

 Page 763

Implementation of MAC UNIT Using Efficient Adders
K.Prashanth

PG Scholar, VLSI & ES,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

Shanigarapu Naresh Kumar,

M.Tech

Associate Professor,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

B.Pragathi, M.Tech

Associate Professor,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

Abstract:

A design of high performance 64 bit Multiplier-

and-Accumulator (MAC) is implemented in this paper.

MAC unit performs important operation in many of the

digital signal processing (DSP) applications. The

multiplier is designed using modified Wallace

multiplier and the adder is done with carry save adder.

The total design is coded with Synthesize and simulate

by verilog HDL.

Keywords: Wallace multiplier, Carry save adder,

multiplier and accumulator (MAC).

I. INTRODUCTION:

MAC unit is an inevitable component in many

digital signal processing (DSP) applications

involving multiplications and/or accumulations. MAC

unit is used for high performance digital signal

processing systems. The DSP applications include

filtering, convolution, and inner products. Most of

digital signal processing methods use nonlinear

functions such as discrete cosine transform (DCT) or

discrete wavelet transforms (DWT). Because they are

basically accomplished by repetitive application of

multiplication and addition, the speed of the

multiplication and addition arithmetic determines the

execution speed and performance of the entire

calculation [1]. Multiplication-and-accumulate

operations are typical for digital filters. Therefore,

the functionality of the MAC unit enables high-speed

filtering and other processing typical for DSP

applications. Since the MAC unit operates completely

independent of the CPU, it can process data separately

and thereby reduce CPU load.

The application like optical communication systems

which is based on DSP, require extremely fast pro-

cessing of huge amount of digital data. The Fast

Fourier Transform (FFT) also requires addition and

multiplication. 64 bit can handle larger bits and have

more memory. A MAC unit consists of a multiplier

and an accumulator containing the sum of the

previous successive products. The MAC inputs are

obtained from the memory location and given to the

multiplier block. The design consists of 64 bit

modified Wallace multiplier, 128 bit carry save adder

and a register. This paper is divided into six sections.

In the first section the introduction about MAC unit

is discussed. In the second section discuss about the

detailed operation of MAC unit. The third and

fourth section deals with the operation of modified

Wallace multiplier and carry save adder respectively.

In the fifth section, the obtained result for the 64 bit

MAC unit is discussed and finally the conclusion is

made in the sixth section.

II. MAC OPERA TION:

The Multiplier-Accumulator (MAC) operation is

the key operation not only in DSP applications but

also in multimedia information processing and

various other applications. As mentioned above,

MAC unit consist of multiplier, adder and

register/accumulator. In this paper, we used 64 bit

modified Wallace multiplier. The MAC inputs are

obtained from the memory location and given to the

multiplier block. This will be useful in 64 bit digital

signal processor. The input which is being fed from the

memory location is 64 bit.

 Page 764

When the input is given to the multiplier it starts

computing value for the given 64 bit input and hence

the output will be 128 bits. The multiplier output is

given as the input to carry save adder which performs

addition. The function of the MAC unit is given by the

following equation [4]:

F= IPjQj (1)

The output of carry save adder is 129 bit i.e. one bit

is for the carry (128bits+ 1 bit). Then, the output is

given to the accumulator register. The accumulator

register used in this design is Parallel In Parallel

Out (PIPO). Since the bits are huge and also carry

save adder produces all the output values in parallel,

PIPO register is used where the input bits are taken in

parallel and out-put is taken in parallel. The output of

the accumulator register is taken out or fed back as

one of the input to the carry save adder. The figure 1

shows the basic architecture of MAC unit.

Figure:-1 Basic architecture of MAC unit

III. WALL ACE MULTIPLIER:

A Wall ace multiplier is an eficient hardware

implementation of digital circuit multiplying two

integers. Generally in conventional Wallace

multipliers many full adders and half adders are used in

their reduction phase. Half adders do not reduce the

number of partial product bits. Therefore, minirnizing

the number of half adders used in a multiplier reduction

will reduce the complexity [2].

Hence, a modification to the Wallace reduction is

done in which the delay is the same as for the

conventional Wallace reduction. The modified

reduction method greatly reduces the number of half

adders with a very slight increase in the number of full

adders [2]. Reduced complexity Wall ace multiplier

reduction consists of three stages [2]. First stage the N

x N product matrix is formed and before the passing on

to the second phase the product matrix is rearranged to

take the shape of inverted pyramid. During the second

phase the rearranged product matrix is grouped into

non-overlapping group of three as shown in the figure

2, single bit and two bits in the group will be passed on

to the next stage and three bits are given to a full adder.

The number of rows in the in each stage of the

reduction phase is calculated by the formula

rj+1=2[ri/3]+rjmod3 (2)

If rj mod3 = 0, then rj+ 1 = 2r/3 (3)

If the value calculated from the above equation for

number of rows in each stage in the second phase and

the number of row that are formed in each stage of the

second phase does not match, only then the half adder

will be used. The final product of the second stage will

be in the height of two bits and passed on to the third

stage. During the third stage the output of the second

stage is given to the carry propagation adder to gener-

ate the final output.

Figure:-2 Wallace Tree Mutiplier

 Page 765

Thus 64 bit modified Wallace multiplier is

constructed and the total number of stages in the

second phase is 10. As per the equation the number of

row in each of the 10 stages was calculated and the use

of half adders was restricted only to the 10th stage. The

total number of half adders used in the second phase

is 8 and the total number of full adders that was used

during the second phase is slightly increased that in

the conven-tional Wallace multiplier.

IV. KOGGE STONE ADDER:

The Kogge–Stone adder is a parallel prefix form carry

look-ahead adder. Other parallel prefix adders include

the Brent-Kung adder, the Han Carlson adder, and the

fastest known variation, the LynchSwartzlander

Spanning Tree adder. The Kogge–Stone adder takes

more area to implement than the Brent–Kung adder,

but has a lower fan-out at each stage, which increases

performance for typical CMOS process nodes.

However, wiring congestion is often a problem for

KoggeStone adders. The Lynch-Swartzlander design is

smaller, has lower fan-out, and does not suffer from

wiring congestion; however to be used the process

node must support Manchester Carry Chain

implementations. The general problem of optimizing

parallel prefix adders is identical to the variable block

size, multi level, carry-skip adder optimization

problem, a solution of which is found in. An example

of a 4-bit KoggeStone adder is shown to the right.

Each vertical stage produces a "propagate" and a

"generate" bit, as shown. The culminating generate bits

(the carries) are produced in the last stage (vertically),

and these bits are XOR'd with the initial propagate

after the input (the red boxes) to produce the sum bits.

E.g., the first (least-significant) sum bit is calculated

by XORing the propagate in the farthest-right red box

(a "1") with the carry-in (a "0"), producing a "1". The

second bit is calculated by XORing the propagate in

second box from the right (a "0") with C0 (a "0"),

producing a "0".

Si=xi 1\ yi (4)

Ci = xi & yi (5)

Figure:- 3 Kogge Stone Adder

During the addition of two numbers using a half adder,

two ripple carry adder is used. This is due the fact that

ripple carry adder cannot compute a sum bit without

waiting for the previous carry bit to be produced, and

hence the delay will be equal to that of n full adders.

However a carry-save adder produces all the output

values in parallel, resulting in the total computation

time less than ripple carry adders. So, Parallel In

Par-allel Out (PIPO) is used as an accumulator in the

final stage.

V. RESULT:

The design is developed using Verilog HDL and

synthesized in Encounter RTL compiler using typical

libraries of TSMC 180nm technology. As a previous

work, 8 bit MAC unit is designed using different

multipliers and adders. The multipliers used for

comparative study are: (i) Modified Booth Aigorithm

(ii) Dadda Multiplier (iii) Wallace multiplier. The

different adders used in the study are: (i) Carry Look

Ahead (ii) Carry Select Adder (iii) Carry Save adder.

Simulation Results:

https://en.wikipedia.org/wiki/Carry_look-ahead_adder
https://en.wikipedia.org/wiki/Carry_look-ahead_adder
https://en.wikipedia.org/wiki/Carry_look-ahead_adder
https://en.wikipedia.org/w/index.php?title=Brent%E2%80%93Kung_adder&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fan-out
https://en.wikipedia.org/w/index.php?title=Lynch-Swartlzlander&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fan-out
https://en.wikipedia.org/w/index.php?title=Manchester_Carry_Chain&action=edit&redlink=1
https://en.wikipedia.org/wiki/Carry-skip_adder
https://en.wikipedia.org/wiki/Carry_(arithmetic)
https://en.wikipedia.org/wiki/XOR

 Page 766

Timing Report:

Area Report:

RTL Schematic:

The following figures are the generated RTL

Schematics for Kogge stone adder

Figure:-4 RTL Schematic

IV. CONLCUSION:

Since the delay of 64 bit is less, this design can be used

in the sys-tem which requires high performance in

processors in-volving large number of bits of the

operation. The MAC unit is designed using Verilog-

HDL and synthesized in Behavioral RTL Complier.

Hence , If we keep this type of applications and

designs in any hardware the total behavior and

performance of the architecture will become efficient

and reliable

REFERENCES:

[1].Young-Ho Seo and Dong-Wook Kim, “New VLSI

Ar-chitecture of Parallel Multiplier-Accumulator

Based on Radix-2 Modified Booth Algorithm,” IEEE

Transactions on very large scale integration (vlsi)

systems, vol. 18, no. 2,february 20 10.

[2].Ron S. Waters and Earl E. Swartzlander, Jr., “A

Re-duced Complexity Wall ace Multiplier Reduction, “

IEEE Transactions On Computers, vol. 59, no. 8, Aug

20 10.

[3].C. S. Wallace, “A suggestion for a fast multiplier,”

Ieee Trans. ElectronComput., vol. EC-13, no. I, pp. 14-

17, Feb. 1964.

[7].V. G. Oklobdzija, “High-Speed VLSI

Arithmetic Units: Adders and Multipliers”, in

“Design of High-Performance Microprocessor

Circuits”, Book edited by A.Chandrakasan,IEEE

Press,2000.

[8].Dadda, “Some Schemes for Parallel Multipliers,”

Alta Frequenza, vol. 34, pp. 349-356, 1965.

[9].C.S. Wall ace “A Suggestion for a fast

multipliers,” IEEE Trans. Electronic Computers, vol.

13, no.l,pp 14-17, Feb. 1967.

[10]. L.Dadda, “On Parallel Digital Multiplier”, Alta

Fre-quenza, vol. 45, pp. 574-580, 1976.

 Page 767

[11].WJ. Townsend, E.E. Swartzlander Jr., and J.A.

Abraham, “A Comparison of Dadda and Wall ace Mul-

tiplier Delays,” Proc. SPIE, Advanced Signal

Processing Algorithms, Architectures, and

Implementations XIII, pp. 552-560, 2003.

[12].Fabrizio Lamberti and Nikos Andrikos, “

Reducing the Computation Time in (Short Bit-Width)

Two’s Com-plement Multipliers”, IEEE transactions

on computers, Vol. 60, NO. 2, FEBRUARY 20 1 1.

