
 

  
                                                                                                                                                                                                                    Page 976 

 

Effective Bug Triage with Software Reduction Data Techniques 

Mutyala Sowjanaya 

Dept of CSE, 

Benaiah Institute of Technology and Science. 

Nagaraju Medida 

Assistant Professor, 

Benaiah Institute of Technology and Science. 

 

ABSTRACT: 

Software companies spend over 45 percent of cost in 

dealing with software bugs. An inevitable step of 

fixing bugs is bug triage, which aims to correctly 

assign a developer to a new bug. To decrease the time 

cost in manual work, text classification techniques are 

applied to conduct automatic bug triage. In this paper, 

we address the problem of data reduction for bug 

triage, i.e., how to reduce the scale and improve the 

quality of bug data. We combine instance selection 

with feature selection to simultaneously reduce data 

scale on the bug dimension and the word dimension. 

To determine the order of applying instance selection 

and feature selection, we extract attributes from 

historical bug data sets and build a predictive model 

for a new bug data set. We empirically investigate the 

performance of data reduction on totally 600,000 bug 

reports of two large open source projects, namely 

Eclipse and Mozilla. The results show that our data 

reduction can effectively reduce the data scale and 

improve the accuracy of bug triage. Our work provides 

an approach to leveraging techniques on data 

processing to form reduced and high-quality bug data 

in software development and maintenance. 

INTRODUCTION 

What is Data Mining? 

 

Structure of Data Mining: 

Generally, data mining (sometimes called data or 

knowledge discovery) is the process of analyzing data 

from different perspectives and summarizing it into 

useful information - information that can be used to 

increase revenue, cuts costs, or both. Data mining 

software is one of a number of analytical tools for 

analyzing data. It allows users to analyze data from 

many different dimensions or angles, categorize it, and 

summarize the relationships identified. Technically, 

data mining is the process of finding correlations or 

patterns among dozens of fields in large relational 

databases. 

How Data Mining Works? 

While large-scale information technology has been 

evolving separate transaction and analytical systems, 

data mining provides the link between the two. Data 

mining software analyzes relationships and patterns in 

stored transaction data based on open-ended user 

queries. Several types of analytical software are 

available: statistical, machine learning, and neural 

networks. 

Generally, any of four types of relationships are 

sought: 

 Classes: Stored data is used to locate data in 

predetermined groups. For example, a restaurant 

chain could mine customer purchase data to 

determine when customers visit and what they 

typically order. This information could be used to 

increase traffic by having daily specials. 

 Clusters: Data items are grouped according to 

logical relationships or consumer preferences.  



 

  
                                                                                                                                                                                                                    Page 977 

 

For example, data can be mined to identify market 

segments or consumer affinities. 

 Associations: Data can be mined to identify 

associations. The beer-diaper example is an 

example of associative mining. 

 Sequential patterns: Data is mined to anticipate 

behavior patterns and trends. For example, an 

outdoor equipment retailer could predict the 

likelihood of a backpack being purchased based on 

a consumer's purchase of sleeping bags and hiking 

shoes. 

Data mining consists of five major elements: 

1) Extract, transform, and load transaction data onto 

the data warehouse system. 

2) Store and manage the data in a multidimensional 

database system. 

3) Provide data access to business analysts and 

information technology professionals. 

4) Analyze the data by application software. 

5) Present the data in a useful format, such as a graph 

or table. 

Different levels of analysis are available: 

 Artificial neural networks: Non-linear predictive 

models that learn through training and resemble 

biological neural networks in structure. 

 Genetic algorithms: Optimization techniques that 

use process such as genetic combination, mutation, 

and natural selection in a design based on the 

concepts of natural evolution. 

 Decision trees: Tree-shaped structures that 

represent sets of decisions. These decisions 

generate rules for the classification of a dataset. 

Specific decision tree methods include 

Classification and Regression Trees (CART) and 

Chi Square Automatic Interaction Detection 

(CHAID). CART and CHAID are decision tree 

techniques used for classification of a dataset. 

They provide a set of rules that you can apply to a 

new (unclassified) dataset to predict which records 

will have a given outcome. CART segments a 

dataset by creating 2-way splits while CHAID 

segments using chi square tests to create multi-

way splits. CART typically requires less data 

preparation than CHAID. 

 Nearest neighbor method: A technique that 

classifies each record in a dataset based on a 

combination of the classes of the k record(s) most 

similar to it in a historical dataset (where k=1). 

Sometimes called the k-nearest neighbor 

technique. 

 Rule induction: The extraction of useful if-then 

rules from data based on statistical significance. 

 Data visualization: The visual interpretation of 

complex relationships in multidimensional data. 

Graphics tools are used to illustrate data 

relationships. 

EXISTING SYSTEM: 

 To investigate the relationships in bug data, 

Sandusky et al. form a bug report network to 

examine the dependency among bug reports.  

 Besides studying relationships among bug reports, 

Hong et al. build a developer social network to 

examine the collaboration among developers based 

on the bug data in Mozilla project. This developer 

social network is helpful to understand the 

developer community and the project evolution.  

 By mapping bug priorities to developers, Xuan et 

al. identify the developer prioritization in open 

source bug repositories. The developer 

prioritization can distinguish developers and assist 

tasks in software maintenance. 

 To investigate the quality of bug data, 

Zimmermann et al. design questionnaires to 

developers and users in three open source projects. 

Based on the analysis of questionnaires, they 

characterize what makes a good bug report and 



 

  
                                                                                                                                                                                                                    Page 978 

 

train a classifier to identify whether the quality of 

a bug report should be improved.   

 Duplicate bug reports weaken the quality of bug 

data by delaying the cost of handling bugs. To 

detect duplicate bug reports, Wang et al. design a 

natural language processing approach by matching 

the execution information.  

 

DISADVANTAGES OF EXISTING SYSTEM : 

 Traditional software analysis is not completely 

suitable for the large-scale and complex data in 

software repositories. 

 In traditional software development, new bugs are 

manually triaged by an expert developer, i.e., a 

human triager. Due to the large number of daily 

bugs and the lack of expertise of all the bugs, 

manual bug triage is expensive in time cost and 

low in accuracy. 

PROPOSED SYSTEM: 

 In this paper, we address the problem of data 

reduction for bug triage, i.e., how to reduce the 

bug data to save the labor cost of developers and 

improve the quality to facilitate the process of bug 

triage.  

 Data reduction for bug triage aims to build a 

small-scale and high-quality set of bug data by 

removing bug reports and words, which are 

redundant or non-informative.  

 In our work, we combine existing techniques of 

instance selection and feature selection to 

simultaneously reduce the bug dimension and the 

word dimension. The reduced bug data contain 

fewer bug reports and fewer words than the 

original bug data and provide similar information 

over the original bug data. We evaluate the 

reduced bug data according to two criteria: the 

scale of a data set and the accuracy of bug triage.  

 In this paper, we propose a predictive model to 

determine the order of applying instance selection 

and feature selection. We refer to such 

determination as prediction for reduction orders. 

 Drawn on the experiences in software metrics,1 we 

extract the attributes from historical bug data sets. 

Then, we train a binary classifier on bug data sets 

with extracted attributes and predict the order of 

applying instance selection and feature selection 

for a new bug data set. 

ADVANTAGES OF PROPOSED SYSTEM: 

 Experimental results show that applying the 

instance selection technique to the data set can 

reduce bug reports but the accuracy of bug triage 

may be decreased.  

 Applying the feature selection technique can 

reduce words in the bug data and the accuracy can 

be increased.  

 Meanwhile, combining both techniques can 

increase the accuracy, as well as reduce bug 

reports and words. 

 Based on the attributes from historical bug data 

sets, our predictive model can provide the 

accuracy of 71.8 percent for predicting the 

reduction order. 

 We present the problem of data reduction for bug 

triage. This problem aims to augment the data set 

of bug triage in two aspects, namely a) to 

simultaneously reduce the scales of the bug 

dimension and the word dimension and b) to 

improve the accuracy of bug triage. 

 We propose a combination approach to addressing 

the problem of data reduction. This can be viewed 

as an application of instance selection and feature 

selection in bug repositories. 

 We build a binary classifier to predict the order of 

applying instance selection and feature selection. 

To our knowledge, the order of applying instance 

selection and feature selection has not been 

investigated in related domains. 

SYSTEM ARCHITECTURE: 



 

  
                                                                                                                                                                                                                    Page 979 

 

 

IMPLEMENTATION 

MODULES: 

 Dataset Collection  

 Preprocessing Method 

 Feature Selection/ Instance Selection 

 Bug Data Reduction 

 Performance Evaluation 

MODULES DESCSRIPTION: 

Dataset Collection: 

To collect and/or retrieve data about activities, results, 

context and other factors. It is important to consider 

the type of information it want to gather from your 

participants and the ways you will analyze that 

information. The data set corresponds to the contents 

of a single database table, or a single statistical data 

matrix, where every column of the table represents a 

particular variable. after collecting the data to store the 

Database. 

 

Preprocessing Method: 

Data Preprocessing or Data cleaning, Data is cleansed 

through processes such as filling in missing values, 

smoothing the noisy data, or resolving the 

inconsistencies in the data. And also used to removing 

the unwanted data. Commonly used as a 

preliminary data mining practice, data preprocessing 

transforms the data into a format that will be more 

easily and effectively processed for the purpose of the 

user. 

 

Feature Selection/ Instance Selection: 

The combination of instance selection and feature 

selection to generate a reduced bug data set. We 

replace the original data set with the reduced data set 

for bug triage. Instance selection is a technique to 

reduce the number of instances by removing noisy and 

redundant instances. By removing uninformative 

words, feature selection improves the accuracy of bug 

triage. It recover the accuracy loss by instance 

selection. 

 

Bug Data Reduction:  

The data set can reduce bug reports but the accuracy of 

bug triage may be decreased. It improves the accuracy 

of bug triage. It tends to remove these words to reduce 

the computation for bug triage. The bug data reduction 

to reduce the scale and to improve the quality of data 

in bug repositories. It reducing duplicate and noisy bug 

reports to decrease the number of historical bugs. 

 

Performance Evaluation: 

In this Performance evaluation, algorithm can provide 

a reduced data set by removing non-representative 

instances. The quality of bug triage can be measured 

with the accuracy of bug triage. to reduce noise and 

redundancy in bug data sets. 

 

SCREEN SHOTS 

Homepage: 

 
 

 

 



 

  
                                                                                                                                                                                                                    Page 980 

 

Manager Login: 

 
 

Developer Registration: 

 
 

Developer Login: 

 
 

 

Developer Home: 

 
 

Developer Assigning New Bug: 

 
 

CONCLUSION: 

Bug triage is an expensive step of software 

maintenance in both labor cost and time cost. In this 

paper, we combine feature selection with instance 

selection to reduce the scale of bug data sets as well as 

improve the data quality. To determine the order of 

applying instance selection and feature selection for a 

new bug data set, we extract attributes of each bug data 

set and train a predictive model based on historical 

data sets. We empirically investigate the data reduction 

for bug triage in bug repositories of two large open 

source projects, namely Eclipse and Mozilla. Our work 

provides an approach to leveraging techniques on data 

processing to form reduced and high-quality bug data 

in software development and maintenance. In future 

work, we plan on improving the results of data 

reduction in bug triage to explore how to prepare a 



 

  
                                                                                                                                                                                                                    Page 981 

 

highquality bug data set and tackle a domain-specific 

software task. For predicting reduction orders, we plan 

to pay efforts to find out the potential relationship 

between the attributes of bug data sets and the 

reduction orders. 

REFERENCES 

 J. Anvik, L. Hiew, and G. C. Murphy, “Who should 

fix this bug?” in Proc. 28th Int. Conf. Softw. Eng., 

May 2006, pp. 361–370. 

 

S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. 

Paradkar, and M. D. Ernst, “Finding bugs in web 

applications using dynamic test generation and 

explicit-state model checking,” IEEE Softw., vol. 36, 

no. 4, pp. 474–494, Jul./Aug. 2010. 

 

J. Anvik and G. C. Murphy, “Reducing the effort of 

bug report triage: Recommenders for development-

oriented decisions,” ACM Trans. Soft. Eng. 

Methodol., vol. 20, no. 3, article 10, Aug. 2011. 

 

C. C. Aggarwal and P. Zhao, “Towards graphical 

models for text processing,” Knowl. Inform. Syst., vol. 

36, no. 1, pp. 1–21, 2013. Bugzilla, (2014). [Online]. 

Avaialble: http://bugzilla.org/ 

 

K. Balog, L. Azzopardi, and M. de Rijke, “Formal 

models for expert finding in enterprise corpora,” in 

Proc. 29th Annu. Int. ACM SIGIR Conf. Res. 

Develop. Inform. Retrieval, Aug. 2006, pp. 43–50. 

 

P. S. Bishnu and V. Bhattacherjee, “Software fault 

prediction using quad tree-based k-means clustering 

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24, 

no. 6, pp. 1146–1150, Jun. 2012. 

 

H. Brighton and C. Mellish, “Advances in instance 

selection for instance-based learning algorithms,” Data 

Mining Knowl. Discovery, vol. 6, no. 2, pp. 153–172, 

Apr. 2002. 

 

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, 

“Information needs in bug reports: Improving 

cooperation between developers and users,” in Proc. 

ACM Conf. Comput. Supported Cooperative Work, 

Feb. 2010, pp. 301–310. 

 

V. Bol_on-Canedo, N. S_anchez-Maro~no, and A. 

Alonso-Betanzos, “A review of feature selection 

methods on synthetic data,” Knowl. Inform. Syst., vol. 

34, no. 3, pp. 483–519, 2013. 

 

V. Cerver_on and F. J. Ferri, “Another move toward 

the minimum consistent subset: A tabu search 

approach to the condensed nearest neighbor rule,” 

IEEE Trans. Syst., Man, Cybern., Part B, Cybern., vol. 

31, no. 3, pp. 408–413, Jun. 2001. 

 

D. _Cubrani_c and G. C. Murphy, “Automatic bug 

triage using text categorization,” in Proc. 16th Int. 

Conf. Softw. Eng. Knowl. Eng., Jun. 2004, pp. 92–

97.Eclipse. (2014). [Online]. Available:  

http://eclipse.org/  

 

B. Fitzgerald, “The transformation of open source 

software,” MIS Quart., vol. 30, no. 3, pp. 587–598, 

Sep. 2006.  

http://eclipse.org/

