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ABSTRACT: 

In the Advanced digital system design the security and 

reliability of Memory system are essential 

consideration. As a result of Technology, the memory 

devices becoming larger and we need more powerful 

error detection and correction codes to protect 

memories from soft errors. The paper mainly focused 

on the design of efficient Majority Logic 

Detector/Decoder (MLDD) for fault detection along 

with correction of fault for memory application, by 

considerably reducing fault detection time. The error 

detection and correction method is done by one step 

majority logic decoding and it is made of effective for 

Low Density Parity Check Codes (LDPC). Even 

though majority decodable codes can correct large 

number of errors, they need high decoding time for 

detection of errors and Majority Logic Decoding 

method may take same fault detecting time for both 

erroneous and error free code words, which in turn 

delays the memory performance. The proposed fault-

detection method can detect the large errors in less 

decoding cycles (almost in three). When the data is 

error free, it can obviously reduce memory access 

time. The Technique keeps the area overhead minimal 

and low power consumption for large code word sizes. 

1. INTRODUCTION: 

Now a days, digital communication has becoming 

essential part of life and a lot of data is being 

transferred. Many communication channels are leads 

to channel noise. Networks must be able to transfer 

data from one device to another with acceptable 

accuracy. For most applications, a system must 

guarantee that the data received are identical to the 

data transmitted.  

Fault secures detector capability, higher reliability 

and lower area overhead. The LDPC codes which are 

one step majority logic decodable. Various error 

detection techniques are used to avoid the soft error 

[10]. One of the methods is majority logic decoder 

which used to detect and correct the error in simple 

way.   This method uses the first iteration of 

majority logic decoding to detect the error present in 

the word. If there are no errors, then the decoding 

process can be stopped without completing the 

remaining iterations [1]. The main reason for using 

Majority Logic Decoding (MLD) is that it is very 

easy to implement and has a low complexity [11]. The 

major drawback of this method is increase the average 

latency of the decoding process because it depends on 

the size of the code, thus increases the memory access 

time.  

Another method is syndrome fault detector [11] which 

is an XOR matrix that calculates the syndrome based 

on the parity check matrix. This method results in a 

quite complex module, with a large amount of 

hardware and power consumption in the system. The 

parallel encoders and decoders have been implemented 

to overcome the drawback of majority logic decoder in 

which it takes N number of cycles to detect the error 

[11]. In this paper, the Majority Logic 

Decoder/Detector (MLDD) method [11] used to detect 

the error in memory device itself, so the data 

corruption during processing has been eliminated 

easily to improve the system performance. The MLDD 

is used the control unit for detecting the error. This 

method did not detect the silent data error [12]. 
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Fig 1: General memory system with MLD 

The general schematic of memory system 

implemented with majority logic decoder is 

depicted in figure 1. Initially the data words are 

encoded and then stored in the memory. When the 

memory is read, the code word is then fed through the 

Majority Logic Decoder (MLD) before sent to Any 

time data are transmitted from one node to the next, 

they can become corrupted in passage. Many factors 

can alter one or more bits of message. Some 

application required a mechanism for detecting and 

correcting large number of errors. Data can be 

corrupted during transmission. Some application are 

required that errors can be detected and corrected. 

There are different methods to detect and correct 

errors to keep secure and accuracy data 

communication. Some applications can tolerate a 

small level of errors. For example, random errors in 

audio or video transmission may be tolerable, but 

when transfer text; we expect a very high level of 

accuracy. 

1. 1.Type of Errors 

The error is soft because it will change the logic 

value of memory cells without damaging the 

circuit/device. The soft errors referred as a Single 

Event Upset (SEU).If the radiation event is of high 

energy, more than a single bit may be affected, i.e. 

Multi Bit Upset (MBU) [2]. For reliable 

communication, errors must be detected and 

corrected. Some multi error bit correction codes are 

BCH codes, Reed Solomon codes but in which 

algorithm is very difficult. These codes can correct a 

large number of errors, but need complex decoders 

[10], [11].  

Among the error correction codes, cyclic block codes 

have higher error detection capability, low decoding 

complexity and that are majority logic (ML) 

decodable. A low-density parity-check (LDPC) code 

is linear error correcting code, used to avoid a high 

decoding complexity [6]-[9].  In this paper, one 

specific type of low density parity check codes, 

namely LDPC codes [1] are used due to their the 

output. In this decoding process, the code word is 

corrected from all bit flips it might have suffered while 

being stored in the memory. The proposed enhanced 

MLDD method uses additional error detection 

technique to detect the silent data error (SDE) in 

MLDD. To produce the accurate result of MLDD, this 

addition logic is used to detect the error which is not 

detected by the first three iteration of the MLDD. To 

reduce the number of gates in the majority gate, a 

sorting network is used.  Thus reduces the area of the 

majority gate and also the power consumption. The 

remainder of this paper is organized as follows. 

Section II gives an overview of existing ML decoding 

and MLDD  system;  Section  III  presents  the  novel  

improved  ML  decoder/detector  (MLDD)  using Low 

Density Parity Check Codes (EG-LDPC);Section 

IV discusses the results obtained for the different 

methods in respect to the performance, area and 

power consumption; Finally, Section V discusses 

Conclusions. 

II. INTRODUCTION TO LDPC CODES 

LDPC codes are defined by a sparse parity-check 

matrix. This sparse matrix is often randomly 

generated, subject to these parity constraints LDPC 

code construction is discussed later. These codes were 

first designed by Robert Gallager in 1962. Below is a 

graph fragment of an example LDPC code 

using Forney's factor graph notation. In this 

graph, n variable nodes in the top of the graph are 

connected to (n−k) constraint nodes in the bottom of 

the graph. This is a popular way of graphically 

representing an (n, k) LDPC code. The bits of a valid 

message, when placed on the T's at the top of the 

graph, satisfy the graphical constraints.  
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Specifically, all lines connecting to a variable node 

(box with an '=' sign) have the same value, and all 

values connecting to a factor node (box with a '+' sign) 

must sum, modulo two, to zero (in other words, they 

must sum to an even number).Ignoring any lines going 

out of the picture, there are eight possible six-bit 

strings corresponding to valid codeword’s: (i.e., 

000000, 011001, 110010, 101011, 111100, 100101, 

001110, 010111). This LDPC code fragment 

represents a three-bit message encoded as six bits. 

Redundancy is used, here, to increase the chance of 

recovering from channel errors. This is a (6, 3) linear 

code, with n = 6 and k = 3. Once again ignoring lines 

going out of the picture, the parity-check matrix 

representing this graph fragment is show in below. 

 

 

Fig 2: Parity Check Matrix 

In this matrix, each row represents one of the three 

parity-check constraints, while each column represents 

one of the six bits in the received code word. In this 

example, the eight codeword’s can be obtained by 

putting the parity-check matrix H into this 

form  through basic row operations: 

III.EXISTING SYSTEM 

This section deals with the existing decoding 

methodologies used for error detection.   In error 

detection and correction, majority logic decoding is a 

method to decode repetition codes, based on the 

assumption that the largest number of occurrences of 

a symbol was the transmitted symbol. Majority logic 

decoder is based on a number of parity check 

equations which are orthogonal to each other [11]. So 

the majority result of these parity check equations 

decide the correctness of the current bit under 

decoding. 

A.   One Step Majority Logic Decoder 

As described in earlier, Majority-logic decoder is a 

simple and effective decoder capable of correcting 

multiple bit flips depending on the number of parity 

checksum equations. It consists of four parts: 1) a 

cyclic shift register; 2) an XOR matrix; 3) a majority 

gate; 4) an EXOR gate for error correction, as 

illustrated in figure 2. 

 

Fig 3: One step Majority Decoder for (15,7) LDPC  

codes 

In one step majority logic decoding [1], initially the 

code word is loaded into the cyclic shift register. 

Then the check equations are computed. The 

resulting sums are then forwarded to the majority 

gate for evaluating its correctness. If the number of 

1‟s received in is greater than the number of 0‟s 

which means that the current bit under decoding is 

wrong, and a signal to correct it would be triggered. 

Otherwise the bit under decoding is  correct and no 

extra operations would be needed on it. In next, the 

content of the registers are rotated and the above 

procedure is repeated until codeword bits have been 

processed. Finally, the parity check sums should be 

zero if the codeword has been correctly decoded. In 

this process, each bit may be corrected only once.  

http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Repetition_code
http://en.wikipedia.org/wiki/Repetition_code


 

  
                                                                                                                                                                                                                    Page 725 

 

As a result, the decoding circuitry is simple, but it 

requires a long decoding time if the code word is 

large. Thus, by one-step majority-logic decoding, the 

code is capable of correcting any error pattern with 

two or fewer errors. For example, for a code word of 

15-bits, the decoding would take 15 cycles, which 

would be excessive for most applications. 

B. Majority Logic Decoder/Detector (MLDD) 

In order to overcome the drawback of MLD method, 

majority logic decoder/detector was proposed, in 

which the majority logic decoder itself act as a fault 

detector. In general, the decoding algorithm is still 

the same as the majority logic decoder. The 

difference is that instead of decoding all codeword 

bits, the MLDD method stops intermediately in the 

third cycle, which can able to detect up to five bit 

flips in three decoding cycles. So the number of 

decoding cycles can be reduced to get improved 

performance. The schematic of majority logic 

decoder/detector is illustrated in figure3. 

 

Fig 4: Schematic of Majority Logic Decoder / 

Detector (MLDD) 

Initially the code word is stored into the cyclic shift 

register and it shifted through all the taps. The 

intermediate values in each tap are given to the XOR 

matrix to perform the checksum equations. The 

resulting sums are then forwarded to the majority gate 

for evaluating its correctness. If the number of 1‟s 

received is greater than the number of 0‟s which 

would mean that the current bit under decoding is 

wrong, so it move on the decoding process. 

Otherwise, the bit under decoding would be correct 

and no extra operations would be needed on it. 

Decoding process involving the operation of the 

content of the registers is rotated and the above 

procedure is repeated and it stops intermediately in 

the third cycle. If in the first three cycles of the 

decoding process, the evaluation of the XOR matrix 

for all is “0,” the code word is determined to be error-

free and forwarded directly to the output. If the error 

contains in any of the three cycles at least a “1,” it 

would continue the whole decoding process in order to 

eliminate the errors. Finally, the parity check sums 

should be zero if the code word has been correctly 

decoded. In conclusion the MLDD method is used 

to detect the five bit errors and correct four bit errors 

effectively. If the code word contain more than five bit 

error, it produces the output but it did not show the 

errors presented in the input. This type of error is 

called the silent data error. Drawback of this method is 

did not detecting the silent data error and it 

consuming the area of the majority gate. The 

schematic for this memory system is shown in figure 

5. It is very similar to the one shown in fig. 1; 

additionally the control unit was added in the MLDD 

module to manage the decoding process (to detect the 

error). 

 

Fig 6 : MLDD Algorithm 
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IV.PROPOSED SYSTEM (ENHANCED MLDD) 

In general, the proposed version uses the same 

decoding algorithm as the one in plain ML decoder 

version. The advantage is that, proposed method stops 

intermediately in the third cycle when there is no error 

in data read, [2] as illustrated in Figure. 6, instead of 

decoding it for the whole codeword size of N. The xor 

matrix is evaluated for the first three cycles of the 

decoding process, and when all the outputs {Bj} is 

“0,”the codeword is determined to be error-free and 

forwarded directly to the output. On other hand, the 

proposed method would continue the whole decoding 

process to eliminate the errors [2] if the {Bj} contain at 

least a “1” in any of the three cycles 

 

Fig 7: A detailed schematic of the proposed design 

for 15   bit   code word is shown in Figure 7. 

A detailed schematic of the proposed design for 15 bit 

code word is shown in Figure 7. The figure shows the 

basic ML decoder with a 15-tap shift register, an XOR 

array to calculate the orthogonal parity check sums and 

a majority logic circuit which will decide whether the 

current bit under decoding is erroneous and the need 

for its inversion. The plain ML decoder [2] shown in 

Figure 1 is also having the same schematic structure up 

to this stage. The additional hardware [2] intended for 

fault detection illustrated in Figure 8 are: a) the control 

logic unit and b) the output tristate buffers.  

The control unit triggers a finish flag when there is no 

errors are detected in data read. The output tristate 

buffers are always in high impedance state until the 

control unit sends the finish signal so that the current 

values are forwarded to the output y from the shift 

register. 

 

Fig 8: Schematic of Control Logic 

 

The control logic schematic [2] is illustrated in Figure 

9. The detection process is managed by the control 

unit. For distinguishing the first three iterations of the 

ML decoding, a counter is used here which counts up 

to three cycles. The control unit evaluates the output 

from xor matrix Bj by giving it as input to the OR 1 

gate. This output value is fed to two shift registers 

which has the results of the previous stages stored in it. 

The values are shifted accordingly. The third coming 

input is directly forwarded to the OR 2 gate and finally 

all are evaluated in the third cycle in the OR 2 gate. If 

the result is “0,” a finish signal is send by the FSM 

which indicates that the processed word is error-free. 

The ML decoding process runs until the end, if the 

result is “1”.  
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Fig 9: Schematic of the Control Unit 

V.MODIFIED MLDD 

Since we are using a separate module for fault 

detection, there will be a slight area overhead. This 

area overhead can be overcome by using sorting 

network in the majority gate. The EG LDPC code used 

here is only for 15 bits, it have only outputs four 

outputs from xor matrix. Therefore the above structure 

of sorting network in Figure 10 (a) can be used. It 

takes only four input bits and the vertical lines shown 

here is comparator Figure 10 (b) which has two inputs 

and it will compare and larger bit is given to the top 

output and smaller to bottom respectively. 

 

Fig10 : (a)Sorting network-four input      (b) 

Schematic of one comparator 

This clearly provides a performance improvement 

respect to the traditional method which is the existing 

MLD. [2]. The proposed method mostly would only 

take three cycles for decoding(five, if we consider the 

other two for input/output) since most of the words 

would be error free and would need to perform the 

whole decoding process only for those words with 

errors (which should be a minority). 

 

VI.RESULTS AND DISCUSSION 

The UART BIST architecture simulation was done 

through the Xilinx ISE using VERILOG HDL. The 

data address-bit verification can also to be done 

through this simulation and the waveform could be 

verified by using the XILINX. 

 

Fig 11: Block diagram for proposed 

 

Fig 12: RTL for Proposed 

 

Fig 13: Waveform for proposed 

 

Fig 14: Block diagram for  Control logic 
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Fig 15: RTL  for  Control logic 

 

Fig 16: Waveform for  Control logic 

VII.CONCLUSION: 

This papers presents the UART based BIST 

Architecture using VERILOG HDL. Most of the 

researchers have been used to implement this testing 

algorithm in VERILOG for stable, compact and 

reliable transmission. The structural details have been 

recognized and it can be integrated into the chip could 

be easier. The UART transmission could be relatively 

used in all the devices for the reliable transmission of 

data’s from the structure where it could be converter 

and tested as a bit files generation. This design 

function can be adopted as a technical preserving 

data’s for communication. The BIST controller as a 

device uses as an efficient bit generation for the chip 

implementation. 
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