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I.INTRODUCTION:

Determining real time and highly accurate characteristics 
of small objects in a fast flowing stream would open new 
directions for industrial sorting processes. The present 
paper relates to an apparatus and method for classify in 
and sorting small-sized objects, using elect ronic systems 
and advanced sensors operating on the basis of a physical 
and geometric characterization of each element. Recent 
advances in electronics and printed circuit board technol-
ogy open new perspectives for industrial application in 
this field. The proposed selection process is based on a 
multi sensorial characterization, and more specifically on 
crossed optical and impedimetric analysis of the objects 
to be sorted. Parallel guides, also called channels, are cre-
ated on a slanted plant support. The objects to be sorted 
are immersed in a continuous, free-falling flow along said 
guides [1] [2]. 

By another way this project can be treated an automated 
material handling system & can be designed by follow-
ing way. It synchronizes the movement of robotic arm to 
pick the objects moving on a conveyor belt. It aims in 
classifying the coloured objects which are coming on the 
conveyor by picking and placing the objects in its respec-
tive pre-programmed place. Thereby eliminating the mo-
notonous work done by human, achieving accuracy and 
speed in the work. The project involves colour sensors 
that senses the object’s colour and sends the signal to the 
microcontroller. The microcontroller sends signal to cir-
cuit which drives the various motors of the robotic arm to 
grip the object and place it in the specified location. Based 
upon the colour detected, the robotic arm moves to the 
specified location, releases the object and comes back to 
the original position.
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The microcontroller in turn will control the servomo-
tors by PWM signals. These servomotors will control the 
movement of robotic arm, by controlling their angular 
movement. Thus the robotic arm will be fully controlled 
by servomotors. The gripper of robotic arm will pick the 
object place it depending on its size. This is full automatic 
process no manual support is needed. The microcontroller 
used here is with the support of Arduino kit. The Arduino 
is good platform for robotics application. It is the soft-
ware and hardware also, using both the above system is 
developed. Thus the real time, continuous object sorting 
can be done.

RAM is 512 MB.,4usb on board, Storage card is Micro 
SD and voltage levels are as follows600 mA  upto 1.8 A 
at 5 V.GPIO pins are 40. USB mainly used for key board 
for peripherals WI-FI Adapter and audio connections us-
ing a 3.5 MM Jack SD card is used as a boot device and 
also persistent storage. More storage can be attached to 
the USB

B. Camera:

The camera used in this case will be overhead camera, 
it will take the snapshot of the object for colour sensing 
purpose. The image captured by the camera will be pro-
cessed by image processing using Tesseract. The camera 
used in this case is Logitech PN 960-000748 whose tech-
nical specifications are:

II.SYSTEM MODEL AND ASSUMPTIONS:

The fig. shows block diagram of a system. The basic 
theme of this project is object flowing on conveyor are 
sensed, selected and sorted depending on their colour and 
size. For this, camera is used as input sensor, camera is 
overhead camera which will be mounted on PC, and will 
be connected to PC by USB. The camera will take a snap 
and it will feed to PC for colour processing. In PC matlab 
is used for processing on colour, depending on this signal 
will be given to microcontroller Atmega 328. 

A. Microcontroller:

The Arm Raspberry pi is a low-power 32-bit microcon-
troller based on the AVR enhanced RISC architecture. By 
executing powerful instructions in a single clock cycle, t. 
700 MHz ARM1176JZF-S core (ARM11 family, ARMv6 
instruction set).The AVR core combines a rich instruction 
set with 32 general purpose working registers. All the 32 
registers are directly connected to the Arithmetic Logic 
Unit (ALU), allowing two independent registers to be 
accessed in one single instruction executed in one clock 
cycle. The resulting architecture is more code efficient 
while achieving throughputs up to ten times faster than 
conventional CISC microcontrollers. The chip is Broad-
com BCM2835 (CPU, GPU, DSP, SDRAM, and single 
USB port).
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Fig. 1 Block Diagram
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How accurate is Tesseract OCR? 

The above processes ensure that Tesseract is highly accu-
rate when recognizing texts from languages that are cur-
rently supported. Results from The Fourth Annual Test of 
OCR Accuracy (example, Tesseract demonstrated a Word 
Accuracy of 97.69% with a sample of English newspa-
pers. Since these tests, the Tesseract development team 
at Google claim to have improved Tesseract’s general re-
sults by 7.31% for2010.

What are the language-specific components of 
Tesseract? 

For a language such as English, 8 components are used: 
1. General Words Wordlist (tessdata/eng.word-dawg) 2. 
Frequent Word Wordlist (tessdata/eng.freq-dawg) 3. User 
Wordlist (tessdata/eng.user-words) 4. Index for Character 
Set (tessdata/eng.inttemp5. Box file – for use in locating 
characters in the training file (tessdata/eng.normproto) 
6. Box file – for use in locating characters in the train-
ing file (tessdata/eng.pffmtable) 7. Language’s Character 
Set (tessdata/eng.unicharset) 8. Character Cluster Dis-
ambiguator - for ‘m’ and ‘rn’, for instance. (tessdata/eng.
DangAmbigs). OCR technology uses character recogni-
tion to attempt to identify the individual characters that 
make up a printed text. Although the process used to iden-
tify individual characters is language independent, Tes-
seract must be given a list of the specific characters used 
by a language (item 4 in the list above). Tesseract must 
then be trained to correctly identify these characters when 
they appear within a piece of text. Training is done by 
feeding into Tesseract a document with words, sentences, 
symbols and numbers from the required language which 
contains a recommend ten to twenty example of each of 
the characters used by that language. Such a list has been 
added to this document as an appendix. This list must be 
fed in twice, once as digital text and once as a scan of a 
printed version of the same text. This produces a ‘box-
file’ containing Tesseract’s interpretation of the position 
of characters and their identity. The next part of the pro-
cess is to manually correct any errors made by Tesseract, 
for example the identification of ŵ as W or the identifi-
cation of the letter combination rn as m. A useful utility 
with a graphical user interface now exists to simplify this 
process, and is available from the Tesseract project page. 
Once this task has been finished, common mistakes such 
as those mentioned above can be added to the Character 
Cluster Disambiguator file.

•Video calling (640 x 480 pixels) 
•Video capture: Up to 1024 x 768 pixels 
•Fluid Crystal Technology 
•Photos: Up to 1.3 megapixels (software enhanced) 
•Built-in mic with noise reduction 
•Hi-Speed USB 2.0 certified (recommended) 
•Universal clip fits laptops, LCD or CRT monitors 

Fig. 2 Camera
C. Image Processing using TESSERACT 
OCR engine:

Tesseract is an open source optical character recognition 
(OCR) engine originally developed at Hewlett-Packard 
between 1985 and 1995, but never commercially ex-
ploited. It rated highly at The Fourth Annual Test of OCR 
Accuracy held in 1995 at the University of Nevada, Las 
Vegas’ Information Science However by that time, Tes-
seract’s development had ceased. In 2005, HP transferred 
Tesseract’s unaltered code to the ISRI and it was released 
as open source. ISRI discovered that the original devel-
oper, Ray Smith (see http://research.google.com/pubs/
author4479.html), was now employed at Google after 
several years working on the market leading commercial 
OCR engine Omnipage. Google were persuaded by ISRI 
to allow Smith to continue development of Tesseract as 
open source software. Version 2.0 is now available for 
download from Google Code at http://code.google.com/p/
tesseract-ocr/.he applications. 

Limitations of Tesseract:
 Tesseract is an OCR engine, not a complete OCR program 
Tesseract is an OCR engine rather than a fully featured 
program similar to commercial OCR software such as Nu-
ance’s Omnipage. It was originally intended to serve as a 
component part of other programs or systems. Although 
Tesseract works from the ommand line, to be usable by 
the average user the engine must be integrated into other 
programs or interfaces, such as FreeOCR.net, WeOCR or 
OCRpous. Without thisintegration into programs such as 
these, Tesseract has no page layout analysis, no output 
formatting and no graphical user interface (GUI).
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Satisfactory words passed to adaptive trainer7. Lessons 
learned by adaptive trainer employed in a second pass, 
which attempts recognize the words that were not recog-
nized satisfactorily in the first pass 8. Fuzzy spaces re-
solved and text checked for small caps 9. Digital texts 
are outputted. 7. Lessons learned by adaptive trainer em-
ployed in a second pass, which attempts recognize the 
words that were not recognized satisfactorily in the first 
pass 8. Fuzzy spaces resolved and text checked for small 
caps 9. Digital texts are outputted During these processes, 
Tesseract uses:  algorithms for detecting text lines from a 
skewed page  algorithms for detecting proportional and 
non proportional words (a proportional word is a word 
where all the letters are the same width)  algorithms for 
chopping joined characters and for associating broken 
characters  linguistic analysis to identify the most likely 
word formed by a cluster of characters  two character clas-
sifiers: a static classifier, and an adaptive classifier which 
employs training data, and which is better at distinguish-
ing between upper and lower case letters.

Line and Word Finding Line Finding: 

The line finding algorithm is one of the few parts of Tes-
seract that has previously been published [3]. The line 
finding algorithm is designed so that a skewed page can 
be recognized without having to de-skew, thus saving loss 
of image quality. The key parts of the process are blob 
filtering and line construction. Assuming that page layout 
analysis has already provided text regions of a roughly 
uniform text size, a simple percentile height filter removes 
drop-caps and vertically touching characters. The median 
height approximates the text size in the region, so it is safe 
to filter out blobs that are smaller than some fraction of the 
median height, being most likely punctuation, diacritical 
marks and noise. Estimate the baselines, the filtered blobs 
are more likely to fit a model of non-overlapping, paral-
lel, but sloping lines. Sorting and processing the blobs by 
x-coordinate makes it possible to assign blobs to a unique 
text line, while tracking the slope across the page, with 
greatly reduced danger of assigning to an incorrect text 
line in the presence of skew. Once the filtered blobs have 
been assigned to lines, a least median of squares fit [4] is 
used to estimate the baselines, and the filtered-out blobs 
are fitted back into the appropriate lines. The final step of 
the line creation process merges blobs that overlap by at 
least half horizontally, putting diacritical marks together 
with the correct base and correctly associating parts of 
some broken characters.

This training process must be repeated with all font types 
required, including bold, italic and underlined versions of 
the same font. The Character Cluster Disambiguator file, 
in conjunction with a language’s word list, helps Tesser-
act identify a word by suggesting possible corrections to 
certain characters that allow Tesseract to locate the cor-
rect word in its word list. For example, the file can be used 
to suggest to Tesseract that rn, wr, iii, and an could all 
potentially be misidentifications of the letter m, and Tes-
seract will search the wordlist accordingly. However, not 
all languages will have a list of the commonly used words 
at their disposal. A list of the head words from a diction-
ary, for example, is not sufficient as all inflected forms 
must also be included. For example, mouse and mice 
should both be included in an English wordlist, and so 
too run and ran. Many other languages undergo far more 
inflection than English, so their corresponding wordlists 
are likely to be both longer and harder to create. In Welsh 
for example, nouns like coffi (coffee) occur regularly as 
goffi, choffi and choffi, effectively quadrupling the num-
ber of nouns in a list. Many European languages have 
significantly more verbal forms compared with English. 
This inherent complexity in language is part of the reason 
that resources such as wordlists have not been develop for 
many languages with less resources. Bespoke wordlists 
would have to be created for any language supported 
where wordlists are not available. In truth, for optimum 
performance, Tesseract requires not one, but two word 
lists. One should contain the most frequently used words 
in a language, which Tesseract will search first, the sec-
ond, which Tesseract will only search after failing to find 
a word in the first list, should contain the less frequent-
ly used words in a language. A third list for user-added 
words also exists. In theory, the above steps should allow 
for the creation of an OCR engine in languages current-
ly unsupported by Tesseract. However, some languages 
may not be suitable candidates, as right to left languages 
are currently not compatible with some ofthe hardcoded 
functionality built into Tesseract. Depending on character 
sets, some languages with complicated glyphs or charac-
ters may also be unsuitable. However, Google are cur-
rently working on increased language support in future. 

How does Tesseract work? 

Outlines are analysed and stored 2. Outlines are gathered 
together as Blobs 3. Blobs are organized into text lines 4. 
Text lines are broken into words 5. First pass of recogni-
tion process attempts to recognize each word in turn 6.
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How accurate is Tesseract OCR? 

The above processes ensure that Tesseract is highly accu-
rate when recognizing texts from languages that are cur-
rently supported. Results from The Fourth Annual Test of 
OCR Accuracy (example, Tesseract demonstrated a Word 
Accuracy of 97.69% with a sample of English newspa-
pers. Since these tests, the Tesseract development team 
at Google claim to have improved Tesseract’s general re-
sults by 7.31% for2010.

What are the language-specific components of 
Tesseract? 

For a language such as English, 8 components are used: 
1. General Words Wordlist (tessdata/eng.word-dawg) 2. 
Frequent Word Wordlist (tessdata/eng.freq-dawg) 3. User 
Wordlist (tessdata/eng.user-words) 4. Index for Character 
Set (tessdata/eng.inttemp5. Box file – for use in locating 
characters in the training file (tessdata/eng.normproto) 
6. Box file – for use in locating characters in the train-
ing file (tessdata/eng.pffmtable) 7. Language’s Character 
Set (tessdata/eng.unicharset) 8. Character Cluster Dis-
ambiguator - for ‘m’ and ‘rn’, for instance. (tessdata/eng.
DangAmbigs). OCR technology uses character recogni-
tion to attempt to identify the individual characters that 
make up a printed text. Although the process used to iden-
tify individual characters is language independent, Tes-
seract must be given a list of the specific characters used 
by a language (item 4 in the list above). Tesseract must 
then be trained to correctly identify these characters when 
they appear within a piece of text. Training is done by 
feeding into Tesseract a document with words, sentences, 
symbols and numbers from the required language which 
contains a recommend ten to twenty example of each of 
the characters used by that language. Such a list has been 
added to this document as an appendix. This list must be 
fed in twice, once as digital text and once as a scan of a 
printed version of the same text. This produces a ‘box-
file’ containing Tesseract’s interpretation of the position 
of characters and their identity. The next part of the pro-
cess is to manually correct any errors made by Tesseract, 
for example the identification of ŵ as W or the identifi-
cation of the letter combination rn as m. A useful utility 
with a graphical user interface now exists to simplify this 
process, and is available from the Tesseract project page. 
Once this task has been finished, common mistakes such 
as those mentioned above can be added to the Character 
Cluster Disambiguator file.

•Video calling (640 x 480 pixels) 
•Video capture: Up to 1024 x 768 pixels 
•Fluid Crystal Technology 
•Photos: Up to 1.3 megapixels (software enhanced) 
•Built-in mic with noise reduction 
•Hi-Speed USB 2.0 certified (recommended) 
•Universal clip fits laptops, LCD or CRT monitors 

Fig. 2 Camera
C. Image Processing using TESSERACT 
OCR engine:

Tesseract is an open source optical character recognition 
(OCR) engine originally developed at Hewlett-Packard 
between 1985 and 1995, but never commercially ex-
ploited. It rated highly at The Fourth Annual Test of OCR 
Accuracy held in 1995 at the University of Nevada, Las 
Vegas’ Information Science However by that time, Tes-
seract’s development had ceased. In 2005, HP transferred 
Tesseract’s unaltered code to the ISRI and it was released 
as open source. ISRI discovered that the original devel-
oper, Ray Smith (see http://research.google.com/pubs/
author4479.html), was now employed at Google after 
several years working on the market leading commercial 
OCR engine Omnipage. Google were persuaded by ISRI 
to allow Smith to continue development of Tesseract as 
open source software. Version 2.0 is now available for 
download from Google Code at http://code.google.com/p/
tesseract-ocr/.he applications. 

Limitations of Tesseract:
 Tesseract is an OCR engine, not a complete OCR program 
Tesseract is an OCR engine rather than a fully featured 
program similar to commercial OCR software such as Nu-
ance’s Omnipage. It was originally intended to serve as a 
component part of other programs or systems. Although 
Tesseract works from the ommand line, to be usable by 
the average user the engine must be integrated into other 
programs or interfaces, such as FreeOCR.net, WeOCR or 
OCRpous. Without thisintegration into programs such as 
these, Tesseract has no page layout analysis, no output 
formatting and no graphical user interface (GUI).
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Satisfactory words passed to adaptive trainer7. Lessons 
learned by adaptive trainer employed in a second pass, 
which attempts recognize the words that were not recog-
nized satisfactorily in the first pass 8. Fuzzy spaces re-
solved and text checked for small caps 9. Digital texts 
are outputted. 7. Lessons learned by adaptive trainer em-
ployed in a second pass, which attempts recognize the 
words that were not recognized satisfactorily in the first 
pass 8. Fuzzy spaces resolved and text checked for small 
caps 9. Digital texts are outputted During these processes, 
Tesseract uses:  algorithms for detecting text lines from a 
skewed page  algorithms for detecting proportional and 
non proportional words (a proportional word is a word 
where all the letters are the same width)  algorithms for 
chopping joined characters and for associating broken 
characters  linguistic analysis to identify the most likely 
word formed by a cluster of characters  two character clas-
sifiers: a static classifier, and an adaptive classifier which 
employs training data, and which is better at distinguish-
ing between upper and lower case letters.

Line and Word Finding Line Finding: 

The line finding algorithm is one of the few parts of Tes-
seract that has previously been published [3]. The line 
finding algorithm is designed so that a skewed page can 
be recognized without having to de-skew, thus saving loss 
of image quality. The key parts of the process are blob 
filtering and line construction. Assuming that page layout 
analysis has already provided text regions of a roughly 
uniform text size, a simple percentile height filter removes 
drop-caps and vertically touching characters. The median 
height approximates the text size in the region, so it is safe 
to filter out blobs that are smaller than some fraction of the 
median height, being most likely punctuation, diacritical 
marks and noise. Estimate the baselines, the filtered blobs 
are more likely to fit a model of non-overlapping, paral-
lel, but sloping lines. Sorting and processing the blobs by 
x-coordinate makes it possible to assign blobs to a unique 
text line, while tracking the slope across the page, with 
greatly reduced danger of assigning to an incorrect text 
line in the presence of skew. Once the filtered blobs have 
been assigned to lines, a least median of squares fit [4] is 
used to estimate the baselines, and the filtered-out blobs 
are fitted back into the appropriate lines. The final step of 
the line creation process merges blobs that overlap by at 
least half horizontally, putting diacritical marks together 
with the correct base and correctly associating parts of 
some broken characters.

This training process must be repeated with all font types 
required, including bold, italic and underlined versions of 
the same font. The Character Cluster Disambiguator file, 
in conjunction with a language’s word list, helps Tesser-
act identify a word by suggesting possible corrections to 
certain characters that allow Tesseract to locate the cor-
rect word in its word list. For example, the file can be used 
to suggest to Tesseract that rn, wr, iii, and an could all 
potentially be misidentifications of the letter m, and Tes-
seract will search the wordlist accordingly. However, not 
all languages will have a list of the commonly used words 
at their disposal. A list of the head words from a diction-
ary, for example, is not sufficient as all inflected forms 
must also be included. For example, mouse and mice 
should both be included in an English wordlist, and so 
too run and ran. Many other languages undergo far more 
inflection than English, so their corresponding wordlists 
are likely to be both longer and harder to create. In Welsh 
for example, nouns like coffi (coffee) occur regularly as 
goffi, choffi and choffi, effectively quadrupling the num-
ber of nouns in a list. Many European languages have 
significantly more verbal forms compared with English. 
This inherent complexity in language is part of the reason 
that resources such as wordlists have not been develop for 
many languages with less resources. Bespoke wordlists 
would have to be created for any language supported 
where wordlists are not available. In truth, for optimum 
performance, Tesseract requires not one, but two word 
lists. One should contain the most frequently used words 
in a language, which Tesseract will search first, the sec-
ond, which Tesseract will only search after failing to find 
a word in the first list, should contain the less frequent-
ly used words in a language. A third list for user-added 
words also exists. In theory, the above steps should allow 
for the creation of an OCR engine in languages current-
ly unsupported by Tesseract. However, some languages 
may not be suitable candidates, as right to left languages 
are currently not compatible with some ofthe hardcoded 
functionality built into Tesseract. Depending on character 
sets, some languages with complicated glyphs or charac-
ters may also be unsuitable. However, Google are cur-
rently working on increased language support in future. 

How does Tesseract work? 

Outlines are analysed and stored 2. Outlines are gathered 
together as Blobs 3. Blobs are organized into text lines 4. 
Text lines are broken into words 5. First pass of recogni-
tion process attempts to recognize each word in turn 6.
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The rest of the word recognition step applies only to non-
fixed-pitch text.Arduino is a tool for making computers 
that can sense and control more of the physical world than 
your desktop computer. It’s an open-source physical com-
puting platform based on a simple

Chopping Joined Characters:

While the result from a word (see section 6) is unsatisfac-
tory, Tesseract attempts to improve the result by chopping 
the blob with worst confidence from the character classifi-
er. Candidate chop points are found from concave vertices 
of a polygonal approximation [2] of the outline, and may 
have either another concave vertex opposite, or a line seg-
ment. It may take up to 3 pairs of chop points to success-
fully separate joined characters from the ASCII set. Fig. 
4 shows a set of candidate chop points with arrows and 
the selected chop as a line across the outline where the ‘r’ 
touches the ‘m’.Chops are executed in priority order. Any 
chop that fails to improve the confidence of the result is 
undone, but not completely discarded so that the chop can 
be re-used later by the associator if needed. 

Associating Broken Characters:

When the potential chops have been exhausted, if the 
word is still not good enough, it is given to the associa-
tor. The associator makes an A* (best first) search of the 
segmentation graph of possible combinations of the max-
imally chopped blobs into candidate characters. It does 
this without actually building the segmentation graph, but 
instead maintains a hash table of visited states.The A* 
search proceeds by pulling candidate new states from a 
priority queue and evaluating them by classifying unclas-
sified combinations of fragments. It may be argued that 
this fully-chop-then-associate approach is at best ineffi-
cient, at worst liable to miss important chops, and that 
may well be the case. The advantage is that the chop-then-
associate scheme simplifies the data structures that would 
be required to maintain the full segmentation  graph.
When the A* segmentation search was first implemented 
in about 1989, Tesseract’s accuracy on broken characters 
was well ahead of the commercial engines of the day. Fig. 
5 is a typical example. An essential part of that success 
was the character classifier that could easily recognize 
broken characters.

Baseline Fitting:

Once the text lines have been found, the baselines are fit-
ted more precisely using a quadratic spline. This Fixed 
Pitch Detection and Chopping Tesseract tests the text lines 
to determine whether they are fixed pitch. Where it finds 
fixed pitch text, Tesseract chops the words into characters 
using the pitch, and disables the chopper and associator 
on these words for the word recognition step.

Fixed Pitch Detection and Chopping:

Tesseract tests the text lines to determine whether they 
are fixed pitch. Where it finds fixed pitch text, Tesseract 
chops the words into characters using the pitch, and dis-
ables the chopper and associate on these words for the 
word recognition step.

Proportional Word Finding Non-fixed-pitch 
or proportional text spacing:

The gap between the tens and units of ‘11.9%’ is a simi-
lar size to the general space, and is certainly larger than 
the kerned space between ‘erated’ and ‘junk’. There is no 
horizontal gap at all between the bounding boxes of ‘of’ 
and ‘financial’. Tesseract solves most of these problems 
by measuring gaps in a limited vertical range between 
the baseline and mean line. Spaces that are close to the 
threshold at this stage are made fuzzy, so that a final deci-
sion can be made after word recognition.

Word Recognition:

Part of the recognition process for any character recogni-
tion engine is to identify how a word should be segmented 
into characters. The initial segmentation output from line 
finding is classified first.
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Words from different segmentations may have differ-
ent numbers of characters in them. It is hard to compare 
these words directly, even where a classifier claims to be 
producing probabilities, which Tesseract does not. This 
problem is solved in Tesseract by generating two numbers 
for each character classification. The first, called the con-
fidence, is minus the normalized distance from the proto-
type. This enables it to be a “confidence” in the sense that 
greater numbers are better, but still a distance, as, the far-
ther from zero, the greater the distance. The second out-
put, called the rating, multiplies the normalized distance 
from the prototype by the total outline length in the un-
known character. Ratings for characters within a word can 
be summed meaningfully, since the total outline length 
for all characters within a word is always the same.

Adaptive Classifier:

It has been suggested [11] and demonstrated [12] that OCR 
engines can benefit from the use of an adaptive classifier. 
Since the static classifier has to be good at generalizing to 
any kind of font, its ability to discriminate between differ-
ent characters or between characters and non-characters is 
weakened. A more font-sensitive adaptive classifier that 
is trained by the output of the static classifier is there-
fore commonly [13] used to obtain greater discrimination 
within each document, where the number of fonts is lim-
ited.

Tesseract does not employ a template classifier, but uses 
the same features and classifier as the static classifier. The 
only significant difference between the static classifier 
and the adaptive classifier, apart from the training data, is 
that the adaptive classifier uses isotropic baseline/x-height 
normalization, whereas the static classifier normalizes 
characters by the centroid (first moments) for position and 
second moments for anisotropic size normalization.

The baseline/x-height normalization makes it easier to 
distinguish upper and lower case characters as well as im-
proving immunity to noise specks. The main benefit of 
character moment normalization is removal of font aspect 
ratio and some degree of font stroke width. It also makes 
recognition of sub and superscripts simpler, but requires 
an additional classifier feature to distinguish some upper 
and lower case characters. Fig. 7 shows an example of 3 
letters in baseline/x-height normalized form and moment 
normalized form.

Static Character Classifier:

An early version of Tesseract used topological fea-
tures developed from the work of Shillman et. al. [7-8] 
Though nicely independent of font and size, these fea-
tures are not robust to the problems found in real-life 
images, as Bokser [9] describes. An intermediate idea 
involved the use of segments of the polygonal approx-
imation as features, but this approach is also not ro-
bust to damaged characters. For example, in Fig. 6(a), 
the right side of the shaft is in two main pieces, but in 
Fig. 6(b) there is just a single piece.The breakthrough 
solution is the idea that the features in the unknown 
need not be the same as the features in the training 
data. During training, the segments of a polygonal ap-
proximation [2] are used for features, but in recogni-
tion, features of a small, fixed length (in normalized 
units) are extracted from the outline and matched 
many-to-one against the clustered prototype features 
of the training data. In Fig. 6(c), the short, thick lines 
are the features extracted from the unknown, and the 
thin, longer lines are the clustered segments of the 
polygonal approximation that are used as prototypes. 
One prototype bridging the two pieces is completely 
unmatched. Three features on one side and two on the 
other are unmatched, but, apart from those, every pro-
totype and every feature is well matched. This exam-
ple shows that this process of small features matching 
large prototypes is easily able to cope with recognition 
of damaged images. Its main problem is that the com-
putational cost of computing the distance between an 
unknown and a prototype is very high.

Linguistic Analysis:

Tesseract contains relatively little linguistic analysis. 
Whenever the word recognition module is considering 
a new segmentation, the linguistic module (mis-named 
the permuter) chooses the best available word string 
in each of the following categories: Top frequent word, 
Top dictionary word, Top numeric word, Top UPPER 
case word, Top lower case word (with optional initial 
upper), Top classifier choice. word. The final decision 
for a given segmentation is simply the word with the 
lowest total distance rating, where each of the above 
categories is multiplied by a different constant.
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The rest of the word recognition step applies only to non-
fixed-pitch text.Arduino is a tool for making computers 
that can sense and control more of the physical world than 
your desktop computer. It’s an open-source physical com-
puting platform based on a simple

Chopping Joined Characters:

While the result from a word (see section 6) is unsatisfac-
tory, Tesseract attempts to improve the result by chopping 
the blob with worst confidence from the character classifi-
er. Candidate chop points are found from concave vertices 
of a polygonal approximation [2] of the outline, and may 
have either another concave vertex opposite, or a line seg-
ment. It may take up to 3 pairs of chop points to success-
fully separate joined characters from the ASCII set. Fig. 
4 shows a set of candidate chop points with arrows and 
the selected chop as a line across the outline where the ‘r’ 
touches the ‘m’.Chops are executed in priority order. Any 
chop that fails to improve the confidence of the result is 
undone, but not completely discarded so that the chop can 
be re-used later by the associator if needed. 

Associating Broken Characters:

When the potential chops have been exhausted, if the 
word is still not good enough, it is given to the associa-
tor. The associator makes an A* (best first) search of the 
segmentation graph of possible combinations of the max-
imally chopped blobs into candidate characters. It does 
this without actually building the segmentation graph, but 
instead maintains a hash table of visited states.The A* 
search proceeds by pulling candidate new states from a 
priority queue and evaluating them by classifying unclas-
sified combinations of fragments. It may be argued that 
this fully-chop-then-associate approach is at best ineffi-
cient, at worst liable to miss important chops, and that 
may well be the case. The advantage is that the chop-then-
associate scheme simplifies the data structures that would 
be required to maintain the full segmentation  graph.
When the A* segmentation search was first implemented 
in about 1989, Tesseract’s accuracy on broken characters 
was well ahead of the commercial engines of the day. Fig. 
5 is a typical example. An essential part of that success 
was the character classifier that could easily recognize 
broken characters.

Baseline Fitting:

Once the text lines have been found, the baselines are fit-
ted more precisely using a quadratic spline. This Fixed 
Pitch Detection and Chopping Tesseract tests the text lines 
to determine whether they are fixed pitch. Where it finds 
fixed pitch text, Tesseract chops the words into characters 
using the pitch, and disables the chopper and associator 
on these words for the word recognition step.

Fixed Pitch Detection and Chopping:

Tesseract tests the text lines to determine whether they 
are fixed pitch. Where it finds fixed pitch text, Tesseract 
chops the words into characters using the pitch, and dis-
ables the chopper and associate on these words for the 
word recognition step.

Proportional Word Finding Non-fixed-pitch 
or proportional text spacing:

The gap between the tens and units of ‘11.9%’ is a simi-
lar size to the general space, and is certainly larger than 
the kerned space between ‘erated’ and ‘junk’. There is no 
horizontal gap at all between the bounding boxes of ‘of’ 
and ‘financial’. Tesseract solves most of these problems 
by measuring gaps in a limited vertical range between 
the baseline and mean line. Spaces that are close to the 
threshold at this stage are made fuzzy, so that a final deci-
sion can be made after word recognition.

Word Recognition:

Part of the recognition process for any character recogni-
tion engine is to identify how a word should be segmented 
into characters. The initial segmentation output from line 
finding is classified first.
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Words from different segmentations may have differ-
ent numbers of characters in them. It is hard to compare 
these words directly, even where a classifier claims to be 
producing probabilities, which Tesseract does not. This 
problem is solved in Tesseract by generating two numbers 
for each character classification. The first, called the con-
fidence, is minus the normalized distance from the proto-
type. This enables it to be a “confidence” in the sense that 
greater numbers are better, but still a distance, as, the far-
ther from zero, the greater the distance. The second out-
put, called the rating, multiplies the normalized distance 
from the prototype by the total outline length in the un-
known character. Ratings for characters within a word can 
be summed meaningfully, since the total outline length 
for all characters within a word is always the same.

Adaptive Classifier:

It has been suggested [11] and demonstrated [12] that OCR 
engines can benefit from the use of an adaptive classifier. 
Since the static classifier has to be good at generalizing to 
any kind of font, its ability to discriminate between differ-
ent characters or between characters and non-characters is 
weakened. A more font-sensitive adaptive classifier that 
is trained by the output of the static classifier is there-
fore commonly [13] used to obtain greater discrimination 
within each document, where the number of fonts is lim-
ited.

Tesseract does not employ a template classifier, but uses 
the same features and classifier as the static classifier. The 
only significant difference between the static classifier 
and the adaptive classifier, apart from the training data, is 
that the adaptive classifier uses isotropic baseline/x-height 
normalization, whereas the static classifier normalizes 
characters by the centroid (first moments) for position and 
second moments for anisotropic size normalization.

The baseline/x-height normalization makes it easier to 
distinguish upper and lower case characters as well as im-
proving immunity to noise specks. The main benefit of 
character moment normalization is removal of font aspect 
ratio and some degree of font stroke width. It also makes 
recognition of sub and superscripts simpler, but requires 
an additional classifier feature to distinguish some upper 
and lower case characters. Fig. 7 shows an example of 3 
letters in baseline/x-height normalized form and moment 
normalized form.

Static Character Classifier:

An early version of Tesseract used topological fea-
tures developed from the work of Shillman et. al. [7-8] 
Though nicely independent of font and size, these fea-
tures are not robust to the problems found in real-life 
images, as Bokser [9] describes. An intermediate idea 
involved the use of segments of the polygonal approx-
imation as features, but this approach is also not ro-
bust to damaged characters. For example, in Fig. 6(a), 
the right side of the shaft is in two main pieces, but in 
Fig. 6(b) there is just a single piece.The breakthrough 
solution is the idea that the features in the unknown 
need not be the same as the features in the training 
data. During training, the segments of a polygonal ap-
proximation [2] are used for features, but in recogni-
tion, features of a small, fixed length (in normalized 
units) are extracted from the outline and matched 
many-to-one against the clustered prototype features 
of the training data. In Fig. 6(c), the short, thick lines 
are the features extracted from the unknown, and the 
thin, longer lines are the clustered segments of the 
polygonal approximation that are used as prototypes. 
One prototype bridging the two pieces is completely 
unmatched. Three features on one side and two on the 
other are unmatched, but, apart from those, every pro-
totype and every feature is well matched. This exam-
ple shows that this process of small features matching 
large prototypes is easily able to cope with recognition 
of damaged images. Its main problem is that the com-
putational cost of computing the distance between an 
unknown and a prototype is very high.

Linguistic Analysis:

Tesseract contains relatively little linguistic analysis. 
Whenever the word recognition module is considering 
a new segmentation, the linguistic module (mis-named 
the permuter) chooses the best available word string 
in each of the following categories: Top frequent word, 
Top dictionary word, Top numeric word, Top UPPER 
case word, Top lower case word (with optional initial 
upper), Top classifier choice. word. The final decision 
for a given segmentation is simply the word with the 
lowest total distance rating, where each of the above 
categories is multiplied by a different constant.
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This pot allows the control circuitry to monitor the cur-
rent angle of the servo motor. If the shaft is at the correct 
angle, then the motor shuts off. If the circuit finds that 
the angle is not correct, it will turn the motor the correct 
direction until the angle is correct. The output shaft of 
the servo is capableof traveling somewhere around 180 
degrees.Usually, its somewhere in the 210 degree range, 
but it varies by manufacturer. A normal servo is used to 
control an angular motion of between 0 and 180 degrees.

Table I. Axis Capabilities:

A normal servo is mechanically not capable of turning 
any farther due to a mechanical stop built on to the main 
output gear. The amount of power applied to the motor 
is proportional to the distance it needs to travel. So, if 
the shaft needs to turn a large distance, the motor will 
run at full speed. If it needs to turn only a small amount, 
the motor will run at a slower speed.The motor is paired 
with some type of encoder to provide position and speed 
feedback. In the simplest case, only the position is mea-
sured. The measured position of the output is compared to 
the command position, the external input to the controller. 
If the output position differs from that required, an error 
signal is generated which then causes the motor to rotate 
in either direction, as needed to bring the output shaft to 
the appropriate position.

As the positions approach, the error signal reduces to 
zero and the motor stops.More sophisticated servomotors 
measure both the position and also the speed of the out-
put shaft. They may also control the speed of their motor, 
rather than always running at full speed. Both of these 
enhancements, usually in combination with a PID control 
algorithm, allow the servomotor to be brought to its com-
manded position more quickly and more precisely, with 
less overshooting. The servo turn rate, or transit time, is 
used for determining servo rotational velocity. This is 
the amount of time it takes for the servo to move a set 
amount, usually 60 degrees. For example, suppose you 
have a servo with a transit time of 0.17sec/60 degrees at 
no load, this means it would take nearly half a second to 
rotate an entire 180 degrees

E. Robotic Arms & Servomotors:

Arms are types of jointed robot manipulator that allow 
robots to interact with their environment. Many have 
onboard controllers or translators to simplify communi-
cation, though they may be controlled directly or in any 
number of ways. Due to this fact, standalone arms are of-
ten classified as full robots. The robot used in this project 
is 4 Axis Robotic Arm. 4 Axis Robotic Arm is designed 
for small mobile robots. It can grip objects with the size up 
to 60mm with the force up to 250gms. Arm has reach of 
23cm. It can lift the payload up to 400gms. Robotic Arm 
comes fully assembled and ready to use. First two axis of 
the arm are made up of NRS-995 dual bearing heavy duty 
metal gear motors and remaining 2 axis and gripper uses 
NRS-585 dual bearing plastic gear servo motors. Axis 2 
and 3 enables gripper to maintain its angle constant with 
the surface while moving up and down. Robotic arm can 
do Left-Right, Up-Down while keeping gripper parallel 
to surface, Twist motions and Gripping action. Robotic 
Arm will require current up to 5Amps. Make sure that 
your robot can supply that much amount of current for 
proper operation of the arm. The robotic arm has follow-
ing specifications.

Number of Axis: 4 + Gripper 

Gripping force: 250gms (Maximum) Gripping jaw length: 
43mm 

Gripping jaw width: 60mm 

Weight: 541gms (Including 2 NRS-995 and 3 NRS-585 
servo motors) 

Operating voltage: 5V to 6V Reach: 23cm 

Servos are DC motors with built in gearing and feedback 
control loop circuitry. And no motor drivers required. A 
servomotor is a rotary actuator that allows for precise 
control of angular position. They consist of a motor cou-
pled to a sensor for position feedback, through a reduc-
tion gearbox. They also require a relatively sophisticated 
controller, often a dedicated module designed specifically 
for use with servomotors. Servomotors are used in appli-
cations such as robotics, CNC machinery or automated 
manufacturing. The servo motor has some control circuits 
and a potentiometer (a variable resistor) that is connected 
to the output shaft.
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error rate (%Err) and the percent change relative to the 
1995 results (%Chg) for both character errors and non-
stopword errors. [1] More up-to-date results are at http://
code.google.com/p/tesseract-ocr.

IV. CONCLUSION AND FURTHER 
WORK:

Fully functional sorter machine can be implemented by 
using a structure of parallel and independent channels 
in order to increase the overall throughput which results 
with a forecasted performance. The project can work 
successfully. There are two main steps in sensing part, 
objects detection and recognition. The system can suc-
cessfully perform handling station task, namely pick and 
place mechanism with help of sensor. Thus a cost effec-
tive Mechatronics system can be designed using the sim-
plest concepts and efficient result can be observed.After 
lying dormant for more than 10 years, Tesseract is now 
behind the leading commercial engines in terms of its 
accuracy. Its key strength is probably its unusual choice 
of features. Its key weakness is probably its use of a po-
lygonal approximation as input to the classifier instead of 
the raw outlines.With internationalization done, accuracy 
could probably be improved significantly with the judi-
cious addition of a Hidden-Markov-Model-based charac-
ter n-gram model,
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Fig.5 Servomotor Rotation

G. Conveyor Belt:

The conveyor motor receives power from battery. A 
conveyor belt consists of two or more pulleys, with a 
continuous loop of material - the conveyor belt - that 
rotates about them. One or both of the pulleys are 
powered, moving the belt and the material on the belt 
forward. The powered pulley is called the drive pulley 
while the unpowered pulley is called the idler. Convey-
or frames are supplied with either butting plate (stan-
dard) or hook and bar attachments to secure each seg-
ment together. Heavy duty rollers are supplied with 
shafts.

Fig. 5Conveyor Belt

III. Result
We can assume objects in circular, rectangular shape in 
different colours so the result is

Table II. Result:

Tesseract was included in the 4th UNLV annual test [1] 
of OCR accuracy, as “HP Labs OCR,” but the code has 
changed a lot since then, including conversion to Uni-
code and retraining. Table 1 compares results from a re-
cent version of Tesseract (shown as 2.0) with the origi-
nal 1995 results (shown as HP). All four 300 DPI binary 
test sets that were used in the 1995 test are shown, 
along with the number of errors (Errs), the percent 
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