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ABSTRACT: 

Duplicate detection is the process of identifying 

multiple representations of same real world entities. 

Today, duplicate detection methods need to process 

ever larger datasets in ever shorter time: maintaining 

the quality of a dataset becomes increasingly difficult. 

We present two novel, progressive duplicate detection 

algorithms that significantly increase the efficiency of 

finding duplicates if the execution time is limited: 

They maximize the gain of the overall process within 

the time available by reporting most results much 

earlier than traditional approaches. Comprehensive 

experiments show that our progressive algorithms can 

double the efficiency over time of traditional duplicate 

detection and significantly improve upon related work. 

 

Keywords: 

Duplicate Detection, Entity Resolution, Data Cleaning, 

Progressiveness, Data Separation. 

 

INTRODUCTION: 

Databases play an important role in today's IT based 

economy. Many industries and systems depend on the 

accuracy of databases to carry out operations. 

Therefore, the quality of the information stored in the 

databases, can have significant cost implications to a 

system that relies on information to function and 

conduct business. In an error-free system with 

perfectly clean data, the construction of a 

comprehensive view of the data consists of linking --in 

relational terms, joining-- two or more tables on their 

key fields. Unfortunately, data often lack a unique, 

global identifier that would permit such an operation. 

Furthermore, the data are neither carefully controlled 

for quality nor defined in a consistent way across 

different data sources.  

 

Thus, data quality is often compromised by many 

factors, including data entry errors (e.g.,studet instead 

of student), missing integrity constraints (e.g., 

allowing entries such as EmployeeAge=567), and 

multiple conventions for recording information To 

make things worse, in independently managed 

databases not only the values, but the structure, 

semantics and underlying assumptions about the data 

may differ as well. Progressive duplicate detection 

identifies most duplicate pairs early in the detection 

process. Instead of reducing the overall time needed to 

finish the entire process, progressive approaches try to 

reduce the average time after which a duplicate is 

found. Progressive techniques make this trade-off 

more beneficial as they deliver more complete results 

in shorter amounts of time. Progressive Sorted 

Neighborhood method take clean dataset and find 

some duplicate records and Progressive Blocking take 

dirty datasets and detect large duplicate records in 

databases. 

 

Data are among the most important assets of a 

company. But due to data changes and sloppy data 

entry, errors such as duplicate entries might occur, 

making data cleansing and in particular duplicate 

detection indispensable. However, the pure size of 

today’s datasets renders duplicate detection processes 

expensive. Online retailers, for example, offer huge 

catalogs comprising a constantly growing set of items 

from many different suppliers. As independent persons 

change the product portfolio, duplicates arise. 

Although there is an obvious need for reduplication, 

online shops without downtime cannot afford 

traditional reduplication. Progressive duplicate 

detection identifies most duplicate pairs early in the 

detection process.  

 



 

  
                                                                                                                                                                                                                    Page 1013 

 

Instead of reducing the overall time needed to finish 

the entire process, progressive approaches try to 

reduce the average time after which a duplicate is 

found. Early termination, in particular, then yields 

more completes results on a progressive algorithm than 

on any traditional approach. The incremental algorithm 

reports new duplicates at an almost constant 

frequency. This output behavior is common for state-

of-the-art duplicate detection algorithms.  In this work, 

however, we focus on progressive algorithms, which 

try to report most matches early on, while possibly 

slightly increasing their overall runtime. To achieve 

this, they need to estimate the similarity of all 

comparison candidates in order to compare most 

promising record pairs first. With the pair selection 

techniques of the duplicate detection process, there 

exists a trade-off between the amount of time needed 

to run a duplicate detection algorithm and the 

completeness of the results. Progressive techniques 

make this trade-off more beneficial as they deliver 

more complete results in shorter amounts of time. 

Furthermore, they make it easier for the user to define 

this trade-off, because the detection time or result size 

can directly be specified instead of parameters whose 

influence on detection time and result size is hard to 

guess.  

 

We present several use cases where this becomes 

important: 1) A user has only limited, maybe unknown 

time for data cleansing and wants to make best 

possible use of it. Then, simply start the algorithm and 

terminate it when needed. The result size will be 

maximized. 2) A user has little knowledge about the 

given data but still needs to configure the cleansing 

process. Then, let the progressive algorithm choose 

window/block sizes and keys automatically. 3) A user 

needs to do the cleaning interactively to, for instance, 

find good sorting keys by trial and error. Then, run the 

progressive algorithm repeatedly each run quickly 

reports possibly large results. 4) A user has to achieve 

a certain recall. Then, use the result curves of 

progressive algorithms to estimate how many more 

duplicates can be found further; in general, the curves 

asymptotically converge against the real number of 

duplicates in the dataset. We propose two novel, 

progressive duplicate detection algorithms namely 

Progressive Sorted Neighborhood Method (PSNM), 

which performs best on small and almost clean 

datasets, and Progressive Blocking (PB), which 

performs best on large and very dirty datasets. Both 

enhance the efficiency of duplicate detection even on 

very large datasets. In comparison to traditional 

duplicate detection, progressive duplicate detection 

satisfies two conditions [1]: Improved Early Quality. 

Let t be an arbitrary target time at which results are 

needed. Then the progressive algorithm discovers 

more duplicate pairs at t than the corresponding 

traditional algorithm. Typically, t is smaller than the 

overall runtime of the traditional algorithm. Same 

Eventual Quality. If both a traditional algorithm and its 

progressive version finish execution, without early 

termination at t, they produce the same results. Given 

any fixed-size time slot in which data cleansing is 

possible, progressive algorithms try to maximize their 

efficiency for that amount of time. To this end, our 

algorithms PSNM and PB dynamically adjust their 

behavior by automatically choosing optimal 

parameters, e.g., window sizes, block sizes, and sorting 

keys, rendering their manual specification superfluous. 

In this way, we significantly ease the parameterization 

complexity for duplicate detection in general and 

contribute to the development of more user interactive 

applications: We can offer fast feedback and alleviate 

the often difficult parameterization of the algorithms. 

In summary, our contributions are the following: • we 

propose two dynamic progressive duplicate detection 

algorithms, PSNM and PB, which expose different 

strengths and outperform current approaches.  

 
EXISTING SYSTEM: 

Much research on duplicate detection, also known as 

entity resolution and by many other names focuses on 

pair selection algorithms that try to maximize recall on 
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the one hand and efficiency on the other hand. The 

most prominent algorithms in this area are Blocking 

and the sorted neighborhood method (SNM). Xiao et 

al. proposed a top-k similarity join that uses a special 

index structure to estimate promising comparison 

candidates. This approach progressively resolves 

duplicates and also eases the parameterization 

problem. Pay-As-You-Go Entity Resolution by Whang 

et al. introduced three kinds of progressive duplicate 

detection techniques, called “hints” 

 

DISADVANTAGES OF EXISTING SYSTEM: 

 A user has only limited, maybe unknown time for 

data cleansing and wants to make best possible 

use of it. Then, simply start the algorithm and 

terminate it when needed. The result size will be 

maximized. 

 A user has little knowledge about the given data 

but still needs to configure the cleansing process. 

 A user needs to do the cleaning interactively to, 

for instance, find good sorting keys by trial and 

error. Then, run the progressive algorithm 

repeatedly; each run quickly reports possibly 

large results. 

 All presented hints produce static orders for the 

comparisons and miss the opportunity to 

dynamically adjust the comparison order at 

runtime based on intermediate results. 

 

PROPOSED SYSTEM: 

In this work, however, we focus on progressive 

algorithms, which try to report most matches early on, 

while possibly slightly increasing their overall runtime. 

To achieve this, they need to estimate the similarity of 

all comparison candidates in order to compare most 

promising record pairs first. We propose two novel, 

progressive duplicate detection algorithms namely 

progressive sorted neighborhood method (PSNM), 

which performs best on small and almost clean 

datasets, and progressive blocking (PB), which 

performs best on large and very dirty datasets. Both 

enhance the efficiency of duplicate detection even on 

very large datasets. 

We propose two dynamic progressive duplicate 

detection algorithms, PSNM and PB, which expose 

different strengths and outperform current approaches. 

We introduce a concurrent progressive approach for 

the multi-pass method and adapt an incremental 

transitive closure algorithm that together forms the 

first complete progressive duplicate detection 

workflow. We define a novel quality measure for 

progressive duplicate detection to objectively rank the 

performance of different approaches. We exhaustively 

evaluate on several real-world datasets testing our own 

and previous algorithms 

 

ADVANTAGES OF PROPOSED SYSTEM: 

 Improved early quality 

 Same eventual quality 

 Our algorithms PSNM and PB dynamically 

adjust their behavior by automatically choosing 

optimal parameters, e.g., window sizes, block 

sizes, and sorting keys, rendering their manual 

specification superfluous. In this way, we 

significantly ease the parameterization 

complexity for duplicate detection in general and 

contribute to the development of more user 

interactive applications. 

 

IMPLEMENTATION: 

MODULES: 

 Dataset Collection 

 Preprocessing Method 

 Data Separation  

 Duplicate Detection 

 Quality Measures 

 

MODULES DESCSRIPTION: 

Dataset Collection: 

To collect and/or retrieve data about activities, results, 

context and other factors. It is important to consider 

the type of information it want to gather from your 

participants and the ways you will analyze that 

information. The data set corresponds to the contents 

of a single database table, or a single statistical data 

matrix, where every column of the table represents a 
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particular variable. After collecting the data to store 

the Database. 

 

Preprocessing Method: 

Data preprocessing or Data cleaning, Data is cleansed 

through processes such as filling in missing values, 

smoothing the noisy data, or resolving the 

inconsistencies in the data. And also used to removing 

the unwanted data. Commonly used as a 

preliminary data mining practice, data preprocessing 

transforms the data into a format that will be more 

easily and effectively processed for the purpose of the 

user. 

 

Data Separation: 

After completing the preprocessing, the data separation 

to be performed. The blocking algorithms assign each 

record to a fixed group of similar records (the blocks) 

and then compare all pairs of records within these 

groups. Each block within the block comparison 

matrix represents the comparisons of all records in one 

block with all records in another block, the equidistant 

blocking; all blocks have the same size. 

 

Duplicate Detection: 

The duplicate detection rules set by the administrator, 

the system alerts the user about potential duplicates 

when the user tries to create new records or update 

existing records. To maintain data quality, you can 

schedule a duplicate detection job to check for 

duplicates for all records that match a certain criteria. 

You can clean the data by deleting, deactivating, or 

merging the duplicates reported by a duplicate 

detection. 

 

Quality Measures: 

The quality of these systems is, hence, measured using 

a cost-benefit calculation. Especially for traditional 

duplicate detection processes, it is difficult to meet a 

budget limitation, because their runtime is hard to 

predict. By delivering as many duplicates as possible 

in a given amount of time, progressive processes 

optimize the cost-benefit ratio.  

In manufacturing, a measure of excellence or a state of 

being free from defects, deficiencies and significant 

variations. It is brought about by strict and consistent 

commitment to certain standards that achieve 

uniformity of a product in order to satisfy specific 

customer or user requirements. 

 

CONCLUSION: 

This paper introduced the progressive sorted 

neighborhood method and progressive blocking. Both 

algorithms increase the efficiency of duplicate 

detection for situations with limited execution time; 

they dynamically change the ranking of comparison 

candidates based on intermediate results to execute 

promising comparisons first and less promising 

comparisons later. To determine the performance gain 

of our algorithms, we proposed a novel quality 

measure for progressiveness that integrates seamlessly 

with existing measures.  

 

Using this measure, experiments showed that our 

approaches outperform the traditional SNM by up to 

100 percent and related work by up to 30 percent For 

the construction of a fully progressive duplicate 

detection workflow, we proposed a progressive sorting 

method, Magpie, a progressive multi-pass execution 

model, Attribute Concurrency, and an incremental 

transitive closure algorithm.  

 

The adaptations AC-PSNM and AC-PB use multiple 

sort keys concurrently to interleave their progressive 

iterations. By analyzing intermediate results, both 

approaches dynamically rank the different sort keys at 

runtime, drastically easing the key selection problem. 

In future work, we want to combine our progressive 

approaches with scalable approaches for duplicate 

detection to deliver results even faster.  

 

In particular, Kolb et al. introduced a two phase 

parallel SNM [21], which executes a traditional SNM 

on balanced, overlapping partitions. Here, we can 

instead use our PSNM to progressively find duplicates 

in parallel. 
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