

 Page 1012

Comprehensive and Progressive Duplicate Entities Detection
Veerisetty Ravi Kumar

Dept of CSE,

Benaiah Institute of Technology and Science.

Nagaraju Medida

Assistant Professor,

Benaiah Institute of Technology and Science.

ABSTRACT:

Duplicate detection is the process of identifying

multiple representations of same real world entities.

Today, duplicate detection methods need to process

ever larger datasets in ever shorter time: maintaining

the quality of a dataset becomes increasingly difficult.

We present two novel, progressive duplicate detection

algorithms that significantly increase the efficiency of

finding duplicates if the execution time is limited:

They maximize the gain of the overall process within

the time available by reporting most results much

earlier than traditional approaches. Comprehensive

experiments show that our progressive algorithms can

double the efficiency over time of traditional duplicate

detection and significantly improve upon related work.

Keywords:

Duplicate Detection, Entity Resolution, Data Cleaning,

Progressiveness, Data Separation.

INTRODUCTION:

Databases play an important role in today's IT based

economy. Many industries and systems depend on the

accuracy of databases to carry out operations.

Therefore, the quality of the information stored in the

databases, can have significant cost implications to a

system that relies on information to function and

conduct business. In an error-free system with

perfectly clean data, the construction of a

comprehensive view of the data consists of linking --in

relational terms, joining-- two or more tables on their

key fields. Unfortunately, data often lack a unique,

global identifier that would permit such an operation.

Furthermore, the data are neither carefully controlled

for quality nor defined in a consistent way across

different data sources.

Thus, data quality is often compromised by many

factors, including data entry errors (e.g.,studet instead

of student), missing integrity constraints (e.g.,

allowing entries such as EmployeeAge=567), and

multiple conventions for recording information To

make things worse, in independently managed

databases not only the values, but the structure,

semantics and underlying assumptions about the data

may differ as well. Progressive duplicate detection

identifies most duplicate pairs early in the detection

process. Instead of reducing the overall time needed to

finish the entire process, progressive approaches try to

reduce the average time after which a duplicate is

found. Progressive techniques make this trade-off

more beneficial as they deliver more complete results

in shorter amounts of time. Progressive Sorted

Neighborhood method take clean dataset and find

some duplicate records and Progressive Blocking take

dirty datasets and detect large duplicate records in

databases.

Data are among the most important assets of a

company. But due to data changes and sloppy data

entry, errors such as duplicate entries might occur,

making data cleansing and in particular duplicate

detection indispensable. However, the pure size of

today’s datasets renders duplicate detection processes

expensive. Online retailers, for example, offer huge

catalogs comprising a constantly growing set of items

from many different suppliers. As independent persons

change the product portfolio, duplicates arise.

Although there is an obvious need for reduplication,

online shops without downtime cannot afford

traditional reduplication. Progressive duplicate

detection identifies most duplicate pairs early in the

detection process.

 Page 1013

Instead of reducing the overall time needed to finish

the entire process, progressive approaches try to

reduce the average time after which a duplicate is

found. Early termination, in particular, then yields

more completes results on a progressive algorithm than

on any traditional approach. The incremental algorithm

reports new duplicates at an almost constant

frequency. This output behavior is common for state-

of-the-art duplicate detection algorithms. In this work,

however, we focus on progressive algorithms, which

try to report most matches early on, while possibly

slightly increasing their overall runtime. To achieve

this, they need to estimate the similarity of all

comparison candidates in order to compare most

promising record pairs first. With the pair selection

techniques of the duplicate detection process, there

exists a trade-off between the amount of time needed

to run a duplicate detection algorithm and the

completeness of the results. Progressive techniques

make this trade-off more beneficial as they deliver

more complete results in shorter amounts of time.

Furthermore, they make it easier for the user to define

this trade-off, because the detection time or result size

can directly be specified instead of parameters whose

influence on detection time and result size is hard to

guess.

We present several use cases where this becomes

important: 1) A user has only limited, maybe unknown

time for data cleansing and wants to make best

possible use of it. Then, simply start the algorithm and

terminate it when needed. The result size will be

maximized. 2) A user has little knowledge about the

given data but still needs to configure the cleansing

process. Then, let the progressive algorithm choose

window/block sizes and keys automatically. 3) A user

needs to do the cleaning interactively to, for instance,

find good sorting keys by trial and error. Then, run the

progressive algorithm repeatedly each run quickly

reports possibly large results. 4) A user has to achieve

a certain recall. Then, use the result curves of

progressive algorithms to estimate how many more

duplicates can be found further; in general, the curves

asymptotically converge against the real number of

duplicates in the dataset. We propose two novel,

progressive duplicate detection algorithms namely

Progressive Sorted Neighborhood Method (PSNM),

which performs best on small and almost clean

datasets, and Progressive Blocking (PB), which

performs best on large and very dirty datasets. Both

enhance the efficiency of duplicate detection even on

very large datasets. In comparison to traditional

duplicate detection, progressive duplicate detection

satisfies two conditions [1]: Improved Early Quality.

Let t be an arbitrary target time at which results are

needed. Then the progressive algorithm discovers

more duplicate pairs at t than the corresponding

traditional algorithm. Typically, t is smaller than the

overall runtime of the traditional algorithm. Same

Eventual Quality. If both a traditional algorithm and its

progressive version finish execution, without early

termination at t, they produce the same results. Given

any fixed-size time slot in which data cleansing is

possible, progressive algorithms try to maximize their

efficiency for that amount of time. To this end, our

algorithms PSNM and PB dynamically adjust their

behavior by automatically choosing optimal

parameters, e.g., window sizes, block sizes, and sorting

keys, rendering their manual specification superfluous.

In this way, we significantly ease the parameterization

complexity for duplicate detection in general and

contribute to the development of more user interactive

applications: We can offer fast feedback and alleviate

the often difficult parameterization of the algorithms.

In summary, our contributions are the following: • we

propose two dynamic progressive duplicate detection

algorithms, PSNM and PB, which expose different

strengths and outperform current approaches.

EXISTING SYSTEM:

Much research on duplicate detection, also known as

entity resolution and by many other names focuses on

pair selection algorithms that try to maximize recall on

 Page 1014

the one hand and efficiency on the other hand. The

most prominent algorithms in this area are Blocking

and the sorted neighborhood method (SNM). Xiao et

al. proposed a top-k similarity join that uses a special

index structure to estimate promising comparison

candidates. This approach progressively resolves

duplicates and also eases the parameterization

problem. Pay-As-You-Go Entity Resolution by Whang

et al. introduced three kinds of progressive duplicate

detection techniques, called “hints”

DISADVANTAGES OF EXISTING SYSTEM:

 A user has only limited, maybe unknown time for

data cleansing and wants to make best possible

use of it. Then, simply start the algorithm and

terminate it when needed. The result size will be

maximized.

 A user has little knowledge about the given data

but still needs to configure the cleansing process.

 A user needs to do the cleaning interactively to,

for instance, find good sorting keys by trial and

error. Then, run the progressive algorithm

repeatedly; each run quickly reports possibly

large results.

 All presented hints produce static orders for the

comparisons and miss the opportunity to

dynamically adjust the comparison order at

runtime based on intermediate results.

PROPOSED SYSTEM:

In this work, however, we focus on progressive

algorithms, which try to report most matches early on,

while possibly slightly increasing their overall runtime.

To achieve this, they need to estimate the similarity of

all comparison candidates in order to compare most

promising record pairs first. We propose two novel,

progressive duplicate detection algorithms namely

progressive sorted neighborhood method (PSNM),

which performs best on small and almost clean

datasets, and progressive blocking (PB), which

performs best on large and very dirty datasets. Both

enhance the efficiency of duplicate detection even on

very large datasets.

We propose two dynamic progressive duplicate

detection algorithms, PSNM and PB, which expose

different strengths and outperform current approaches.

We introduce a concurrent progressive approach for

the multi-pass method and adapt an incremental

transitive closure algorithm that together forms the

first complete progressive duplicate detection

workflow. We define a novel quality measure for

progressive duplicate detection to objectively rank the

performance of different approaches. We exhaustively

evaluate on several real-world datasets testing our own

and previous algorithms

ADVANTAGES OF PROPOSED SYSTEM:

 Improved early quality

 Same eventual quality

 Our algorithms PSNM and PB dynamically

adjust their behavior by automatically choosing

optimal parameters, e.g., window sizes, block

sizes, and sorting keys, rendering their manual

specification superfluous. In this way, we

significantly ease the parameterization

complexity for duplicate detection in general and

contribute to the development of more user

interactive applications.

IMPLEMENTATION:

MODULES:

 Dataset Collection

 Preprocessing Method

 Data Separation

 Duplicate Detection

 Quality Measures

MODULES DESCSRIPTION:

Dataset Collection:

To collect and/or retrieve data about activities, results,

context and other factors. It is important to consider

the type of information it want to gather from your

participants and the ways you will analyze that

information. The data set corresponds to the contents

of a single database table, or a single statistical data

matrix, where every column of the table represents a

 Page 1015

particular variable. After collecting the data to store

the Database.

Preprocessing Method:

Data preprocessing or Data cleaning, Data is cleansed

through processes such as filling in missing values,

smoothing the noisy data, or resolving the

inconsistencies in the data. And also used to removing

the unwanted data. Commonly used as a

preliminary data mining practice, data preprocessing

transforms the data into a format that will be more

easily and effectively processed for the purpose of the

user.

Data Separation:

After completing the preprocessing, the data separation

to be performed. The blocking algorithms assign each

record to a fixed group of similar records (the blocks)

and then compare all pairs of records within these

groups. Each block within the block comparison

matrix represents the comparisons of all records in one

block with all records in another block, the equidistant

blocking; all blocks have the same size.

Duplicate Detection:

The duplicate detection rules set by the administrator,

the system alerts the user about potential duplicates

when the user tries to create new records or update

existing records. To maintain data quality, you can

schedule a duplicate detection job to check for

duplicates for all records that match a certain criteria.

You can clean the data by deleting, deactivating, or

merging the duplicates reported by a duplicate

detection.

Quality Measures:

The quality of these systems is, hence, measured using

a cost-benefit calculation. Especially for traditional

duplicate detection processes, it is difficult to meet a

budget limitation, because their runtime is hard to

predict. By delivering as many duplicates as possible

in a given amount of time, progressive processes

optimize the cost-benefit ratio.

In manufacturing, a measure of excellence or a state of

being free from defects, deficiencies and significant

variations. It is brought about by strict and consistent

commitment to certain standards that achieve

uniformity of a product in order to satisfy specific

customer or user requirements.

CONCLUSION:

This paper introduced the progressive sorted

neighborhood method and progressive blocking. Both

algorithms increase the efficiency of duplicate

detection for situations with limited execution time;

they dynamically change the ranking of comparison

candidates based on intermediate results to execute

promising comparisons first and less promising

comparisons later. To determine the performance gain

of our algorithms, we proposed a novel quality

measure for progressiveness that integrates seamlessly

with existing measures.

Using this measure, experiments showed that our

approaches outperform the traditional SNM by up to

100 percent and related work by up to 30 percent For

the construction of a fully progressive duplicate

detection workflow, we proposed a progressive sorting

method, Magpie, a progressive multi-pass execution

model, Attribute Concurrency, and an incremental

transitive closure algorithm.

The adaptations AC-PSNM and AC-PB use multiple

sort keys concurrently to interleave their progressive

iterations. By analyzing intermediate results, both

approaches dynamically rank the different sort keys at

runtime, drastically easing the key selection problem.

In future work, we want to combine our progressive

approaches with scalable approaches for duplicate

detection to deliver results even faster.

In particular, Kolb et al. introduced a two phase

parallel SNM [21], which executes a traditional SNM

on balanced, overlapping partitions. Here, we can

instead use our PSNM to progressively find duplicates

in parallel.

 Page 1016

REFERENCES

[1] S. E. Whang, D. Marmaros, and H. Garcia-Molina,

“Pay-as-you-go entity resolution,” IEEE Trans.

Knowl. Data Eng., vol. 25, no. 5, pp. 1111–1124, May

2012.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S.

Verykios, “Duplicate record detection: A survey,”

IEEE Trans. Knowl. Data Eng., vol. 19, no. 1, pp. 1–

16, Jan. 2007.

[3] F. Naumann and M. Herschel, An Introduction to

Duplicate Detection. San Rafael, CA, USA: Morgan &

Claypool, 2010.

[4] H. B. Newcombe and J. M. Kennedy, “Record

linkage: Making maximum use of the discriminating

power of identifying information,” Commun. ACM,

vol. 5, no. 11, pp. 563–566, 1962.

[5] M. A. Hernandez and S. J. Stolfo, “Real-world data

is dirty: Data cleansing and the merge/purge problem,”

Data Mining Knowl. Discovery, vol. 2, no. 1, pp. 9–

37, 1998.

[6] X. Dong, A. Halevy, and J. Madhavan, “Reference

reconciliation in complex information spaces,” in Proc.

Int. Conf. Manage. Data, 2005, pp. 85–96.

[7] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J.

Miller, “Framework for evaluating clustering

algorithms in duplicate detection,” Proc. Very Large

Databases Endowment, vol. 2, pp. 1282– 1293, 2009.

[8] O. Hassanzadeh and R. J. Miller, “Creating

probabilistic databases from duplicated data,” VLDB

J., vol. 18, no. 5, pp. 1141–1166, 2009.

[9] U. Draisbach, F. Naumann, S. Szott, and O.

Wonneberg, “Adaptive windows for duplicate

detection,” in Proc. IEEE 28
th
 Int. Conf. Data Eng.,

2012, pp. 1073–1083.

[10] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles,

“Adaptive sorted neighborhood methods for efficient

record linkage,” in Proc. 7th ACM/ IEEE Joint Int.

Conf. Digit. Libraries, 2007, pp. 185–194.

[11] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D.

Ko, C. Yu, and A. Halevy, “Web-scale data

integration: You can only afford to pay as you go,” in

Proc. Conf. Innovative Data Syst. Res., 2007.

[12] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy,

“Pay-as-you-go user feedback for dataspace systems,”

in Proc. Int. Conf. Manage. Data, 2008, pp. 847–860.

[13] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k

set similarity joins,” in Proc. IEEE Int. Conf. Data

Eng., 2009, pp. 916–927.

[14] P. Indyk, “A small approximately min-wise

independent family of hash functions,” in Proc. 10th

Annu. ACM-SIAM Symp. Discrete Algorithms, 1999,

pp. 454–456. Fig. 10. Duplicates found in the plista-

dataset.

