
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

I.INTRODUCTION:

Determining real time and highly accurate characteristics
of small objects in a fast flowing stream would open new
directions for industrial sorting processes. The present
paper relates to an apparatus and method for classify in
and sorting small-sized objects, using elect ronic systems
and advanced sensors operating on the basis of a physical
and geometric characterization of each element. Recent
advances in electronics and printed circuit board technol-
ogy open new perspectives for industrial application in
this field. The proposed selection process is based on a
multi sensorial characterization, and more specifically on
crossed optical and impedimetric analysis of the objects
to be sorted. Parallel guides, also called channels, are cre-
ated on a slanted plant support. The objects to be sorted
are immersed in a continuous, free-falling flow along said
guides [1] [2].

By another way this project can be treated an automated
material handling system & can be designed by follow-
ing way. It synchronizes the movement of robotic arm to
pick the objects moving on a conveyor belt. It aims in
classifying the coloured objects which are coming on the
conveyor by picking and placing the objects in its respec-
tive pre-programmed place. Thereby eliminating the mo-
notonous work done by human, achieving accuracy and
speed in the work. The project involves colour sensors
that senses the object’s colour and sends the signal to the
microcontroller. The microcontroller sends signal to cir-
cuit which drives the various motors of the robotic arm to
grip the object and place it in the specified location. Based
upon the colour detected, the robotic arm moves to the
specified location, releases the object and comes back to
the original position.

Abstract:

The paper presents a smart approach for a real time in-
spection and selection of objects in continuous flow. Im-
age processing in today’s world grabs massive attentions
as it leads to possibilities of broaden application in many
fields of high technology. The real challenge is how to
improve existing sorting system in the modular process-
ing system which consists of four integrated stations of
identification, processing, selection and sorting with a
new image processing feature. Existing sorting method
uses a set of inductive, capacitive and optical sensors do
differentiate object color. This paper presents a mecha-
tronics color sorting system solution with the application
of image processing. Image processing procedure senses
the objects in an image captured in real-time by a webcam
and then identifies color and information out of it. This in-
formation is processed by image processing for pick-and-
place mechanism.The Project deals with an automated
material handling system. It aims in classifying the col-
ored objects by colour, size,character which are coming
on the conveyor by picking and placing the objects in its
respective pre-programmed place. Thereby eliminating
the monotonous work done by humans, achieving accu-
racy and speed in the work. The project involves sensors
that senses the object’s colour, size and sends the signal to
the microcontroller. The microcontroller sends signal to
circuit which drives the various motors of the robotic arm
to grip the object and place it in the specified location.
Based upon the detection, the robotic arm moves to the
specified location, releases the object and comes back to
the original position.

Keywords:
Camera, Conveyor belt system.Image processing by OCR,
Micro-controller, Robotic System, Servomotor,Optical
character recognition.

Swarnendu Sarkar
M.Tech Student,

Department of ECE,
St.Martins Engineering College, JNTUH,Hyderabad.

K. Yadaiah
HOD & Associate Professor,

Department of ECE,
St.Martins Engineering College, JNTUH,Hyderabad.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 54

Automation of Object Sorting System Using Pick & Place Robotic
Arm & Image Processing

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The microcontroller in turn will control the servomo-
tors by PWM signals. These servomotors will control the
movement of robotic arm, by controlling their angular
movement. Thus the robotic arm will be fully controlled
by servomotors. The gripper of robotic arm will pick the
object place it depending on its size. This is full automatic
process no manual support is needed. The microcontroller
used here is with the support of Arduino kit. The Arduino
is good platform for robotics application. It is the soft-
ware and hardware also, using both the above system is
developed. Thus the real time, continuous object sorting
can be done.

RAM is 512 MB.,4usb on board, Storage card is Micro
SD and voltage levels are as follows600 mA upto 1.8 A
at 5 V.GPIO pins are 40. USB mainly used for key board
for peripherals WI-FI Adapter and audio connections us-
ing a 3.5 MM Jack SD card is used as a boot device and
also persistent storage. More storage can be attached to
the USB

B. Camera:

The camera used in this case will be overhead camera,
it will take the snapshot of the object for colour sensing
purpose. The image captured by the camera will be pro-
cessed by image processing using Tesseract. The camera
used in this case is Logitech PN 960-000748 whose tech-
nical specifications are:

II.SYSTEM MODEL AND ASSUMPTIONS:

The fig. shows block diagram of a system. The basic
theme of this project is object flowing on conveyor are
sensed, selected and sorted depending on their colour and
size. For this, camera is used as input sensor, camera is
overhead camera which will be mounted on PC, and will
be connected to PC by USB. The camera will take a snap
and it will feed to PC for colour processing. In PC matlab
is used for processing on colour, depending on this signal
will be given to microcontroller Atmega 328.

A. Microcontroller:

The Arm Raspberry pi is a low-power 32-bit microcon-
troller based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, t.
700 MHz ARM1176JZF-S core (ARM11 family, ARMv6
instruction set).The AVR core combines a rich instruction
set with 32 general purpose working registers. All the 32
registers are directly connected to the Arithmetic Logic
Unit (ALU), allowing two independent registers to be
accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient
while achieving throughputs up to ten times faster than
conventional CISC microcontrollers. The chip is Broad-
com BCM2835 (CPU, GPU, DSP, SDRAM, and single
USB port).

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 55

Fig. 1 Block Diagram

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

How accurate is Tesseract OCR?

The above processes ensure that Tesseract is highly accu-
rate when recognizing texts from languages that are cur-
rently supported. Results from The Fourth Annual Test of
OCR Accuracy (example, Tesseract demonstrated a Word
Accuracy of 97.69% with a sample of English newspa-
pers. Since these tests, the Tesseract development team
at Google claim to have improved Tesseract’s general re-
sults by 7.31% for2010.

What are the language-specific components of
Tesseract?

For a language such as English, 8 components are used:
1. General Words Wordlist (tessdata/eng.word-dawg) 2.
Frequent Word Wordlist (tessdata/eng.freq-dawg) 3. User
Wordlist (tessdata/eng.user-words) 4. Index for Character
Set (tessdata/eng.inttemp5. Box file – for use in locating
characters in the training file (tessdata/eng.normproto)
6. Box file – for use in locating characters in the train-
ing file (tessdata/eng.pffmtable) 7. Language’s Character
Set (tessdata/eng.unicharset) 8. Character Cluster Dis-
ambiguator - for ‘m’ and ‘rn’, for instance. (tessdata/eng.
DangAmbigs). OCR technology uses character recogni-
tion to attempt to identify the individual characters that
make up a printed text. Although the process used to iden-
tify individual characters is language independent, Tes-
seract must be given a list of the specific characters used
by a language (item 4 in the list above). Tesseract must
then be trained to correctly identify these characters when
they appear within a piece of text. Training is done by
feeding into Tesseract a document with words, sentences,
symbols and numbers from the required language which
contains a recommend ten to twenty example of each of
the characters used by that language. Such a list has been
added to this document as an appendix. This list must be
fed in twice, once as digital text and once as a scan of a
printed version of the same text. This produces a ‘box-
file’ containing Tesseract’s interpretation of the position
of characters and their identity. The next part of the pro-
cess is to manually correct any errors made by Tesseract,
for example the identification of ŵ as W or the identifi-
cation of the letter combination rn as m. A useful utility
with a graphical user interface now exists to simplify this
process, and is available from the Tesseract project page.
Once this task has been finished, common mistakes such
as those mentioned above can be added to the Character
Cluster Disambiguator file.

•Video calling (640 x 480 pixels)
•Video capture: Up to 1024 x 768 pixels
•Fluid Crystal Technology
•Photos: Up to 1.3 megapixels (software enhanced)
•Built-in mic with noise reduction
•Hi-Speed USB 2.0 certified (recommended)
•Universal clip fits laptops, LCD or CRT monitors

Fig. 2 Camera
C. Image Processing using TESSERACT
OCR engine:

Tesseract is an open source optical character recognition
(OCR) engine originally developed at Hewlett-Packard
between 1985 and 1995, but never commercially ex-
ploited. It rated highly at The Fourth Annual Test of OCR
Accuracy held in 1995 at the University of Nevada, Las
Vegas’ Information Science However by that time, Tes-
seract’s development had ceased. In 2005, HP transferred
Tesseract’s unaltered code to the ISRI and it was released
as open source. ISRI discovered that the original devel-
oper, Ray Smith (see http://research.google.com/pubs/
author4479.html), was now employed at Google after
several years working on the market leading commercial
OCR engine Omnipage. Google were persuaded by ISRI
to allow Smith to continue development of Tesseract as
open source software. Version 2.0 is now available for
download from Google Code at http://code.google.com/p/
tesseract-ocr/.he applications.

Limitations of Tesseract:
 Tesseract is an OCR engine, not a complete OCR program
Tesseract is an OCR engine rather than a fully featured
program similar to commercial OCR software such as Nu-
ance’s Omnipage. It was originally intended to serve as a
component part of other programs or systems. Although
Tesseract works from the ommand line, to be usable by
the average user the engine must be integrated into other
programs or interfaces, such as FreeOCR.net, WeOCR or
OCRpous. Without thisintegration into programs such as
these, Tesseract has no page layout analysis, no output
formatting and no graphical user interface (GUI).

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 56

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Satisfactory words passed to adaptive trainer7. Lessons
learned by adaptive trainer employed in a second pass,
which attempts recognize the words that were not recog-
nized satisfactorily in the first pass 8. Fuzzy spaces re-
solved and text checked for small caps 9. Digital texts
are outputted. 7. Lessons learned by adaptive trainer em-
ployed in a second pass, which attempts recognize the
words that were not recognized satisfactorily in the first
pass 8. Fuzzy spaces resolved and text checked for small
caps 9. Digital texts are outputted During these processes,
Tesseract uses: algorithms for detecting text lines from a
skewed page algorithms for detecting proportional and
non proportional words (a proportional word is a word
where all the letters are the same width) algorithms for
chopping joined characters and for associating broken
characters linguistic analysis to identify the most likely
word formed by a cluster of characters two character clas-
sifiers: a static classifier, and an adaptive classifier which
employs training data, and which is better at distinguish-
ing between upper and lower case letters.

Line and Word Finding Line Finding:

The line finding algorithm is one of the few parts of Tes-
seract that has previously been published [3]. The line
finding algorithm is designed so that a skewed page can
be recognized without having to de-skew, thus saving loss
of image quality. The key parts of the process are blob
filtering and line construction. Assuming that page layout
analysis has already provided text regions of a roughly
uniform text size, a simple percentile height filter removes
drop-caps and vertically touching characters. The median
height approximates the text size in the region, so it is safe
to filter out blobs that are smaller than some fraction of the
median height, being most likely punctuation, diacritical
marks and noise. Estimate the baselines, the filtered blobs
are more likely to fit a model of non-overlapping, paral-
lel, but sloping lines. Sorting and processing the blobs by
x-coordinate makes it possible to assign blobs to a unique
text line, while tracking the slope across the page, with
greatly reduced danger of assigning to an incorrect text
line in the presence of skew. Once the filtered blobs have
been assigned to lines, a least median of squares fit [4] is
used to estimate the baselines, and the filtered-out blobs
are fitted back into the appropriate lines. The final step of
the line creation process merges blobs that overlap by at
least half horizontally, putting diacritical marks together
with the correct base and correctly associating parts of
some broken characters.

This training process must be repeated with all font types
required, including bold, italic and underlined versions of
the same font. The Character Cluster Disambiguator file,
in conjunction with a language’s word list, helps Tesser-
act identify a word by suggesting possible corrections to
certain characters that allow Tesseract to locate the cor-
rect word in its word list. For example, the file can be used
to suggest to Tesseract that rn, wr, iii, and an could all
potentially be misidentifications of the letter m, and Tes-
seract will search the wordlist accordingly. However, not
all languages will have a list of the commonly used words
at their disposal. A list of the head words from a diction-
ary, for example, is not sufficient as all inflected forms
must also be included. For example, mouse and mice
should both be included in an English wordlist, and so
too run and ran. Many other languages undergo far more
inflection than English, so their corresponding wordlists
are likely to be both longer and harder to create. In Welsh
for example, nouns like coffi (coffee) occur regularly as
goffi, choffi and choffi, effectively quadrupling the num-
ber of nouns in a list. Many European languages have
significantly more verbal forms compared with English.
This inherent complexity in language is part of the reason
that resources such as wordlists have not been develop for
many languages with less resources. Bespoke wordlists
would have to be created for any language supported
where wordlists are not available. In truth, for optimum
performance, Tesseract requires not one, but two word
lists. One should contain the most frequently used words
in a language, which Tesseract will search first, the sec-
ond, which Tesseract will only search after failing to find
a word in the first list, should contain the less frequent-
ly used words in a language. A third list for user-added
words also exists. In theory, the above steps should allow
for the creation of an OCR engine in languages current-
ly unsupported by Tesseract. However, some languages
may not be suitable candidates, as right to left languages
are currently not compatible with some ofthe hardcoded
functionality built into Tesseract. Depending on character
sets, some languages with complicated glyphs or charac-
ters may also be unsuitable. However, Google are cur-
rently working on increased language support in future.

How does Tesseract work?

Outlines are analysed and stored 2. Outlines are gathered
together as Blobs 3. Blobs are organized into text lines 4.
Text lines are broken into words 5. First pass of recogni-
tion process attempts to recognize each word in turn 6.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 57

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

How accurate is Tesseract OCR?

The above processes ensure that Tesseract is highly accu-
rate when recognizing texts from languages that are cur-
rently supported. Results from The Fourth Annual Test of
OCR Accuracy (example, Tesseract demonstrated a Word
Accuracy of 97.69% with a sample of English newspa-
pers. Since these tests, the Tesseract development team
at Google claim to have improved Tesseract’s general re-
sults by 7.31% for2010.

What are the language-specific components of
Tesseract?

For a language such as English, 8 components are used:
1. General Words Wordlist (tessdata/eng.word-dawg) 2.
Frequent Word Wordlist (tessdata/eng.freq-dawg) 3. User
Wordlist (tessdata/eng.user-words) 4. Index for Character
Set (tessdata/eng.inttemp5. Box file – for use in locating
characters in the training file (tessdata/eng.normproto)
6. Box file – for use in locating characters in the train-
ing file (tessdata/eng.pffmtable) 7. Language’s Character
Set (tessdata/eng.unicharset) 8. Character Cluster Dis-
ambiguator - for ‘m’ and ‘rn’, for instance. (tessdata/eng.
DangAmbigs). OCR technology uses character recogni-
tion to attempt to identify the individual characters that
make up a printed text. Although the process used to iden-
tify individual characters is language independent, Tes-
seract must be given a list of the specific characters used
by a language (item 4 in the list above). Tesseract must
then be trained to correctly identify these characters when
they appear within a piece of text. Training is done by
feeding into Tesseract a document with words, sentences,
symbols and numbers from the required language which
contains a recommend ten to twenty example of each of
the characters used by that language. Such a list has been
added to this document as an appendix. This list must be
fed in twice, once as digital text and once as a scan of a
printed version of the same text. This produces a ‘box-
file’ containing Tesseract’s interpretation of the position
of characters and their identity. The next part of the pro-
cess is to manually correct any errors made by Tesseract,
for example the identification of ŵ as W or the identifi-
cation of the letter combination rn as m. A useful utility
with a graphical user interface now exists to simplify this
process, and is available from the Tesseract project page.
Once this task has been finished, common mistakes such
as those mentioned above can be added to the Character
Cluster Disambiguator file.

•Video calling (640 x 480 pixels)
•Video capture: Up to 1024 x 768 pixels
•Fluid Crystal Technology
•Photos: Up to 1.3 megapixels (software enhanced)
•Built-in mic with noise reduction
•Hi-Speed USB 2.0 certified (recommended)
•Universal clip fits laptops, LCD or CRT monitors

Fig. 2 Camera
C. Image Processing using TESSERACT
OCR engine:

Tesseract is an open source optical character recognition
(OCR) engine originally developed at Hewlett-Packard
between 1985 and 1995, but never commercially ex-
ploited. It rated highly at The Fourth Annual Test of OCR
Accuracy held in 1995 at the University of Nevada, Las
Vegas’ Information Science However by that time, Tes-
seract’s development had ceased. In 2005, HP transferred
Tesseract’s unaltered code to the ISRI and it was released
as open source. ISRI discovered that the original devel-
oper, Ray Smith (see http://research.google.com/pubs/
author4479.html), was now employed at Google after
several years working on the market leading commercial
OCR engine Omnipage. Google were persuaded by ISRI
to allow Smith to continue development of Tesseract as
open source software. Version 2.0 is now available for
download from Google Code at http://code.google.com/p/
tesseract-ocr/.he applications.

Limitations of Tesseract:
 Tesseract is an OCR engine, not a complete OCR program
Tesseract is an OCR engine rather than a fully featured
program similar to commercial OCR software such as Nu-
ance’s Omnipage. It was originally intended to serve as a
component part of other programs or systems. Although
Tesseract works from the ommand line, to be usable by
the average user the engine must be integrated into other
programs or interfaces, such as FreeOCR.net, WeOCR or
OCRpous. Without thisintegration into programs such as
these, Tesseract has no page layout analysis, no output
formatting and no graphical user interface (GUI).

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 56

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Satisfactory words passed to adaptive trainer7. Lessons
learned by adaptive trainer employed in a second pass,
which attempts recognize the words that were not recog-
nized satisfactorily in the first pass 8. Fuzzy spaces re-
solved and text checked for small caps 9. Digital texts
are outputted. 7. Lessons learned by adaptive trainer em-
ployed in a second pass, which attempts recognize the
words that were not recognized satisfactorily in the first
pass 8. Fuzzy spaces resolved and text checked for small
caps 9. Digital texts are outputted During these processes,
Tesseract uses: algorithms for detecting text lines from a
skewed page algorithms for detecting proportional and
non proportional words (a proportional word is a word
where all the letters are the same width) algorithms for
chopping joined characters and for associating broken
characters linguistic analysis to identify the most likely
word formed by a cluster of characters two character clas-
sifiers: a static classifier, and an adaptive classifier which
employs training data, and which is better at distinguish-
ing between upper and lower case letters.

Line and Word Finding Line Finding:

The line finding algorithm is one of the few parts of Tes-
seract that has previously been published [3]. The line
finding algorithm is designed so that a skewed page can
be recognized without having to de-skew, thus saving loss
of image quality. The key parts of the process are blob
filtering and line construction. Assuming that page layout
analysis has already provided text regions of a roughly
uniform text size, a simple percentile height filter removes
drop-caps and vertically touching characters. The median
height approximates the text size in the region, so it is safe
to filter out blobs that are smaller than some fraction of the
median height, being most likely punctuation, diacritical
marks and noise. Estimate the baselines, the filtered blobs
are more likely to fit a model of non-overlapping, paral-
lel, but sloping lines. Sorting and processing the blobs by
x-coordinate makes it possible to assign blobs to a unique
text line, while tracking the slope across the page, with
greatly reduced danger of assigning to an incorrect text
line in the presence of skew. Once the filtered blobs have
been assigned to lines, a least median of squares fit [4] is
used to estimate the baselines, and the filtered-out blobs
are fitted back into the appropriate lines. The final step of
the line creation process merges blobs that overlap by at
least half horizontally, putting diacritical marks together
with the correct base and correctly associating parts of
some broken characters.

This training process must be repeated with all font types
required, including bold, italic and underlined versions of
the same font. The Character Cluster Disambiguator file,
in conjunction with a language’s word list, helps Tesser-
act identify a word by suggesting possible corrections to
certain characters that allow Tesseract to locate the cor-
rect word in its word list. For example, the file can be used
to suggest to Tesseract that rn, wr, iii, and an could all
potentially be misidentifications of the letter m, and Tes-
seract will search the wordlist accordingly. However, not
all languages will have a list of the commonly used words
at their disposal. A list of the head words from a diction-
ary, for example, is not sufficient as all inflected forms
must also be included. For example, mouse and mice
should both be included in an English wordlist, and so
too run and ran. Many other languages undergo far more
inflection than English, so their corresponding wordlists
are likely to be both longer and harder to create. In Welsh
for example, nouns like coffi (coffee) occur regularly as
goffi, choffi and choffi, effectively quadrupling the num-
ber of nouns in a list. Many European languages have
significantly more verbal forms compared with English.
This inherent complexity in language is part of the reason
that resources such as wordlists have not been develop for
many languages with less resources. Bespoke wordlists
would have to be created for any language supported
where wordlists are not available. In truth, for optimum
performance, Tesseract requires not one, but two word
lists. One should contain the most frequently used words
in a language, which Tesseract will search first, the sec-
ond, which Tesseract will only search after failing to find
a word in the first list, should contain the less frequent-
ly used words in a language. A third list for user-added
words also exists. In theory, the above steps should allow
for the creation of an OCR engine in languages current-
ly unsupported by Tesseract. However, some languages
may not be suitable candidates, as right to left languages
are currently not compatible with some ofthe hardcoded
functionality built into Tesseract. Depending on character
sets, some languages with complicated glyphs or charac-
ters may also be unsuitable. However, Google are cur-
rently working on increased language support in future.

How does Tesseract work?

Outlines are analysed and stored 2. Outlines are gathered
together as Blobs 3. Blobs are organized into text lines 4.
Text lines are broken into words 5. First pass of recogni-
tion process attempts to recognize each word in turn 6.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 57

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The rest of the word recognition step applies only to non-
fixed-pitch text.Arduino is a tool for making computers
that can sense and control more of the physical world than
your desktop computer. It’s an open-source physical com-
puting platform based on a simple

Chopping Joined Characters:

While the result from a word (see section 6) is unsatisfac-
tory, Tesseract attempts to improve the result by chopping
the blob with worst confidence from the character classifi-
er. Candidate chop points are found from concave vertices
of a polygonal approximation [2] of the outline, and may
have either another concave vertex opposite, or a line seg-
ment. It may take up to 3 pairs of chop points to success-
fully separate joined characters from the ASCII set. Fig.
4 shows a set of candidate chop points with arrows and
the selected chop as a line across the outline where the ‘r’
touches the ‘m’.Chops are executed in priority order. Any
chop that fails to improve the confidence of the result is
undone, but not completely discarded so that the chop can
be re-used later by the associator if needed.

Associating Broken Characters:

When the potential chops have been exhausted, if the
word is still not good enough, it is given to the associa-
tor. The associator makes an A* (best first) search of the
segmentation graph of possible combinations of the max-
imally chopped blobs into candidate characters. It does
this without actually building the segmentation graph, but
instead maintains a hash table of visited states.The A*
search proceeds by pulling candidate new states from a
priority queue and evaluating them by classifying unclas-
sified combinations of fragments. It may be argued that
this fully-chop-then-associate approach is at best ineffi-
cient, at worst liable to miss important chops, and that
may well be the case. The advantage is that the chop-then-
associate scheme simplifies the data structures that would
be required to maintain the full segmentation graph.
When the A* segmentation search was first implemented
in about 1989, Tesseract’s accuracy on broken characters
was well ahead of the commercial engines of the day. Fig.
5 is a typical example. An essential part of that success
was the character classifier that could easily recognize
broken characters.

Baseline Fitting:

Once the text lines have been found, the baselines are fit-
ted more precisely using a quadratic spline. This Fixed
Pitch Detection and Chopping Tesseract tests the text lines
to determine whether they are fixed pitch. Where it finds
fixed pitch text, Tesseract chops the words into characters
using the pitch, and disables the chopper and associator
on these words for the word recognition step.

Fixed Pitch Detection and Chopping:

Tesseract tests the text lines to determine whether they
are fixed pitch. Where it finds fixed pitch text, Tesseract
chops the words into characters using the pitch, and dis-
ables the chopper and associate on these words for the
word recognition step.

Proportional Word Finding Non-fixed-pitch
or proportional text spacing:

The gap between the tens and units of ‘11.9%’ is a simi-
lar size to the general space, and is certainly larger than
the kerned space between ‘erated’ and ‘junk’. There is no
horizontal gap at all between the bounding boxes of ‘of’
and ‘financial’. Tesseract solves most of these problems
by measuring gaps in a limited vertical range between
the baseline and mean line. Spaces that are close to the
threshold at this stage are made fuzzy, so that a final deci-
sion can be made after word recognition.

Word Recognition:

Part of the recognition process for any character recogni-
tion engine is to identify how a word should be segmented
into characters. The initial segmentation output from line
finding is classified first.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 58

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Words from different segmentations may have differ-
ent numbers of characters in them. It is hard to compare
these words directly, even where a classifier claims to be
producing probabilities, which Tesseract does not. This
problem is solved in Tesseract by generating two numbers
for each character classification. The first, called the con-
fidence, is minus the normalized distance from the proto-
type. This enables it to be a “confidence” in the sense that
greater numbers are better, but still a distance, as, the far-
ther from zero, the greater the distance. The second out-
put, called the rating, multiplies the normalized distance
from the prototype by the total outline length in the un-
known character. Ratings for characters within a word can
be summed meaningfully, since the total outline length
for all characters within a word is always the same.

Adaptive Classifier:

It has been suggested [11] and demonstrated [12] that OCR
engines can benefit from the use of an adaptive classifier.
Since the static classifier has to be good at generalizing to
any kind of font, its ability to discriminate between differ-
ent characters or between characters and non-characters is
weakened. A more font-sensitive adaptive classifier that
is trained by the output of the static classifier is there-
fore commonly [13] used to obtain greater discrimination
within each document, where the number of fonts is lim-
ited.

Tesseract does not employ a template classifier, but uses
the same features and classifier as the static classifier. The
only significant difference between the static classifier
and the adaptive classifier, apart from the training data, is
that the adaptive classifier uses isotropic baseline/x-height
normalization, whereas the static classifier normalizes
characters by the centroid (first moments) for position and
second moments for anisotropic size normalization.

The baseline/x-height normalization makes it easier to
distinguish upper and lower case characters as well as im-
proving immunity to noise specks. The main benefit of
character moment normalization is removal of font aspect
ratio and some degree of font stroke width. It also makes
recognition of sub and superscripts simpler, but requires
an additional classifier feature to distinguish some upper
and lower case characters. Fig. 7 shows an example of 3
letters in baseline/x-height normalized form and moment
normalized form.

Static Character Classifier:

An early version of Tesseract used topological fea-
tures developed from the work of Shillman et. al. [7-8]
Though nicely independent of font and size, these fea-
tures are not robust to the problems found in real-life
images, as Bokser [9] describes. An intermediate idea
involved the use of segments of the polygonal approx-
imation as features, but this approach is also not ro-
bust to damaged characters. For example, in Fig. 6(a),
the right side of the shaft is in two main pieces, but in
Fig. 6(b) there is just a single piece.The breakthrough
solution is the idea that the features in the unknown
need not be the same as the features in the training
data. During training, the segments of a polygonal ap-
proximation [2] are used for features, but in recogni-
tion, features of a small, fixed length (in normalized
units) are extracted from the outline and matched
many-to-one against the clustered prototype features
of the training data. In Fig. 6(c), the short, thick lines
are the features extracted from the unknown, and the
thin, longer lines are the clustered segments of the
polygonal approximation that are used as prototypes.
One prototype bridging the two pieces is completely
unmatched. Three features on one side and two on the
other are unmatched, but, apart from those, every pro-
totype and every feature is well matched. This exam-
ple shows that this process of small features matching
large prototypes is easily able to cope with recognition
of damaged images. Its main problem is that the com-
putational cost of computing the distance between an
unknown and a prototype is very high.

Linguistic Analysis:

Tesseract contains relatively little linguistic analysis.
Whenever the word recognition module is considering
a new segmentation, the linguistic module (mis-named
the permuter) chooses the best available word string
in each of the following categories: Top frequent word,
Top dictionary word, Top numeric word, Top UPPER
case word, Top lower case word (with optional initial
upper), Top classifier choice. word. The final decision
for a given segmentation is simply the word with the
lowest total distance rating, where each of the above
categories is multiplied by a different constant.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 59

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

The rest of the word recognition step applies only to non-
fixed-pitch text.Arduino is a tool for making computers
that can sense and control more of the physical world than
your desktop computer. It’s an open-source physical com-
puting platform based on a simple

Chopping Joined Characters:

While the result from a word (see section 6) is unsatisfac-
tory, Tesseract attempts to improve the result by chopping
the blob with worst confidence from the character classifi-
er. Candidate chop points are found from concave vertices
of a polygonal approximation [2] of the outline, and may
have either another concave vertex opposite, or a line seg-
ment. It may take up to 3 pairs of chop points to success-
fully separate joined characters from the ASCII set. Fig.
4 shows a set of candidate chop points with arrows and
the selected chop as a line across the outline where the ‘r’
touches the ‘m’.Chops are executed in priority order. Any
chop that fails to improve the confidence of the result is
undone, but not completely discarded so that the chop can
be re-used later by the associator if needed.

Associating Broken Characters:

When the potential chops have been exhausted, if the
word is still not good enough, it is given to the associa-
tor. The associator makes an A* (best first) search of the
segmentation graph of possible combinations of the max-
imally chopped blobs into candidate characters. It does
this without actually building the segmentation graph, but
instead maintains a hash table of visited states.The A*
search proceeds by pulling candidate new states from a
priority queue and evaluating them by classifying unclas-
sified combinations of fragments. It may be argued that
this fully-chop-then-associate approach is at best ineffi-
cient, at worst liable to miss important chops, and that
may well be the case. The advantage is that the chop-then-
associate scheme simplifies the data structures that would
be required to maintain the full segmentation graph.
When the A* segmentation search was first implemented
in about 1989, Tesseract’s accuracy on broken characters
was well ahead of the commercial engines of the day. Fig.
5 is a typical example. An essential part of that success
was the character classifier that could easily recognize
broken characters.

Baseline Fitting:

Once the text lines have been found, the baselines are fit-
ted more precisely using a quadratic spline. This Fixed
Pitch Detection and Chopping Tesseract tests the text lines
to determine whether they are fixed pitch. Where it finds
fixed pitch text, Tesseract chops the words into characters
using the pitch, and disables the chopper and associator
on these words for the word recognition step.

Fixed Pitch Detection and Chopping:

Tesseract tests the text lines to determine whether they
are fixed pitch. Where it finds fixed pitch text, Tesseract
chops the words into characters using the pitch, and dis-
ables the chopper and associate on these words for the
word recognition step.

Proportional Word Finding Non-fixed-pitch
or proportional text spacing:

The gap between the tens and units of ‘11.9%’ is a simi-
lar size to the general space, and is certainly larger than
the kerned space between ‘erated’ and ‘junk’. There is no
horizontal gap at all between the bounding boxes of ‘of’
and ‘financial’. Tesseract solves most of these problems
by measuring gaps in a limited vertical range between
the baseline and mean line. Spaces that are close to the
threshold at this stage are made fuzzy, so that a final deci-
sion can be made after word recognition.

Word Recognition:

Part of the recognition process for any character recogni-
tion engine is to identify how a word should be segmented
into characters. The initial segmentation output from line
finding is classified first.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 58

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Words from different segmentations may have differ-
ent numbers of characters in them. It is hard to compare
these words directly, even where a classifier claims to be
producing probabilities, which Tesseract does not. This
problem is solved in Tesseract by generating two numbers
for each character classification. The first, called the con-
fidence, is minus the normalized distance from the proto-
type. This enables it to be a “confidence” in the sense that
greater numbers are better, but still a distance, as, the far-
ther from zero, the greater the distance. The second out-
put, called the rating, multiplies the normalized distance
from the prototype by the total outline length in the un-
known character. Ratings for characters within a word can
be summed meaningfully, since the total outline length
for all characters within a word is always the same.

Adaptive Classifier:

It has been suggested [11] and demonstrated [12] that OCR
engines can benefit from the use of an adaptive classifier.
Since the static classifier has to be good at generalizing to
any kind of font, its ability to discriminate between differ-
ent characters or between characters and non-characters is
weakened. A more font-sensitive adaptive classifier that
is trained by the output of the static classifier is there-
fore commonly [13] used to obtain greater discrimination
within each document, where the number of fonts is lim-
ited.

Tesseract does not employ a template classifier, but uses
the same features and classifier as the static classifier. The
only significant difference between the static classifier
and the adaptive classifier, apart from the training data, is
that the adaptive classifier uses isotropic baseline/x-height
normalization, whereas the static classifier normalizes
characters by the centroid (first moments) for position and
second moments for anisotropic size normalization.

The baseline/x-height normalization makes it easier to
distinguish upper and lower case characters as well as im-
proving immunity to noise specks. The main benefit of
character moment normalization is removal of font aspect
ratio and some degree of font stroke width. It also makes
recognition of sub and superscripts simpler, but requires
an additional classifier feature to distinguish some upper
and lower case characters. Fig. 7 shows an example of 3
letters in baseline/x-height normalized form and moment
normalized form.

Static Character Classifier:

An early version of Tesseract used topological fea-
tures developed from the work of Shillman et. al. [7-8]
Though nicely independent of font and size, these fea-
tures are not robust to the problems found in real-life
images, as Bokser [9] describes. An intermediate idea
involved the use of segments of the polygonal approx-
imation as features, but this approach is also not ro-
bust to damaged characters. For example, in Fig. 6(a),
the right side of the shaft is in two main pieces, but in
Fig. 6(b) there is just a single piece.The breakthrough
solution is the idea that the features in the unknown
need not be the same as the features in the training
data. During training, the segments of a polygonal ap-
proximation [2] are used for features, but in recogni-
tion, features of a small, fixed length (in normalized
units) are extracted from the outline and matched
many-to-one against the clustered prototype features
of the training data. In Fig. 6(c), the short, thick lines
are the features extracted from the unknown, and the
thin, longer lines are the clustered segments of the
polygonal approximation that are used as prototypes.
One prototype bridging the two pieces is completely
unmatched. Three features on one side and two on the
other are unmatched, but, apart from those, every pro-
totype and every feature is well matched. This exam-
ple shows that this process of small features matching
large prototypes is easily able to cope with recognition
of damaged images. Its main problem is that the com-
putational cost of computing the distance between an
unknown and a prototype is very high.

Linguistic Analysis:

Tesseract contains relatively little linguistic analysis.
Whenever the word recognition module is considering
a new segmentation, the linguistic module (mis-named
the permuter) chooses the best available word string
in each of the following categories: Top frequent word,
Top dictionary word, Top numeric word, Top UPPER
case word, Top lower case word (with optional initial
upper), Top classifier choice. word. The final decision
for a given segmentation is simply the word with the
lowest total distance rating, where each of the above
categories is multiplied by a different constant.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 59

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

This pot allows the control circuitry to monitor the cur-
rent angle of the servo motor. If the shaft is at the correct
angle, then the motor shuts off. If the circuit finds that
the angle is not correct, it will turn the motor the correct
direction until the angle is correct. The output shaft of
the servo is capableof traveling somewhere around 180
degrees.Usually, its somewhere in the 210 degree range,
but it varies by manufacturer. A normal servo is used to
control an angular motion of between 0 and 180 degrees.

Table I. Axis Capabilities:

A normal servo is mechanically not capable of turning
any farther due to a mechanical stop built on to the main
output gear. The amount of power applied to the motor
is proportional to the distance it needs to travel. So, if
the shaft needs to turn a large distance, the motor will
run at full speed. If it needs to turn only a small amount,
the motor will run at a slower speed.The motor is paired
with some type of encoder to provide position and speed
feedback. In the simplest case, only the position is mea-
sured. The measured position of the output is compared to
the command position, the external input to the controller.
If the output position differs from that required, an error
signal is generated which then causes the motor to rotate
in either direction, as needed to bring the output shaft to
the appropriate position.

As the positions approach, the error signal reduces to
zero and the motor stops.More sophisticated servomotors
measure both the position and also the speed of the out-
put shaft. They may also control the speed of their motor,
rather than always running at full speed. Both of these
enhancements, usually in combination with a PID control
algorithm, allow the servomotor to be brought to its com-
manded position more quickly and more precisely, with
less overshooting. The servo turn rate, or transit time, is
used for determining servo rotational velocity. This is
the amount of time it takes for the servo to move a set
amount, usually 60 degrees. For example, suppose you
have a servo with a transit time of 0.17sec/60 degrees at
no load, this means it would take nearly half a second to
rotate an entire 180 degrees

E. Robotic Arms & Servomotors:

Arms are types of jointed robot manipulator that allow
robots to interact with their environment. Many have
onboard controllers or translators to simplify communi-
cation, though they may be controlled directly or in any
number of ways. Due to this fact, standalone arms are of-
ten classified as full robots. The robot used in this project
is 4 Axis Robotic Arm. 4 Axis Robotic Arm is designed
for small mobile robots. It can grip objects with the size up
to 60mm with the force up to 250gms. Arm has reach of
23cm. It can lift the payload up to 400gms. Robotic Arm
comes fully assembled and ready to use. First two axis of
the arm are made up of NRS-995 dual bearing heavy duty
metal gear motors and remaining 2 axis and gripper uses
NRS-585 dual bearing plastic gear servo motors. Axis 2
and 3 enables gripper to maintain its angle constant with
the surface while moving up and down. Robotic arm can
do Left-Right, Up-Down while keeping gripper parallel
to surface, Twist motions and Gripping action. Robotic
Arm will require current up to 5Amps. Make sure that
your robot can supply that much amount of current for
proper operation of the arm. The robotic arm has follow-
ing specifications.

Number of Axis: 4 + Gripper

Gripping force: 250gms (Maximum) Gripping jaw length:
43mm

Gripping jaw width: 60mm

Weight: 541gms (Including 2 NRS-995 and 3 NRS-585
servo motors)

Operating voltage: 5V to 6V Reach: 23cm

Servos are DC motors with built in gearing and feedback
control loop circuitry. And no motor drivers required. A
servomotor is a rotary actuator that allows for precise
control of angular position. They consist of a motor cou-
pled to a sensor for position feedback, through a reduc-
tion gearbox. They also require a relatively sophisticated
controller, often a dedicated module designed specifically
for use with servomotors. Servomotors are used in appli-
cations such as robotics, CNC machinery or automated
manufacturing. The servo motor has some control circuits
and a potentiometer (a variable resistor) that is connected
to the output shaft.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 60

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

error rate (%Err) and the percent change relative to the
1995 results (%Chg) for both character errors and non-
stopword errors. [1] More up-to-date results are at http://
code.google.com/p/tesseract-ocr.

IV. CONCLUSION AND FURTHER
WORK:

Fully functional sorter machine can be implemented by
using a structure of parallel and independent channels
in order to increase the overall throughput which results
with a forecasted performance. The project can work
successfully. There are two main steps in sensing part,
objects detection and recognition. The system can suc-
cessfully perform handling station task, namely pick and
place mechanism with help of sensor. Thus a cost effec-
tive Mechatronics system can be designed using the sim-
plest concepts and efficient result can be observed.After
lying dormant for more than 10 years, Tesseract is now
behind the leading commercial engines in terms of its
accuracy. Its key strength is probably its unusual choice
of features. Its key weakness is probably its use of a po-
lygonal approximation as input to the classifier instead of
the raw outlines.With internationalization done, accuracy
could probably be improved significantly with the judi-
cious addition of a Hidden-Markov-Model-based charac-
ter n-gram model,

Acknowledgements:

The author would like to thank John Burns and Tom Nart-
ker for their efforts in making Tesseract open source, the
ISRI group at UNLV for sharing their tools and data, as
well as Luc Vincent, Igor Krivokon, Dar-Shyang Lee,

Fig.5 Servomotor Rotation

G. Conveyor Belt:

The conveyor motor receives power from battery. A
conveyor belt consists of two or more pulleys, with a
continuous loop of material - the conveyor belt - that
rotates about them. One or both of the pulleys are
powered, moving the belt and the material on the belt
forward. The powered pulley is called the drive pulley
while the unpowered pulley is called the idler. Convey-
or frames are supplied with either butting plate (stan-
dard) or hook and bar attachments to secure each seg-
ment together. Heavy duty rollers are supplied with
shafts.

Fig. 5Conveyor Belt

III. Result
We can assume objects in circular, rectangular shape in
different colours so the result is

Table II. Result:

Tesseract was included in the 4th UNLV annual test [1]
of OCR accuracy, as “HP Labs OCR,” but the code has
changed a lot since then, including conversion to Uni-
code and retraining. Table 1 compares results from a re-
cent version of Tesseract (shown as 2.0) with the origi-
nal 1995 results (shown as HP). All four 300 DPI binary
test sets that were used in the 1995 test are shown,
along with the number of errors (Errs), the percent

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 61

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

V.I. Marosi, “Industrial OCR approaches: architecture,
algorithms and adaptation techniques”, Document
Recognition and Retrieval XIV, SPIE Jan 2007, 6500-01.
[1]AlessandroGolfarelli, RossanoCodeluppi and Mar-
co Tartagni, “A Self-Learning Multi-Sensing Selection
Process: Measuring Objects One by One by”,ARCES
– LYRAS LAB University of Bologna, Campus of Forlì,
1-4244-1262-5/07/$25.00 ©2007 IEEE, IEEE SENSORS
2007 Conference.
[2]Sahu, S., Lenka, P.; Kumari, S.; Sahu, K.B.; Mallick, B.;
“Design a colour sensor: Application to robot handling
radiation work”, Vol. 56, No. 10, pp. 365- 368, 2007, In-
dustrial. Engineering.
[3]www.google.com/microepsilon.com/catcolorsen-
sor—e
[4]www.shortcourse.com/www.sensors.com/optical/
imagesens ors
[5]wwwgoogle.com/wisegeek.com/whatis optical sen-
sors.htmwww.google.com/osa.org/sensors
[6]www.pdfgenicom/compacsort.com/sorters
[7]www.pdfgenicom/indiamart.com/sorting machine

Author’s Profile

Mr. SWARNENDU SARKAR pursuing M.Tech
(ECE) from St.Martins Engineering College, JNTUH
Hyderabad, and B.Tech (ECE) from CM Engineering
College,JNTUH Hyderabad. He is working as Embed-
ded Engineer in Ritchie Technocrats, R.R Dist, AP and
India.

Mr. K.YADAIAH, pursuing PhD in JNTUH under the
guidance of Dr. B.L. RAJU, Principal ACE Engineering
College. Post Graduated in Electronics and communi-
cation Engineering (M.Tech) From JNTUCE, Kakinada in
Nov-2003 and Graduated in ECE (B.Tech) from JNTU,
Hyderabad in 2001. He is working as An Associate Pro-
fessor and Head, Department of ECE in St.Martins En-
gineering College, R.R Dist, AP and India. He has 13+
years of Teaching Experience. His Research area in
Ph.D is Energy Efficient Routing in MANETS & Wireless
Sensor Networks.

and Thomas Kielbus for their comments on the content
of this paper.

REFERENCES:

J.S.V. Rice, F.R. Jenkins, T.A. Nartker, The Fourth Annu-
al Test of OCR Accuracy, Technical Report 95-03, Infor-
mation Science Research Institute, University of Nevada,
Las Vegas, July 1995.
K.R.W. Smith, The Extraction and Recognition of Text
from Multimedia Document Images, PhD Thesis, Univer-
sity of Bristol, November 1987.
L R. Smith, “A Simple and Efficient Skew Detec-
tion Algorithm via Text Row Accumulation”, Proc. of the
3rd Int. Conf. on Document Analysis and Recognition
(Vol. 2), IEEE 1995, pp. 1145-1148.
M.P.J. Rousseeuw, A.M. Leroy, Robust Regression and
Outlier Detection, Wiley-IEEE, 2003.
N.S.V. Rice, G. Nagy, T.A. Nartker, Optical Character
Recognition: An Illustrated Guide to the Frontier, Kluwer
Academic Publishers, USA 1999, pp. 57-60.
O.P.J. Schneider, “An Algorithm for Automatically Fit-
ting Digitized Curves”, in A.S. Glassner, Graphics Gems
I, Morgan Kaufmann, 1990, pp. 612-626.
P.R.J. Shillman, Character Recognition Based on Phe-
nomenological Attributes: Theory and Methods, PhD.
Thesis, Massachusetts Institute of Technology. 1974.
Q.B.A. Blesser, T.T. Kuklinski, R.J. Shillman, “Empiri-
cal Tests for Feature Selection Based on a Pscychological
Theory of Character Recognition”, Pattern Recognition
8(2), Elsevier, New York, 1976.
R M. Bokser, “Omnidocument Technologies”, Proc.
IEEE 80(7), IEEE, USA, Jul 1992, pp. 1066-1078.
S.H.S. Baird, R. Fossey, “A 100-Font Classifier”, Proc. of
the 1st Int. Conf. on Document Analysis and Recognition,
IEEE, 1991, pp 332-340.
T.G. Nagy, “At the frontiers of OCR”, Proc. IEEE 80(7),
IEEE, USA, Jul 1992, pp 1093-1100.
U.G. Nagy, Y. Xu, “Automatic Prototype Extraction for
Adaptive OCR”, Proc. of the 4th Int. Conf. on Document
Analysis and Recognition, IEEE, Aug 1997, pp 278-282.

 Volume No: 2 (2015), Issue No: 8 (August) August 2015
 www.ijmetmr.com Page 62

