

 Page 16

Design & Implementation of Well-Method for Embedded Generation of

LPR Numbers

Venkateshwarlu Purumala

M.Tech, VLSI & Embedded Systems

DVR College of Engineering and Technology,

Kashipur, Kandi, Sangareddy, Medak Dist.

P.Ramesh Reddy

Associate Professor,

DVR College of Engineering and Technology,

Kashipur, Kandi, Sangareddy, Medak Dist.

Abstract:

The Well Equidistributed Long-period Linear (WELL)

algorithm is proven to have better characteristics than

the Mersenne Twister (MT), one of the most widely

used long-period pseudo-random number generators

(PRNGs). In this paper, we propose a hardware

architecture for efficient implementation of WELL.

Our design achieves a throughput of 1 sample-per-

cycle and runs as fast as 449.4 MHz on a Xilinx

XC6VLX240T FPGA. This performance is 7.6-fold

faster than a dedicated software implementation, and is

comparable to a MT hardware generator built on the

same device. It takes up 633 LUTs, 537 Flip-Flops and

4 BRAMs, which is only 0.5% of the device.

Furthermore, we design a software/hardware

framework that is capable of dividing the WELL

stream into an arbitrary number of independent parallel

sub-streams. With support from software, this

framework can obtain speedup roughly proportional to

the number of parallel cores. The quality of the

random numbers generated by our design is verified by

the standard statistical test suites Diehard and

TestU01. We also apply our framework to a Monte-

Carlo simulation for estimating . Experimental results

verify the correctness of our framework as well as the

better characteristics of the WELL algorithm.

I. INTRODUCTION:

High quality random numbers are of critical

importance to many scientific applications, particularly

for Monte-Carlo simulations. Considering the

advantages of high performance and reproducibility,

Pseudo-Random Number Generators (PRNGs) based

on linear recurrences over are widely adopted in such

simulations. One prevalent -linear PRNG is the

Mersenne Twister (MT) [1], which has a very long

period (219937-1 or larger) and good equidistribution.

However, it is sensitive to poor initialization and can

take a long time to recover from a “zero-excess” initial

state [2][11]. To overcome this problem, the Well

Equidistributed Longperiod Linear (WELL) algorithm

was proposed [2]. Compared to MT, WELL has better

equidistribution while retaining an equal period length.

As application sizes scale, one emerging trend is to

develop parallelized versions of the applications to

exploit the available parallel hardware resources, such

as in FPGAs, to achieve high speed up in performance.

Being the key component of many scientific

applications, designing PRNGs that can rapidly

provide independent parallel streams of high quality

random numbers is also becoming more and more

important in modern systems. The Fast Jump Ahead

Technique [5] provides an efficient algorithm to jump

ahead by a large number of steps for the long-period -

linear PRNGs, thus providing strong theoretical

support for parallelizing PRNGs of long-period. A

large body of research has been done on -linear

PRNGs, most of which focus on algorithms and

corresponding software implementations. Only a few

hardware implementations can be found in the

literature.

 Page 17

For those hardware implementations, most of them

employ the MT method, including straightforward

non-parallel [6][8] and parallel [9][10] hardware

implementations. Given its advantages over MT,

WELL also receives great attention from the software

community. However, few hardware implementations

can be found. In [4], the Ukalta Engineering

Corporation gives a brief introduction to its product

that employs the WELL algorithm. However, it only

achieves a throughput of 1 sample every 2 cycles and

no structural details are revealed. In this paper, we

develop a hardware architecture forWELL19937 with

throughput of 1 sample per cycle. We also design a

software/hardware framework to parallelize its output

stream.

More specifically, we make the following

contributions: We design a hardware architecture

for the WELL method that can achieve a throughput of

1 sample per cycle. We devise a dedicated 6R/2W

RAM structure for WELL, which helps to achieve a

high throughput for the entire design, with little

resource overhead. We design a software/hardware

framework to generate parallel random numbers, based

on the WELL algorithm and Fast Jump Ahead

Technique. We develop an algorithm to efficiently

derive them characteristic polynomial “cp(z)” for

WELL, which is universal and can be easily extended

to other linear generators. We evaluate the

proposed architectures using different statistical tests,

including the Diehard and the TestU01 test suites.

We also apply our framework to a practical

application, Monte-Carlo simulation for estimation.

We implement the proposed architectures and

application on a Xilinx Virtex 6 device. The rest of the

paper is organized as follows. Section II gives brief

introductions of the WELL algorithm and Fast Jump

Ahead Technique. Section III presents our WELL

hardware architecture. Section IV introduces the

Software Hardware framework. Section V describes

technique specific implementations, discusses

evaluations and results.

Section VI provides results of statistical testing and the

Monte-Carlo application and Section VII gives

conclusions.

II. ALGORITHMIC BACKGROUNDS

This section gives brief introductions of the WELL

algorithm and Fast Jump Ahead Technique.

A. WELL Algorithm

The state transition process of the WELL algorithm is

illustrated in Fig. 1.

The state vector S contains

bits, which are

decomposed into R blocks with w-bit size. The last p

bits of are always zero. In each transition,

six blocks in S (i.e. S[0], S[M1], S[M2], S[M3], S[R-

2] and S[R-1]), are transformed into two results,

Feedback1 and Feedback2, through a series of

elementary bit-wise operations. Feedback2 is chosen

as the output, directly or after some other bit-wise

operations. After that, both Feedback1 and Feedback2

are inserted back into S with the positions of 1 and 0,

respectively. In the meantime, the middle R-2 blocks

from S[1] to S[R-2] are shifted by one word as shown

in Fig. 1. When p=31, R=624 and w=32, Fig. 1

represents the state transition process for 32-bit

WELL19937. The other coefficients M1, M2, M3 are

70, 179 and 449, respectively.

B. Fast Jump Ahead Technique

To generate multiple independent sub-streams, we

need to efficiently jump from a certain state to a

far-away state . Considering the state transition of all

 -linear PRNGs can be expressed in the form of

matrix multiplication [11], Jump Ahead with step

length V is essentially equivalent to computing the

equation (1) as follows.

 Page 18

Using the standard square-and-multiply exponentiation

method [3] requires operations and

bits of memory to store This approach is only

suitable for those simple algorithms with a small k,

like LFSRs. For WELL19937, the exponentiation

operation is slow and the

needs about 47.4 MB of memory! Based on the

characteristic polynomials, the Fast Jump Ahead

Technique [5] solves this problem with a higher speed

and less memory consumption. Consider the

characteristic polynomial of matrix A.

Where I is the identity matrix and

 . According to, the fundamental property of the

characteristic polynomial,

Figure 1. State Transition Process of WELL.

we can conclude.

Let a polynomial

Observe that

for some polynomial and

we get so,

As shown in Eqn.(5), the new state can be computed

by a series of and additions (XORs) of the initial

state vector Notice that at most k-1 such

operations are required, thus for any step length, the

computation requirement is roughly the same.

III. HARDWARE ARCHITECTURE FOR

WELL19937

Fig. 2 illustrates our hardware architecture for

WELL19937. It consists of five blocks: the Control

Unit, the Address Unit, the Generate Unit, the Temper

Unit and a 6R/2W RAM. The core component is the

RAM, which stores the 624 32-bit state vectors and is

capable of concurrently supporting 6 Read and 2 Write

operations. The Address Unit generates appropriate

R/W addresses for the RAM. The Generate Unit and

the Temper Unit compute the Generate and Temper

operations of Fig. 1, and can be fully pipelined. The

Control Unit produces the control signals to coordinate

the system.This architecture has two advantages: 1)

High throughput: Utilizing a BRAM-and-register-

hybrid structure, the system achieves a throughput of 1

random number per cycle. 2) Does not require external

resources such as off-chip memory. The system can be

built on a single FPGA device.

Figure 2. WELL19937 Hardware Architecture

Overview.

 Page 19

Figure 3. Pseudo-code for generating the access

addresses implemented by the Address Unit.

A. Structure of the 6R/2W Multi-port RAM

As shown in Fig. 1, in each transition process, six

blocks from the state vector are fetched while two

blocks are updated. Therefore, to achieve the expected

throughput, the RAM should be able to read six 32-bit

operands and store two 32-bit feedbacks concurrently

in a single cycle. Such a RAM can be directly

implemented using 624 32- bit registers, but this is not

area-efficient and is impractical when building

multiple parallel PRNGs. It is also not straightforward

to provide 8 ports by simply assembling 4 BRAMs

together, since we need to guarantee that the read and

write operations are distributed across different

BRAMs evenly. Instead, we propose a BRAM-and-

register-hybrid structure to build the required 6R/2W

Multi-port RAM, which is the key component to

achieve 1 random number percycle throughput.

As shown in Fig. 1, the state vector S[0] is read and

updated in each cycle. We therefore can use a single

register to store S[0] and provide the necessary 1R/1W

operations. The remaining 5R/1W operations can be

provided by 4 dualported -bit BRAMs.

Fig. 3 gives the pseudo-code for generating the access

addresses for the Read ports from r_port2 to r_port6

(addr[0..4]) and the Write port w_port2 (addr[5]). The

Crossbar implements the mapping rules described in

Fig. 4, to forward the 5R/1W ports to the appropriate

BRAMs. Where the access address is generated by the

Address Unit using the pseudo-code in Fig. 3

Figure 4. Address mapping rules implemented by

the Crossbar.

Figure 5. R/W details during the first 3 transition

steps.

Based on the mapping rules, the starting access

addresses of the 5R/1W ports (as shown in line 1 of

Fig. 3) are mapped into BRAM[1, 2, 0, 1, 2, 0],

respectively. During runtime, each of these addresses

is updated synchronously by the same counter and

traverses the BRAMs in exactly the same manner.

Therefore, no BRAM will have more than 2 accesses

in a single cycle. Fig. 5 illustrates the R/W details

during the first 3 transition steps. Where FB2_Tx and

FB1_Tx are the two results generated in the xth

transition step. The numbers in the cells (448,69,621,

etc) correspond to the access addresses generated by

the Address Unit, which are mapped to the appropriate

BRAMs. We can see that 6 Read and 2 Write

operations can be completed in a single cycle. Thus

our BRAM-and-register-hybrid structure can

successfully satisfy the required memory accesses.

IV.SOFTWARE/HARDWARE FRAMEWORK

Due to the intrinsic limitation of the WELL algorithm,

i.e. one operand of a new transition directly depends

on a result from the previous iteration (Feedback2), it

is difficult to parallelize WELL using the Interleaved

Parallelization approach

 Page 20

as in [9] and [10]. To tackle this problem, we propose

a software/hardware framework using the Fast Jump

Ahead Technique [5], as shown in Fig. 6. The Jump

Ahead Unit in Software takes the following

responsibilities: 1) Generating the initial vector states

for each PRNG according to user configurations, i.e.

the total random numbers, the number of cores in

hardware and the initial seed. 2) Offloading initial state

vectors to the hardware. 3) Collecting results from

simulation and doing postcomputations. The core

component of the hardware is a PRNG Array

consisting of a number of parallel WELL PRNGs. It

can be constructed by simply replicating the single

generator described in Section III. After receiving

proper state vectors, an array of size N can produce N

random numbers in parallel in every clock cycle.

These numbers are denoted as .

The output(s) of the PRNG Array can also be directly

connected in parallel via the logic fabric to the

destination application on the FPGA to achieve the

highest possible throughput.

Figure 6. Software/Hardware Framework

Overview.

A protocol is introduced to support the

communications between software and hardware. It

defines a series of instructions that describe all the

necessary operations from the software, e.g. WRITE

VECTOR STATEs instruction, PAUSE/START

instruction and so on. It also contains some

instructions to support the collection of simulation

results from the hardware.

The protocol is platform-independent, and can be

implemented over links such as a UART, PCIE or

Ethernet.

A. Algorithm to Get the Characteristic Polynomial

A key step of the Fast Jump Ahead Technique is to

calculate the characteristic polynomial “cp(z)” of

matrix A in Eqn. (2). Considering the size

 and complexity of the transition

matrix A of WELL19937, it is prohibitive to directly c

l ul te “cp (z)”. To address this problem, we develop a

fast algorithm as described in Fig. 7. In this algorith ,

“cp(z)” can be obtained using only two processes, no

matter how large the jump length is: 1) Invoke the

WELL19937 routine 2K times, where K = 19937; 2)

Use the Berlekamp-Massey algorithm [12] to derive all

the coefficients. Moreover, this algorithm can be

applied to find the characteristic polynomial for any

other -linear PRNGs, e.g. MT19937 or WELL44497,

by modifying the coefficient K and the calling routine.

V. IMPLEMENTATIONS AND EVALUATIONS

This section presents implementations and evaluations

of the proposed architecture and framework using

FPGA technology.

A. Single WELL Generator

We implement the architecture described in Section III

on a Xilinx Virtex-6 XC6VLX240T (hosted on the

ML605 evaluation board). Described in Verilog HDL,

the design is synthesized and implemented using

Xilinx ISE 11.5. The initial design is simulated in

Modelsim SE 6.5 to ensure functional correctness.

Optimization techniques, such as register-retiming, are

applied to improve the clock speed of the design

 Page 21

Figure 7. Algorithm for obtaining “cp(z)” for

WELL19937.

The four BRAMs are configured to enable the

embedded output registers. Since one result of

previous iteration is a source operand for the next

transition process, this value is directly bypassed to the

next iteration. The whole system is fully pipelined.

Three reference designs are implemented for

comparison: a hardware generator based on MT19937,

and two software generators of WELL19937 and

MT19937. The MT hardware generator utilizes a

similar structure to those described in [9][10]. It is

built on exactly the same device as our design with

completely the same configurations. The software

designs are based on the codes provided by [2][1] and

run on a 2.93-GHz Intel Core processor with 3GB

DDR3 SDRAM.

Table I summarizes the comparisons between different

implementations, in terms of resource usage and

maximum performance. Our proposed generator

achieved a 7.6-fold speed up compared to its optimized

software version. Due to the complexity of the

algorithm, the WELL generator consumes roughly

twice the resources than a MT generator. However, the

throughputs of the two generators are comparable.

Moreover, it is worth noting that the resource usage of

the WELL generator is just about 0.50% of the device,

which is a negligible.

B. Framework evaluation

The performance of the framework is evaluated from

two aspects. For the software, the characteristic

polynomial “cp (z)” in Eqn. (2) is calculated using the

algorithm described in Fig. 7. It takes about 51ms. The

number of nonzero coefficients of the “cp(z)”

generated by our algorithm is 8585, which matches the

data given in [2]. in Eqn. (4) is

pre-computed using a dedicated software library called

the Number Theory Library [14], which contains

efficient algorithms to perform polynomial operations.

The average times for the jump process in Eqn. (5)

with different steps are presented in Table II. Results

show that the jump process can be completed within a

few milliseconds regardless how long the distance is.

Thus it is possible to quickly provide the new initial

states to each PRNG in the hardware as the seed

changes. For the hardware, we have implemented the

PRNG array with parallel degrees of 1, 2, 4, 8, 12 and

16. Initial states are generated by software and then

directly written into each generator. The resources

usage and maximal performance statistics are shown in

Table III. We also plot corresponding throughput vs.

area, along with a linear least-squares fit, as shown in

Fig. 8. We can see that the throughput/area efficiency

roughly remains constant as the degree of

parallelization increases

VI. RESULTS

A . RTL BLOCK DIAGRAM

 Page 22

B. RTL INTERNAL DIAGRAM

C.WAVEFORM

D. AREA REPORT

VII. CONCLUSION

Through our study, we demonstrate that our proposed

1 sample per cycle hardware architecture for the

WELL19937 algorithm achieves high performance,

low area cost and high quality output at the same time.

It runs as fast as 449.4 MHz on a Xilinx

XC6VLX240T FPGA, which is 7.6-fold faster than its

dedicated software version and is comparable to the

MT19937 hardware implementation. At the same time,

it is small in area: takes only 633 LUTs, 537 Flip-

Flops and 4 BRAMs. Based on the Fast Jump Ahead

Technique, we develop a software/hardware

framework to parallelize the WELL19937 sequence.

With the support of software, the performance and area

cost of our hardware design scales linearly with the

degree of parallelization. Finally, we successfully pass

the quality test of the Diehard and TestU01 test suites,

as well as the Monte-Carlo simulation for

estimation. We expect its successful use in various

Monte-Carlo simulations and other applications.

REFERENCES

[1] M.Matsumoto and T.Nishimura, “Mersenne

twister: a 623- dimensionally equidistributed uniform

pseudo-random number generator,” ACM Trans.

Modeling and Computer Simulation, vol.8, no 1, pp.3-

30, Jan. 1998.

[2] F. Panneton, P. L’Ecuyer, and M. Matsumoto,

“Improved long-period generators based on linear

recurrences modulo 2,” ACM Trans. Mathematical

Software, vol.32, no.1, pp.1-16, Mar. 2006.

[3] D. E. Knuth, “The Art of Computer Programming,

Volume 2: Seminumerical Algorithms,” Addison

Wesley, Reading, Mass., third edition, 1998.

[4] Ukalta Engineering Corporation, “Uncorrelated

Pseudo-Random Number Generator IP Cores,”

Product Brief, 2009.

[5] H. Haramoto, M. Matsumoto, T. Nishimura, F.

Panneton, and P. L’Ecuyer, “Efficient jump ahead for

F2-linear random number generators,” Informs

Journal. Computing, vol.20, no.3, pp.385-390, summer

2008.

[6] T.Kurokawa, and H. Kajisaki, “FPGA based

implementation of Mersenne Twister,” Scientific and

Engineering Reports of the National Defense

Academy, vol.40, no.2, pp.15-21, Mar. 2003.

[7] G. Marsaglia, “DIEHARD: A Battery of Tests of

Randomness”, http://stat.fsu.edu/.geo/diehard.html,

1997.

[8] V. Sriram, and D. Kearney, “An area time efficient

field programmable Mersenne Twister uniform

random number generator,” In Proc. Int. Conf. Eng. of

Reconfigurable Systems & Algorithms,pp.244-246,

2006.

 Page 23

[9] S. Konuma and S. Ichikawa, “Design and

evaluation of hardware pseudo-random number

generator MT19937,” IEICE Trans. Info. and Systems,

vol.88, no.12, pp.2876-2879, Dec. 2005.

[10] I. L. Dalal, and D. Stefan, “A Hardware

Framework for the Fast Generation of Multiple Long-

period Random Number Streams,” in Proc. 16th ACM

int. symp. FPGAs, Feb. 2008, pp. 245-254.

[11] P L'Ecuyer, and F. Panneton, “Fast random

number generators based on linear recurrences modulo

2: overview and comparison,” in Proc.37th conf.

Winter simulation, Dec. 2005,pp.110-119.

[12] J.L. Massey, “Shift-register synthesis and BCH

decoding,” IEEE Trans. Inform. Theory, vol.15,no.1,

pp.122-127, Jan.1969.

[13] Pierre L’E uyer n Richard Simard. TestU01: A C

library for empirical testing of random number

generators. ACM Transactions on Mathematical

Software (TOMS), 33(4), Aug. 2007.

[14] Victor Shoup, “NTL:A Libr ry f r ing Nu ber The

ry,”

