

 Page 1474

Porting Embedded Linux to ARM Processor

V.V. Hanuman Prasad, M.Tech

Assistant Professor

Department of ECE

Laqshya Institute of Technology & Sciences,

Tanikella(V), Konijerla (M), Dist:Khammam,

Telangana, India.

P. Sreekanth, M.Tech

Assistant Professor M.Tech

Department of ECE

C.V.R College of Engineering, Vastunagar,

Mangalapalli(V), Ibrahimpatnam(M) R.R.Dist,

Telangana , India.

ABSTRACT

In the realm of embedded technologies ARM

(Advanced RISC Machine) is very popular. According

to Wikipedia around 70% of all 32 bit embedded CPU’s

are based on ARM architecture. Its usage is growing in

cell phones, PDA’s, GPS devices and RFID systems.

The Embedded modules, based on ARM, can become

very complex machines since these are meant to

support varied tasks such as memory management,

process management and peripheral interfaces. For

seamless integration of these functional modules an OS

has to be ported on these ARM based CPUs. For every

new CPU architecture, the OS has to be customized,

compiled and burnt into the core .With the coming of

age of Linux as an embedded OS all this has changed

quite significantly. Being in Open Source domain,

Linux kernel can be freely downloaded and compiled

for any system architecture and this includes ARM

based systems also.

“This project describes the details of porting of

embedded Linux on ARM core.”

PORTING PROCESS

In software engineering, porting is the process of

adapting software so that an executable program can be

created for a computing environment that is different

from the one for which it was originally designed (e.g.

different CPU, operating system, or third party library).

The term is also used when software/hardware is

changed to make them usable in different environments.

Software is portable when the cost of porting it to a new

platform is less than the cost of writing it from scratch.

The lower the cost of porting software, relative to its

implementation cost, the more portable it is said to be.

The number of significantly different CPUs and

operating systems used on the desktop today is much

smaller than in the past. The dominance of

the x86 architecture means that most desktop software is

never ported to a different CPU. In that same market, the

choice of operating systems has effectively been reduced

to three: Microsoft Windows, Mac OS/Mac OS X,

and Unix/Linux. However, in the embedded

systems market, portability remains a significant issue.

BOOTING PROCESS

ANALYSIS OF U-BOOT

There are two stages in the progress of starting up U-

Boot

1) Stage 1 uses assemble code, and the following things

are completed:

 Initialize hardware device:

 Prepare RAM space for loading stage 2:

 Copy stage 2 to RAM space:

 Initialize heap region:

 Jump to C entrance of stage 2:

2) Stage 2 uses C code to accomplish complex

functions,and it has better readability and portability.

The following things are completed:

a)Allocate RAM space for U-Boot:

b) Set SMC controller.

 Page 1475

c)Test the system memory map:

d) Copy kernel image and root file system image

from Flash to RAM.

e) Set booting parameters for kernel:

f) Enable interrupt, call for the kernel.

Fig U-Boot memory

FLOW CHART

Fig Start Flow chart of Stage1 of u-boot

The first stage of the initialization is to complete

equipment such as CPU mode setting for the

management mode, turning off the watchdog, setting

frequency, close MMU and the CACHE, the initial

connection bit wide memory, speed, refresh rate, etc.. As

RAM loading space for the second phase of the code, the

second phase of code into RAM space, set the stack,

jump to the second phase of the C program entry point.

The first stage usually does not write code in assembly

language, energetic, and high efficiency. This phase

involves the code files for the platform and the target

associated arch /arm /cpu /arm920t/start.S related

board/samsung/smdk2440/lowlevel_init.S.

Fig Start Flow chart of Stage 2 of u-boot

Start the second phase of the process diagram shown in

Figure 2, the stage is mainly to be used to complete this

stage of hardware and memory initialization. If you

choose to boot the kernel, then the kernel image and root

file system image read from the Flash RAM space, and

set the startup environment for the kernel parameters,

and then boot the kernel. This phase function is more

complicated code, usually written using the C language,

so that you can achieve better readability and a higher

portability. This phase involves the relevant documents

to arch / arm / lib / board.c peripheral target and the

corresponding driver files.

 Page 1476

BLOCK DIAGRAM DESCRIPTION

Block diagram of U-boot porting

The MINI2440 Development Board is based on the

Samsung S3C2440 microprocessor. Its PCB is 4-layer

boarded, equipped with professional equal length wiring

which ensures signal integrity.AllMINI2440 boards are

manufactured in mass production and released with strict

quality control. On startup it directly boots preinstalled

Linux by default. There are no extra setup steps or

configuring procedures to start the system. It is easy for

users to get started. Anyone with very basic knowledge

about the C language can become proficient in its

development within two weeks. This package also

provides detailed documents on how to configure and

boot to alternative operating systems. The MINI2440

development board is a 100 x 100(mm) board

equipped with a wide variety of connectors, interfaces

and ports.

HISTORY AND DEVELOPMENT

 ARM was developed at Acron Computers ltd of

Cambridge, England between 1983 and 1985.

 RISC concept was introduced in 1980 at

Stanford and Berkley.

 ARM ltd was found in 1990.

 ARM cores are licensed to partners so as to

develop and fabricate new microcontrollers

around same processor cores.

KEY FEATURES

 ARM processor used here S3C2440.The

S3C2440A is developed with ARM920T core,

0.13um CMOS standard cells and a memory

complier.

 Its low-power, simple, elegant and fully static

design is particularly suitable for cost- and

power-sensitive applications.

 It adopts a new bus architecture known as

Advanced Micro controller Bus Architecture

(AMBA).

 The S3C2440A offers outstanding features with

its CPU core, a 16/32-bit ARM920T RISC

processor designed by Advanced RISC

Machines, Ltd.

 The ARM920T implements MMU, AMBA

BUS, and Harvard cache architecture with

separate 16KB instruction and 16KB data

caches, each with an 8-word line length.

 By providing a complete set of common system

peripherals, the S3C2440A minimizes overall

system costs and eliminates the need to

configure additional components.

 The integrated on-chip functions include 1.2V

internal, 1.8V/2.5V/3.3V memory, 3.3V external

I/O microprocessor with 16KB I-Cache/16KB

D-Cache/MMU.

 External memory controller (SDRAM Control

and Chip Select logic),LCD controller (up to 4K

color STN and 256K color TFT) with LCD-

dedicated DMA.

 4-ch DMA controllers with external request

pins,3-ch UARTs (IrDA1.0, 64-Byte Tx FIFO,

and 64-Byte Rx FIFO).

 2-ch SPls, IIC bus interface (multi-master

support),IIS Audio CODEC interface,AC’97

CODEC interface, SD Host interface version 1.0

& MMC Protocol version 2.11 compatible.

 2-ch USB Host controller / 1-ch USB Device

controller (ver 1.1),4-ch PWM timers / 1-ch

Internal timer / Watch Dog Timer,8-ch 10-bit

ADC and Touch screen interface.

 Page 1477

 RTC with calendar function, Camera interface

(Max. 4096 x 4096 pixels input support.

LINUX FEATURES

 Kernel version

 File systems

 Drivers (all open source)

 Linux applications and utilities

 graphic user interface(open source)

 Qtopia Test Utilities (developed by Friendly

ARM, not open source)

SYSTEM SETUP AND CONFIGURATIONS

Boot Options: You can select the booting mode by

toggling the S2 switch:

When toggling the S2 switch to the “Nor Flash” side the

system will boot from on Board nor

Flash. When toggling the S2 switch to the “Nand Flash”

side the system will boot from on board Nand Flash.

EMBEDDED LINUX

EMBEDDED LINUX SETUP

Often the first question posed by the newcomer to

embedded Linux is, just what does one need to begin

development? To answer that question, we look at a

typical embedded Linux development setup

Embedded Linux Set Up Diagram

Here we show a very common arrangement. We have a

host development system, running your favorite desktop

Linux distribution, such as Red Hat or SuSE or Debian

Linux. Our embedded Linux target board is connected to

the development host via an RS-232 serial cable. We

plug the target board's Ethernet interface into a local

Ethernet hub or switch, to which our development host is

also attached via Ethernet. The development host

contains your development tools and utilities along with

target files normally obtained from an embedded Linux

distribution.

LINUX

HISTORY OF UNIX

 UNIX is an Operating System (OS).

 UNIX was developed about 40 years ago i.e.,

1969 at AT&T Bell Labs by Ken Thompson and

Dennis Ritche.

 It is a Command Line Interpreter.

 It was developed for the Mini-Computers as a

time sharing system.

 UNIX was the predecessor of LINUX.

 HISTORY OF LINUX

 LINUX was created by Linux Thorvaldsen in

1991.

 LINUX is a open source.

 LINUX is a variant of UNIX.

It’s a fast-growing operating system, and it is

inexpensive and flexible. Linux is also a major player in

the small and mid-sized server field, and it’s an

increasingly viable platform for workstation and desktop

use , as well.

Linux is a clone of the Unix OS that has been popular in

academia and many business environments for years.

 Page 1478

Fig 6.1: Linux operating system

INTRODUCTION TO THE LINUX KERNEL

Fig 6.2 Linux kernel

At the top is the user, or application, space. This is where

the user applications are executed. Below the user space

is the kernel space. Here, the Linux kernel exists.

MEMORY CONCEPT

STORAGE CONSIDERATIONS

One of the most challenging aspects of embedded

systems is that most embedded systems have limited

physical resources. Although the Pentium 4 machine on

your desktop might have 180GB of hard drive space, it is

not uncommon to find embedded systems with a fraction

of that amount. In many cases, the hard drive is typically

replaced by smaller and less expensive nonvolatile

storage devices. Hard drives are bulky, have rotating

parts, are sensitive to physical shock, and require

multiple power supply voltages, which makes them

unsuitable for many embedded systems.

FLASH MEMORY

Nearly everyone is familiar with Compact Flash modules

used in a wide variety of consumer devices, such as

digital cameras and PDAs (both great examples of

embedded systems). These modules can be thought of as

solid-state hard drives, capable of storing many

megabytes and even gigabytes of data in a tiny footprint.

They contain no moving parts, are relatively rugged, and

operate on a single common power supply voltage.

Structure of Flash

To modify data stored in a Flash memory array, the

block in which the modified data resides must be

completely erased. Even if only 1 byte in a block needs

to be changed, the entire block must be erased and

rewritten. Flash block sizes are relatively large,

compared to traditional hard-drive sector sizes. In

comparison, a typical high-performance hard drive has

writable sectors of 512 or 1024 bytes. The ramifications

of this might be obvious: Write times for updating data

in Flash memory can be many times that of a hard drive,

due in part to the relatively large quantity of data that

must be written back to the Flash for each update. These

write cycles can take several seconds, in the worst case.

Another limitation of Flash memory that must be

considered is Flash memory cell write lifetime. A Flash

memory cell has a limited number of write cycles before

failure. Although the number of cycles is fairly large

(100K cycles typical per block), it is easy to imagine a

poorly designed Flash storage algorithm (or even a bug)

that can quickly destroy Flash devices. It goes without

saying that you should avoid configuring your system

 Page 1479

COMPILATION PROCESS

COMPILING BOOT LOADER, KERNEL AND

ROOT FILE SYSTEM FORSMDK2440

INTRODUCTION TO BOOT LOADER

In embedded system, general firmware like CMOS does

not exist. So to boot embedded system for the first time,

we have to make boot loader which can adjust well to

target board. Boot loader plays a very important part in

embedded system. The role of boot loader is explained

below.

 Copy kernel to RAM from flash memory, and

execute kernel.

 Initialize hardware.

 Boot loader have the function that writing data

to flash memory. (Downloading kernel or Ram

disk by serial port or other network hardware,

data is stored in RAM. But RAM lost all data

downloaded if you cut power supply, so to avoid

this work you have to store to flash memory.)

 It provides interface to send commands to target

board or to inform user’s state of target Board.

CONCLUSION:

The project “title” been successfully designed and

tested. Integrating features of all the hardware

components used have developed it. Presence of every

module has been reasoned out and placed carefully thus

contributing to the best working of the unit.

Secondly, using highly advanced IC’s and with the help

of growing technology the project has been successfully

implemented.

Reference:

1] A. El-Sawah, N. Georganas, and E. Petriu, “A

prototype for 3-D handtracking and gesture estimation,”

IEEE Trans. Instrum. Meas., vol. 57,no. 8, pp. 1627–

1636, Aug. 2008.

[2] D. G. Lowe, “Distinctive image features from scale-

invariant keypoints,”

Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov.

2004

[3] A. Bosch, X. Munoz, and R. Marti, “Which is the

best way to organize/ classify images by content?”

Image Vis. Comput., vol. 25, no. 6, pp. 778–791, Jun.

2007.

[4] H. Zhou and T. Huang, “Tracking articulated hand

motion with Eigen dynamics analysis,” in Proc. Int.

Conf. Comput. Vis., 2003, vol. 2, pp. 1102–1109.

[5] B. Stenger, “Template based hand pose recognition

using multiple cues,” in Proc. 7th ACCV, 2006, pp. 551–

560.

[6] L. Bretzner, I. Laptev, and T. Lindeberg, “Hand

gesture recognition using multiscale color features,

hieracrchichal models and particle filtering,” in Proc. Int.

Conf. Autom. Face Gesture Recog., Washington, DC,

May 2002.

[7] A. Argyros and M. Lourakis, “Vision-based

interpretation of hand gestures for remote control of a

computer mouse,” in Proc. Workshop Comput.Human

Interact., 2006, pp. 40–51.

Author Details

V.V. Hanuman Prasad, M.Tech

Assist. Professor

Department of ECE

Laqshya Institute of Technology & Sciences,

Tanikella(V), Konijerla (M), Dist:Khammam,

Telangana, India.

P. Sreekanth, M.Tech

Assist. Professor M.Tech

Department of ECE

C.V.R College of Engineering, Vastunagar,

Mangalapalli(V), Ibrahimpatnam(M) R.R.Dist,

Telangana , India.

