

 Page 722

Effective Implementation of LDPC for Memory Applications
Y.Sreeja

PG Scholar, VLSI & ES,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

Dharavath Jagan

Associate Professor,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

B.Pragathi, M.Tech, (Ph.D)

Associate Professor,

Dept of ECE,

Vidya Bharathi Institute of

Technology, Janagaon, Warangal,

Telangana.

ABSTRACT:

In the Advanced digital system design the security and

reliability of Memory system are essential

consideration. As a result of Technology, the memory

devices becoming larger and we need more powerful

error detection and correction codes to protect

memories from soft errors. The paper mainly focused

on the design of efficient Majority Logic

Detector/Decoder (MLDD) for fault detection along

with correction of fault for memory application, by

considerably reducing fault detection time. The error

detection and correction method is done by one step

majority logic decoding and it is made of effective for

Low Density Parity Check Codes (LDPC). Even

though majority decodable codes can correct large

number of errors, they need high decoding time for

detection of errors and Majority Logic Decoding

method may take same fault detecting time for both

erroneous and error free code words, which in turn

delays the memory performance. The proposed fault-

detection method can detect the large errors in less

decoding cycles (almost in three). When the data is

error free, it can obviously reduce memory access

time. The Technique keeps the area overhead minimal

and low power consumption for large code word sizes.

1. INTRODUCTION:

Now a days, digital communication has becoming

essential part of life and a lot of data is being

transferred. Many communication channels are leads

to channel noise. Networks must be able to transfer

data from one device to another with acceptable

accuracy. For most applications, a system must

guarantee that the data received are identical to the

data transmitted.

Fault secures detector capability, higher reliability

and lower area overhead. The LDPC codes which are

one step majority logic decodable. Various error

detection techniques are used to avoid the soft error

[10]. One of the methods is majority logic decoder

which used to detect and correct the error in simple

way. This method uses the first iteration of

majority logic decoding to detect the error present in

the word. If there are no errors, then the decoding

process can be stopped without completing the

remaining iterations [1]. The main reason for using

Majority Logic Decoding (MLD) is that it is very

easy to implement and has a low complexity [11]. The

major drawback of this method is increase the average

latency of the decoding process because it depends on

the size of the code, thus increases the memory access

time.

Another method is syndrome fault detector [11] which

is an XOR matrix that calculates the syndrome based

on the parity check matrix. This method results in a

quite complex module, with a large amount of

hardware and power consumption in the system. The

parallel encoders and decoders have been implemented

to overcome the drawback of majority logic decoder in

which it takes N number of cycles to detect the error

[11]. In this paper, the Majority Logic

Decoder/Detector (MLDD) method [11] used to detect

the error in memory device itself, so the data

corruption during processing has been eliminated

easily to improve the system performance. The MLDD

is used the control unit for detecting the error. This

method did not detect the silent data error [12].

 Page 723

Fig 1: General memory system with MLD

The general schematic of memory system

implemented with majority logic decoder is

depicted in figure 1. Initially the data words are

encoded and then stored in the memory. When the

memory is read, the code word is then fed through the

Majority Logic Decoder (MLD) before sent to Any

time data are transmitted from one node to the next,

they can become corrupted in passage. Many factors

can alter one or more bits of message. Some

application required a mechanism for detecting and

correcting large number of errors. Data can be

corrupted during transmission. Some application are

required that errors can be detected and corrected.

There are different methods to detect and correct

errors to keep secure and accuracy data

communication. Some applications can tolerate a

small level of errors. For example, random errors in

audio or video transmission may be tolerable, but

when transfer text; we expect a very high level of

accuracy.

1. 1.Type of Errors

The error is soft because it will change the logic

value of memory cells without damaging the

circuit/device. The soft errors referred as a Single

Event Upset (SEU).If the radiation event is of high

energy, more than a single bit may be affected, i.e.

Multi Bit Upset (MBU) [2]. For reliable

communication, errors must be detected and

corrected. Some multi error bit correction codes are

BCH codes, Reed Solomon codes but in which

algorithm is very difficult. These codes can correct a

large number of errors, but need complex decoders

[10], [11].

Among the error correction codes, cyclic block codes

have higher error detection capability, low decoding

complexity and that are majority logic (ML)

decodable. A low-density parity-check (LDPC) code

is linear error correcting code, used to avoid a high

decoding complexity [6]-[9]. In this paper, one

specific type of low density parity check codes,

namely LDPC codes [1] are used due to their the

output. In this decoding process, the code word is

corrected from all bit flips it might have suffered while

being stored in the memory. The proposed enhanced

MLDD method uses additional error detection

technique to detect the silent data error (SDE) in

MLDD. To produce the accurate result of MLDD, this

addition logic is used to detect the error which is not

detected by the first three iteration of the MLDD. To

reduce the number of gates in the majority gate, a

sorting network is used. Thus reduces the area of the

majority gate and also the power consumption. The

remainder of this paper is organized as follows.

Section II gives an overview of existing ML decoding

and MLDD system; Section III presents the novel

improved ML decoder/detector (MLDD) using Low

Density Parity Check Codes (EG-LDPC);Section

IV discusses the results obtained for the different

methods in respect to the performance, area and

power consumption; Finally, Section V discusses

Conclusions.

II. INTRODUCTION TO LDPC CODES

LDPC codes are defined by a sparse parity-check

matrix. This sparse matrix is often randomly

generated, subject to these parity constraints LDPC

code construction is discussed later. These codes were

first designed by Robert Gallager in 1962. Below is a

graph fragment of an example LDPC code

using Forney's factor graph notation. In this

graph, n variable nodes in the top of the graph are

connected to (n−k) constraint nodes in the bottom of

the graph. This is a popular way of graphically

representing an (n, k) LDPC code. The bits of a valid

message, when placed on the T's at the top of the

graph, satisfy the graphical constraints.

 Page 724

Specifically, all lines connecting to a variable node

(box with an '=' sign) have the same value, and all

values connecting to a factor node (box with a '+' sign)

must sum, modulo two, to zero (in other words, they

must sum to an even number).Ignoring any lines going

out of the picture, there are eight possible six-bit

strings corresponding to valid codeword’s: (i.e.,

000000, 011001, 110010, 101011, 111100, 100101,

001110, 010111). This LDPC code fragment

represents a three-bit message encoded as six bits.

Redundancy is used, here, to increase the chance of

recovering from channel errors. This is a (6, 3) linear

code, with n = 6 and k = 3. Once again ignoring lines

going out of the picture, the parity-check matrix

representing this graph fragment is show in below.

Fig 2: Parity Check Matrix

In this matrix, each row represents one of the three

parity-check constraints, while each column represents

one of the six bits in the received code word. In this

example, the eight codeword’s can be obtained by

putting the parity-check matrix H into this

form through basic row operations:

III.EXISTING SYSTEM

This section deals with the existing decoding

methodologies used for error detection. In error

detection and correction, majority logic decoding is a

method to decode repetition codes, based on the

assumption that the largest number of occurrences of

a symbol was the transmitted symbol. Majority logic

decoder is based on a number of parity check

equations which are orthogonal to each other [11]. So

the majority result of these parity check equations

decide the correctness of the current bit under

decoding.

A. One Step Majority Logic Decoder

As described in earlier, Majority-logic decoder is a

simple and effective decoder capable of correcting

multiple bit flips depending on the number of parity

checksum equations. It consists of four parts: 1) a

cyclic shift register; 2) an XOR matrix; 3) a majority

gate; 4) an EXOR gate for error correction, as

illustrated in figure 2.

Fig 3: One step Majority Decoder for (15,7) LDPC

codes

In one step majority logic decoding [1], initially the

code word is loaded into the cyclic shift register.

Then the check equations are computed. The

resulting sums are then forwarded to the majority

gate for evaluating its correctness. If the number of

1‟s received in is greater than the number of 0‟s

which means that the current bit under decoding is

wrong, and a signal to correct it would be triggered.

Otherwise the bit under decoding is correct and no

extra operations would be needed on it. In next, the

content of the registers are rotated and the above

procedure is repeated until codeword bits have been

processed. Finally, the parity check sums should be

zero if the codeword has been correctly decoded. In

this process, each bit may be corrected only once.

http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Repetition_code
http://en.wikipedia.org/wiki/Repetition_code

 Page 725

As a result, the decoding circuitry is simple, but it

requires a long decoding time if the code word is

large. Thus, by one-step majority-logic decoding, the

code is capable of correcting any error pattern with

two or fewer errors. For example, for a code word of

15-bits, the decoding would take 15 cycles, which

would be excessive for most applications.

B. Majority Logic Decoder/Detector (MLDD)

In order to overcome the drawback of MLD method,

majority logic decoder/detector was proposed, in

which the majority logic decoder itself act as a fault

detector. In general, the decoding algorithm is still

the same as the majority logic decoder. The

difference is that instead of decoding all codeword

bits, the MLDD method stops intermediately in the

third cycle, which can able to detect up to five bit

flips in three decoding cycles. So the number of

decoding cycles can be reduced to get improved

performance. The schematic of majority logic

decoder/detector is illustrated in figure3.

Fig 4: Schematic of Majority Logic Decoder /

Detector (MLDD)

Initially the code word is stored into the cyclic shift

register and it shifted through all the taps. The

intermediate values in each tap are given to the XOR

matrix to perform the checksum equations. The

resulting sums are then forwarded to the majority gate

for evaluating its correctness. If the number of 1‟s

received is greater than the number of 0‟s which

would mean that the current bit under decoding is

wrong, so it move on the decoding process.

Otherwise, the bit under decoding would be correct

and no extra operations would be needed on it.

Decoding process involving the operation of the

content of the registers is rotated and the above

procedure is repeated and it stops intermediately in

the third cycle. If in the first three cycles of the

decoding process, the evaluation of the XOR matrix

for all is “0,” the code word is determined to be error-

free and forwarded directly to the output. If the error

contains in any of the three cycles at least a “1,” it

would continue the whole decoding process in order to

eliminate the errors. Finally, the parity check sums

should be zero if the code word has been correctly

decoded. In conclusion the MLDD method is used

to detect the five bit errors and correct four bit errors

effectively. If the code word contain more than five bit

error, it produces the output but it did not show the

errors presented in the input. This type of error is

called the silent data error. Drawback of this method is

did not detecting the silent data error and it

consuming the area of the majority gate. The

schematic for this memory system is shown in figure

5. It is very similar to the one shown in fig. 1;

additionally the control unit was added in the MLDD

module to manage the decoding process (to detect the

error).

Fig 6 : MLDD Algorithm

 Page 726

IV.PROPOSED SYSTEM (ENHANCED MLDD)

In general, the proposed version uses the same

decoding algorithm as the one in plain ML decoder

version. The advantage is that, proposed method stops

intermediately in the third cycle when there is no error

in data read, [2] as illustrated in Figure. 6, instead of

decoding it for the whole codeword size of N. The xor

matrix is evaluated for the first three cycles of the

decoding process, and when all the outputs {Bj} is

“0,”the codeword is determined to be error-free and

forwarded directly to the output. On other hand, the

proposed method would continue the whole decoding

process to eliminate the errors [2] if the {Bj} contain at

least a “1” in any of the three cycles

Fig 7: A detailed schematic of the proposed design

for 15 bit code word is shown in Figure 7.

A detailed schematic of the proposed design for 15 bit

code word is shown in Figure 7. The figure shows the

basic ML decoder with a 15-tap shift register, an XOR

array to calculate the orthogonal parity check sums and

a majority logic circuit which will decide whether the

current bit under decoding is erroneous and the need

for its inversion. The plain ML decoder [2] shown in

Figure 1 is also having the same schematic structure up

to this stage. The additional hardware [2] intended for

fault detection illustrated in Figure 8 are: a) the control

logic unit and b) the output tristate buffers.

The control unit triggers a finish flag when there is no

errors are detected in data read. The output tristate

buffers are always in high impedance state until the

control unit sends the finish signal so that the current

values are forwarded to the output y from the shift

register.

Fig 8: Schematic of Control Logic

The control logic schematic [2] is illustrated in Figure

9. The detection process is managed by the control

unit. For distinguishing the first three iterations of the

ML decoding, a counter is used here which counts up

to three cycles. The control unit evaluates the output

from xor matrix Bj by giving it as input to the OR 1

gate. This output value is fed to two shift registers

which has the results of the previous stages stored in it.

The values are shifted accordingly. The third coming

input is directly forwarded to the OR 2 gate and finally

all are evaluated in the third cycle in the OR 2 gate. If

the result is “0,” a finish signal is send by the FSM

which indicates that the processed word is error-free.

The ML decoding process runs until the end, if the

result is “1”.

 Page 727

Fig 9: Schematic of the Control Unit

V.MODIFIED MLDD

Since we are using a separate module for fault

detection, there will be a slight area overhead. This

area overhead can be overcome by using sorting

network in the majority gate. The EG LDPC code used

here is only for 15 bits, it have only outputs four

outputs from xor matrix. Therefore the above structure

of sorting network in Figure 10 (a) can be used. It

takes only four input bits and the vertical lines shown

here is comparator Figure 10 (b) which has two inputs

and it will compare and larger bit is given to the top

output and smaller to bottom respectively.

Fig10 : (a)Sorting network-four input (b)

Schematic of one comparator

This clearly provides a performance improvement

respect to the traditional method which is the existing

MLD. [2]. The proposed method mostly would only

take three cycles for decoding(five, if we consider the

other two for input/output) since most of the words

would be error free and would need to perform the

whole decoding process only for those words with

errors (which should be a minority).

VI.RESULTS AND DISCUSSION

The UART BIST architecture simulation was done

through the Xilinx ISE using VERILOG HDL. The

data address-bit verification can also to be done

through this simulation and the waveform could be

verified by using the XILINX.

Fig 11: Block diagram for proposed

Fig 12: RTL for Proposed

Fig 13: Waveform for proposed

Fig 14: Block diagram for Control logic

 Page 728

Fig 15: RTL for Control logic

Fig 16: Waveform for Control logic

VII.CONCLUSION:

This papers presents the UART based BIST

Architecture using VERILOG HDL. Most of the

researchers have been used to implement this testing

algorithm in VERILOG for stable, compact and

reliable transmission. The structural details have been

recognized and it can be integrated into the chip could

be easier. The UART transmission could be relatively

used in all the devices for the reliable transmission of

data’s from the structure where it could be converter

and tested as a bit files generation. This design

function can be adopted as a technical preserving

data’s for communication. The BIST controller as a

device uses as an efficient bit generation for the chip

implementation.

VIII. REFERENCES:

1. Pedro Reviriego, Juan A. Maestro, and Mark

F.Flanagan,” Error Detection in Majority Logic

Decoding of Euclidean Geometry Low Density Parity

Check (EG-LDPC) Codes” IEEE Trans. Very Large

Scale Integration (VLSI) Systems, Vol. 21, No. 1,

January 2013.

2. R. C. Baumann, “Radiation-induced soft errors in

advanced semiconductor technologies,” IEEE

Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 301–

316, Sep. 2005.

3. M. A. Bajura, Y. Boulghassoul, R. Naseer,

S.DasGupta, A. F.Witulski, J. Sondeen, S. D.

Stansberry, J. Draper, L. W. Massengill, and J.

N.Damoulakis, “Models and algorithmic limits for an

ECC-based approach to hardening sub-100-nm

4. SRAMs,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp.

935–945, Aug. 2007.

5. R. Naseer and J. Draper, “DEC ECC design to

improve memory reliability in sub-100 nm

Technologies,” Proc. IEEE ICECS, pp. 586–589,

2008.

6. S. Ghosh and P. D. Lincoln, “Dynamic low-density

parity check codes for fault-tolerant nano-scale

memory,” presented at the Foundations Nanosci.

(FNANO), Snowbird, Utah, 2007.

7. S. Ghosh and P. D. Lincoln, “Low-density parity

check codes for error correction in nanoscale

memory,” SRI Computer Science Lab., Menlo Park,

CA, Tech. Rep. CSL-0703, 2007.

8. H. Naeimi and A. DeHon, “Fault secure encoder and

decoder for memory applications,” in Proc. IEEE

Int. Symp. Defect Fault Toler. VLSI Syst., 2007, pp.

409–417.

9. B. Vasic and S. K. Chilappagari, information

theoretical framework for analysis and design of

nanoscale fault-tolerant memories based on low-

density parity-check codes,” IEEE Trans.

CircuitsSyst. I, Reg. Papers, vol. 54, no. 11, Nov.

2007.

 Page 729

10. H. Naeimi and A. DeHon, “Fault secure encoder and

decoder for nanomemory applications,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 4,

pp. 473–486, Apr. 2009.

11. S. Lin and D. J. Costello, Error Control Coding, 2nd

ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.

12. S. Liu, P. Reviriego, and J. Maestro, “Efficient

majority logic fault detection with difference-set

codes for memory applications,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 20, no. 1, pp.

148–156, Jan. 2012.

