that supports the IEEE 754-2008 binary inter-
change format; the multiplier doesn’t implement round-
ing and just presents the significand

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 997

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 998

multiplication, division, shifting and other transcendental
functions like square root determination and trigonomet-
ric operations like sine, cosine and tangential value evalu-
ation.In this chapter, the section 2.2 gives a brief about
the literature review and the details of the related work in
the field of developing an efficient FPU. Section 2.3 gives
a brief description about the features implemented in our
FPU like the rounding modes it handles, the operations
it can carry out, the exceptions it can handle etc. After
this section we have section 2.4 which describes imple-
mentation in nutshell. This section describes a brief about
the algorithms implemented by us. This chapter also de-
scribes the basic algorithm of our initial FPU model in the
section 2.5. And lastly, the section 2.6 gives a summary
of the chapter.

 LITERATURE REVIEW:

When a CPU is executing a program that calls for a FP
operation, a separate FPU is called to carry out

the operation. So, the efficiency of the FPU is of great
importance. Though, not many have had great achieve-
ments in this field, but the work by the following two are
appreciable.

Open Floating Point Unit :

This was the open source project done by Rudolf Ussel-
mann [6]. His FPU described a single precision floating
point unit which could perform add, subtract, multiply,
divide, and conversion between FP number and integer.
It consists of two pre-normalization units that can adjust
the mantissa as well as the exponents of the given num-
bers, one for addition/subtraction and the other for mul-
tiplication/division operations. It also has a shared post
normalization unit that normalizes the fraction part. The
final result after post-normalization is directed to a valid
result which is in accordance to single precision FP for-
mat. The main drawback of this model was that most of
the codes were written in MATLAB and due to this it is
non-synthesizable.

GRFPU:

This high Performance IEEE754 FPU was designed at
Gaisler Research for the improvement of FP operations of
a LEON based systems [7]. It supports both single preci-
sion and double precision operands. It implements all FP
operations defined by the IEEE754 standard in hardware.
All operations are dealt with the exception of denormal-
ized numbers which are flushed to zero and supports all
rounding modes. This advanced design combines low la-
tency and high throughput. The most common operations
such as addition, subtraction and multiplication are fully
pipelined which has throughput of one CC and a latency
of three CC. More complex divide and square root opera-
tion takes between 1 to 24 CC to complete and execute
in parallel with other FP operations. It can also perform
operations like converse and compliment. It supports all
SPARC V8 FP instructions. The main drawback of this
model is that it is very expensive and complex to imple-
ment practically.

3. IMPLEMENTATION:
This document describes a single precision floating point
unit. The floating point unit is fully IEEE 754 compliant.
The design implemented here incorporates the following
modules. Both the module name and its functionality have
been specified in the table 2.1 in sequence of the manner
they appear in the attached code.

As our FPU works with floating point numbers, the op-
erations, intermediate calculations and output are con-
ventionally in the same floating point structure. But this
invariably increases the complexity of calculation and the
number of adjustments required at each level to obtain
the correct result. Our proposal is to convert the float-
ing point number into a simple yet quite precise integral
representation and perform the calculations on the same,
followed by the final conversion of the output into its ex-
pected floating point result format.The floating point data
is inputted in two parts.

The first part is a 32 bit binary value of the integer part
of the floating point operand and other is a 32 bit binary
value of fractional part of the floating point operand. This
is done because Verilog cannot deal with floating point
numbers. So we need to consolidate the two parts (inte-
gral and fractional) of the operand into a single 32 bit ef-
fective operand. This is done by the following algorithm
explained

4. DISCUSSION:

As our FPU is IEEE754 compliant, the next step is to con-
vert the input (here the effective operand into the IEEE
specified format.IEEE754 single precision can be encoded
into 32 bits using 1 bit for the sign bit (the most significant
i.e. 31st bit), next eight bits are used for the exponent part
and finally rest 23 bits are used for the mantissa part.
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
` 31 30 23 22 0

However, it uses an implicit bit, so the significant part
becomes 24 bits, even though it usually is encoded us-
ing 23 bits.This conversion can be done using the below
algorithm of figure 2.2:

Step1: Sign bit of the binary number becomes the sign bit
(31st bit) of the IEEE equivalent.

Step 2: 30th bit to 8th bit of the binary number becomes
the mantissa part of the IEEE equivalent.

Step 3: The exponent part is calculated by subtracting the
position of the 1st one obtained in the algorithm described
in section 2.2.1.

Step 4: A bias of 127 is added to the above exponent val-
ue.

Pre-normalization is the process of equalizing the expo-
nents of the operands and accordingly adjusting the en-
tire IEEE754 expression of the inputs to produce correct
results maintaining the IEEE754 standard throughout all
calculation steps inclusive of the intermediate calcula-
tions and their outputs Subtraction can be interpreted as
addition of a positive and a negative number. So using the
same algorithm as that of addition, we can complete the
subtraction operation by taking complement of the nega-
tive number and adding 1 to the complement. This is same
as taking the 2‟s complement of the negative number. Do-
ing this we interpreted the negative number as positive
and carry the addition operation.

5. Experimental Results:

The code was simulated in Xilinx 13.3. We have given
some of the screen shots of the simulations that were ob-
tained as a result of simulation in Xilinx software.

Float to Integer Conversion simulation result

ADD simulation result

Multiplication simulation result

6.CONCLUSIONS AND FUTURE WORK:

This paper presents an implementation of a floating point
multiplier that supports the IEEE 754-2008 binary inter-
change format; the multiplier doesn’t implement round-
ing and just presents the significand

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 999

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 1000

multiplication result as is (48 bits); thisgives better preci-
sion if the whole 48 bits are utilized in another unit; i.e.
a floating point adder to form a MAC unit. The design
has three pipelining stages and after implementation on a
Xilinx Virtex5 FPGA it achieves 301 MFLOPs

7. ACKNOWLEDGMENTS:

I am P.Saritha and would like to thank the publishers, re-
searchers for making their resources material available. I
am greatly thankful to Assistant Prof: Miss.Ch.Nirmala
for their guidance. We also thank the college authorities,
PG coordinator and Principal for providing the required
infrastructure and support. Finally, we would like to ex-
tend a heartfelt gratitude to friends and family members.

8.REFERENCES:

[1] IEEE 754-2008, IEEE Standard for Floating-Point
Arithmetic, 2008.

[2] B. Fagin and C. Renard, “Field Programmable Gate
Arrays and FloatingPoint Arithmetic,” IEEE Transactions
on VLSI, vol. 2, no. 3, pp. 365–367, 1994.

[3] N. Shirazi, A. Walters, and P. Athanas, “Quantitative
Analysis ofFloating Point Arithmetic on FPGA Based
Custom ComputingMachines,” Proceedings of the IEEE
Symposium on FPGAs for CustomComputing Machines
(FCCM’95), pp.155–162, 1995.

[4] L. Louca, T. A. Cook, and W. H. Johnson, “Imple-
mentation of IEEESingle Precision Floating Point Ad-
dition and Multiplication on FPGAs,”Proceedings of 83
the IEEE Symposium on FPGAs for CustomComputing
Machines (FCCM’96), pp. 107–116, 1996.

[5] A. Jaenicke and W. Luk, “Parameterized Floating-
PointArithmetic on FPGAs”, Proc. of IEEE ICASSP,
2001, vol. 2, pp.897-900.

[6] B. Lee and N. Burgess, “Parameterisable Floating-
point Operations onFPGA,” Conference Record of the
Thirty-Sixth Asilomar Conference on Signals, Systems,
and Computers, 2002.

[7] “DesignChecker User Guide”, HDL Designer Series
2010.2a, MentorGraphics, 2010

[8] “PrecisionR Synthesis User’s Manual”, Precision RTL
plus 2010aupdate 2, Mentor Graphics, 2010
.
[9] Patterson, D. & Hennessy, J. (2005), Computer Or-
ganization andDesign: The Hardware/software Interface
, Morgan Kaufmann .

[10] John G. Proakis and Dimitris G. Manolakis (1996),
“Digital SignalProcessing: Principles,. Algorithms and
Applications”, Third Edition.Figure 9. Floating point
multiplier with pipelined stagesSep.

Author’s Details:

Ms.P.Saritha. MTech student, in M.Tech Student,
Dept of ECE in KITS for women’s,kodad, T.S, India

Ms.Ch.Nirmala working as a Assistant at ECE in
KITS for women’s,kodad, T.S, IndiaJNTUH Hyderabad.
she has 3 years of UG/PG Teaching Experience.

