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Abstract: 

The Serial-out bit-level multiplication scheme is 

characterized by an important latency feature. It has an 

ability to sequentially generate an output bit of the 

multiplication result in each clock cycle. However, the 

computational complexity of the existing serial-out bit-

level multipliers in GF (2
m
) using normal basis 

representation, limits its usefulness in many 

applications; hence, an optimized serial out bit-level 

multiplier using polynomial basis representation is 

needed. In this paper, we propose new serial-out bit-

level Mastrovito multiplier schemes. We show that in 

terms of the time complexities, the proposed multiplier 

schemes outperform the existing serial out bit-level 

schemes available in the literature. In addition, using 

the proposed multiplier schemes, we present new 

hybrid-double multiplication architectures. To the best 

of our knowledge, this is the first time such a hybrid 

multiplier structure using the polynomial basis is 

proposed. Prototypes of the presented serial-out bit-

level schemes and the proposed hybrid-double 

multiplication architectures (10 schemes in total) are 

implemented over both GF (2
163

) and GF (2
233

), and 

experimental results are presented 
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I .INTRODUCTION: 

FINITE field arithmetic has been widely applied in 

applications of different fields like error-control 

coding, cryptography, and digital signal processing.  

 

 

The arithmetic operations in the finite fields over 

characteristic two GF (2m) have gained widespread 

use in public-key cryptography such as point 

multiplication in elliptic curve cryptography, and 

exponentiation-based cryptosystems. The finite field 

GF (2m) has 2melements and each of its elements can 

be represented by its m binary coordinates based on 

the choice of field-generating polynomial. For such a 

representation, the addition is relatively straight-

forward by bit-wise XORing of the corresponding 

coordinates of two field elements. On the other hand, 

the multiplication operation requires larger and slower 

hardware. Other complex and time-consuming 

operations such as exponentiation, and 

division/inversion are implemented by the iterative 

application of the multiplication operations.  

 

Much of the ongoing research in this area is focused 

on finding new architectures to implement the 

arithmetic multiplication operation more efficiently 

(see for example). Finite field multipliers with 

different properties are obtained by choosing different 

representations of the field elements. With the 

advantages of low design complexity, simplicity, 

regularity, and modularity in architecture, the standard 

or polynomial basis (PB) representation, is extensively 

used for cryptographic applications. In the PB, a 

multiplier requires a polynomial multiplication 

followed by a modular reduction. In practice, these 

two steps can be combined into a single step by using 

the so-called Mastrovito matrix [14], [15]. The 

properties and complexities of the PB multipliers 

depend heavily on the choice of a field-generating 

polynomial.  
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In this paper, we first consider an irreducible 

polynomial with !, !  3, non-zero terms (denoted by !-

nomials). We then obtain a further optimized structure 

for the special irreducible trinomial (! = 3). The 

implementation of finite field multipliers can be 

categorized, in terms of their structures, into three 

groups of parallel-level, digit-level and bit-level types. 

The bit-level multiplier scheme, which processes one 

bit of input per clock cycle, is area-efficient and 

suitable for resource-constrained and low-weighted 

devices. The bitlevel type multiplication algorithms, 

when the PB is used are classified as least significant 

bit first (LSB-first), and most significant bit first 

(MSB-first) schemes.  

 

II. MASTROVITO MULTIPLIER: 

Software and hardware implementations of the basic 

arithmetic operations (addition, multiplication, and 

inversion) in the Galois field GF(2m) are desired in 

coding theory, computer algebra, and cryptography [7, 

4]. The cryptographic applications include elliptic 

curve cryptosystems [8, 2], in which m is quite large, 

usually around several hundreds. The efficiency of an 

algorithm is often measured by the number of bit-level 

or word-level operations. In the hardware 

implementations, it is often desired to reduce the total 

number of gates (space complexity) and the total gate 

delay (time complexity) of the algorithm. The 

representation of the field elements has a crucial role 

in determining the space and time complexity of the 

arithmetic operations, particularly the field 

multiplication. In this paper, we are interested in space 

and time complexity of the finite field multiplication 

operation, where the field elements are represented 

using the standard basis. The standard basis 

multiplication operation in GF(2m) is often 

accomplished in two steps: polynomial multiplication 

and modular reduction. Let a(x), b(x), c(x) ∈ GF(2m) 

and p(x) be the irreducible polynomial generating 

GF(2m). In order to compute c(x) = a(x)b(x) mod p(x), 

we first obtain the product polynomial d(x) which is of 

degree (at most) 2m − 2 as 

 
The next step is then the reduction operation c(x) = 

d(x) mod p(x) to obtain the m − 1 degree polynomial 

c(x). In practice, the multiplication and the reduction 

steps are often combined for efficiency reasons. An 

architecture for performing the field multiplication was 

proposed by Mastrovito [5, 6]. In this method, we 

represent the computation of d(x) as a matrix-vector 

product d = Mb, where (2m − 1) × m dimensional 

matrix M consists of the coefficients of the polynomial 

a(x). We then obtain an m × m dimensional matrix Z 

by reducing the matrix M using the generating 

polynomial p(x). The product c(x) is computed using 

the matrix-vector product c = Zb. The space 

complexity of the multiplier for the special generating 

trinomial xm+x+1 is shown to be m2−1 XOR and m2 

AND gates [5, 6, 9, 10]. Paar [11] conjectured that the 

space complexity of the Mastrovito multiplier would 

be the same for all trinomials xm+xn +1, where 1 ≤ n ≤ 

m−1.  

 

In this project, we describe an architecture for the 

Mastrovito type multiplier using a general trinomial of 

the form xm + xn +1, and show that the proposed 

architecture requires m2 − 1 XOR and m2 AND gates 

when n _= m/2. However, when m is even and n = m/2 

there is further reduction: The proposed architecture 

requires only m2 − m/2 XOR gates. A few examples of 

irreducible polynomials of the form xm + xn +1 are 

given in Table 1. Furthermore, it is known [7] that a 

trinomial of the form xm + xm/2 +1 is irreducible over 

GF(2) if m is of the form m = 2· 3r for some r ≥ 0. 

 
Table 1: Examples of irreducible polynomials. 
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III. ELLIPTIC CURVE SCALAR  

MULTIPLICATION 

Considering the area overhead, this paper uses only 

one FF MAC and one FF squarer to achieve high 

performance ECSM. The FF MAC merges addition 

with the reduction in FF multiplication. This brings 

advantages that no extra clock cycle is needed for 

addition, and it would not deteriorate the critical-path 

delay. The multiplier can be implemented in serial, 

parallel, or digit-serial way. The serial and digit-serial 

multipliers consume less area, but require more clock 

cycles. For high-speed consideration, we use the 

parallel multiplier, which takes only one clock cycle to 

finish one multiplication. Later, we will talk about area 

reduction using the Karatsuba–Ofman algorithm. 

 
Fig 1. Data dependence graph of (a) point addition 

and (b) point doubling in the Montgomery ladder 

algorithm 

 

IV. Proposed Architecture of Elliptic Curve Scalar 

multiplication 

The post process stage of ECSM also requires careful 

consideration. While this stage is not the crucial part of 

ECSM, its optimization goal is to share the data path 

with the main loop as much as possible, rather than to 

reduce the required number of clock cycles. After 

proper scheduling of ECSM, we propose the high-

performance architecture based on the improved 

Montgomery ladder scalar multiplication algorithm, as 

shown in Fig. 2. 

 
Fig. 2. Proposed architecture of ECSM. 

 

The proposed ECSM architecture consists of one bit-

parallel FF MAC, one FF squarer, a register bank, a 

finite-state machine, and a 6×18 control ROM. The FF 

MAC is implemented using the Karatsuba–Ofman 

algorithm, and is well pipelined. Then-stage pipelined 

FF MAC takes nclock cycles to finish one 

multiplication. The FF squarer is not pipelined, and 

one clock cycle is required to finish one square. The 

inputs to FF MAC, A, B,andC, and the input to FF 

squarer, S, are all registered. Another four registers T1, 

T2, T3,andT4 are used in the data path for data 

caching. Each register has a MUX before it. The 

control signals of MUXs are given at each clock cycle 

to switch between different operations in ECSM. The 

inputs fed to MUXs of registers are carefully allocated 

with the guideline that each MUX contains at most 

four branches. In this way, the input delay for registers 

is only the delay of a 4:1 MUX.  

 

The control signals are different at every clock cycle 

for each iteration of the main loop and the post process 

stage. A heavy state machine is required to provide all 

the control signals in sequence. Here, we use a 6×18 

control ROM to store the control signals for MUXs (16 

bits) and the swapping selection (2 bits). A small state 

machine is used for conditional branching and 

jumping, and is providing the 6-bit address to the 

control ROM. For the FPGA implementation, the 

control ROM can be realized using Block RAMs in 

Xilinx devices or embedded memory blocks in Altera 

devices. Thus, it does not consume logic resources in 

FPGA. The data path of ECSM using a three-stage 

pipelined FF MAC is given for example in Fig. 3. 
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Fig. 3. Data path of ECSM using a three-stage 

pipelined FF MAC. 

 

The termsX1, X2, Z1, and Z2 are not presented, 

because they are the intermediate results of the FF 

MAC or FF Squarer. The bold dashed line in Fig. 6 

shows the critical path of the three-stage pipelined 

architecture, which consists of a pipelined FF MAC, 

an addition (XOR), and a 4:1 MUX. Data paths with 

other pipeline stages are similar to Fig. 6 except for 

different data connections. Control signals stored in 

the control ROM are also different. But, the critical 

path delay remains unchanged. 

 

V.  FPGA Design Flow 

5.1 Design Entry: 

There are different techniques for design entry. 

Schematic based, Hardware Description Language and 

combination of both etc.  Selection of a method 

depends on the design and designer. If the designer 

wants to deal more with Hardware, then Schematic 

entry is the better choice. When the design is complex 

or the designer thinks the design in an algorithmic way 

then HDL is the better choice. Language based entry is 

faster but lag in performance and density. HDLs 

represent a level of abstraction that can isolate the 

designers from the details of the hardware 

implementation.  Schematic based entry gives 

designers much more visibility into the hardware. It is 

the better choice for those who are hardware oriented. 

Another method but rarely used is state-machines.  It is 

the better choice for the designers who think the design 

as a series of states.  

But the tools for state machine entry are limited. In this 

documentation we are going to deal with the HDL 

based design entry. 

 

5.2 Synthesis: 

The process which translates VHDL or Verilog code 

into a device netlist format. i.e. a complete circuit with 

logical elements( gates, flip flops, etc…) for the 

design. If the design contains more than one sub 

designs, ex. to implement  a processor, we need a CPU 

as one design element and RAM as another and so on, 

then the synthesis process generates netlist for each 

design element Synthesis process will check code 

syntax and analyze the hierarchy of the design which 

ensures that the design is optimized for the design 

architecture, the designer has selected. The resulting 

netlist(s) is saved to an NGC( Native Generic Circuit) 

file (for Xilinx® Synthesis Technology (XST)). 

 
Figure 4 FPGA Synthesis 

 

5.3 Implementation: 

In this work, design of a DWT and IDWT is made 

using Verilog HDL and is synthesized on FPGA 

family of Spartan 3E through XILINX ISE Tool. This 

process includes following: 

 Translate 

 Map 

 Place and Route 

 

5.4 Translate: 

Process combines all the input netlists and constraints 

to a logic design file. This information is saved as a 

NGD (Native Generic Database) file. This can be done 

using NGD Build program. Here, defining constraints 

is nothing but, assigning the ports in the design to the 

physical elements (ex. pins, switches, buttons etc) of 

the targeted device and specifying time requirements 
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of the design. This information is stored in a file 

named UCF (User Constraints File). Tools used to 

create or modify the UCF are PACE, Constraint Editor 

etc. 

 
Figure 5 FPGA Translate 

 

5.5 Map: 

Process divides the whole circuit with logical elements 

into sub blocks such that they can be fit into the FPGA 

logic blocks. That means map process fits the logic 

defined by the NGD file into the targeted FPGA 

elements (Combinational Logic Blocks (CLB), Input 

Output Blocks (IOB)) and generates an NCD (Native 

Circuit Description) file which physically represents 

the design mapped to the components of FPGA. MAP 

program is used for this purpose. 

 
Figure 6 FPGA map 

 

5.6 Place and Route: 

PAR program is used for this process. The place and 

route process places the sub blocks from the map 

process into logic blocks according to the constraints 

and connects the logic blocks. Ex. if a sub block is 

placed in a logic block which is very near to IO pin, 

then it may save the time but it may affect some other 

constraint. So tradeoff between all the constraints is 

taken account by the place and route process                                                                                                                                                          

The PAR tool takes the mapped NCD file as input and 

produces a completely routed NCD file as output. 

Output NCD file consists the routing information. 

 
Figure 7 FPGA Place and route 

 

5.7 Device Programming: 

Now the design must be loaded on the FPGA. But the 

design must be converted to a format so that the FPGA 

can accept it. BITGEN program deals with the 

conversion. The routed NCD file is then given to the 

BITGEN program to generate a bit stream (a .BIT file) 

which can be used to configure the target FPGA 

device. This can be done using a cable. Selection of 

cable depends on the design. 

 

5.8 Behavioral Simulation (RTL Simulation): 

This is first of all simulation steps; those are 

encountered throughout the hierarchy of the design 

flow. This simulation is performed before synthesis 

process to verify RTL (behavioral) code and to 

confirm that the design is functioning as intended. 

Behavioral simulation can be performed on either 

VHDL or Verilog designs. In this process, signals and 

variables are observed, procedures and functions are 

traced and breakpoints are set. This is a very fast 

simulation and so allows the designer to change the 

HDL code if the required functionality is not met with 

in a short time period. Since the design is not yet 

synthesized to gate level, timing and resource usage 

properties are still unknown. 

 

VI. SIMULATION RESULT 
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SYNTHESIS RESULTS: 

The developed project is simulated and verified their 

functionality. Once the functional verification is done, 

the RTL model is taken to the synthesis process using 

the Xilinx ISE tool. In synthesis process, the RTL 

model will be converted to the gate level netlist 

mapped to a specific technology library. Here in this 

Spartan 3E family, many different devices were 

available in the Xilinx ISE tool. In order to synthesis 

this design the device named as “XC3S500E” has been 

chosen and the package as “FG320” with the device 

speed such as “-4”. This design is synthesized and its 

results were analyzed as follows 

 

RTL SCHEMATIC: 

 
 

TECHNOLOGY SCHEMATIC: 
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DESIGN SUMMARY: 

 
 

TIMING REPORT: 

 
 

VII. CONCLUSION: 

We have presented new hardware schemes for the 

serialout bit-level (SOBL) multiplier in PB 

representation over GF(2m) for both the !-nomial and 

the irreducible trinomial. Compared to previously 

published results in terms of time complexities, the 

work presented here outperform the existing SOBL 

multiplier schemes. We have also extended the 

traditional POBL multiplier schemes to new POBL 

double multiplication architectures, which perform two 

multiplications after 2m clock cycles.  

Then, we proposed three hybrid-double multiplication 

architectures in PB over GF(2m). These hybrid 

multiplier structures perform two multiplications with 

latency comparable to the latency of a single 

multiplication, i.e., after m + 1 clock cycles. We have 

obtained the space and time complexities of the 

presented multipliers and have compared them with 

their counterparts. For the practical purposes, all the 10 

schemes presented in this work have been 

implemented in ASIC technology over both GF(2163) 

and GF(2233), and the area, timing, power 

consumption, and energy results have been presented. 
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