

 Page 347

Design and Implementation of Mastrovito Multiplier using

New Serial-Out Bit-Level
Chaitanya Jami

M.Tech (VLSI),

Dept of ECE,

Baba Institute of Technology &

Sciences.

P.K.Suresh

Associate Professor,

Dept of ECE,

Baba Institute of Technology &

Sciences.

V Ramagowri Bobbili

Assistant Professor,

Dept of ECE,

Baba Institute of Technology &

Sciences.

Abstract:

The Serial-out bit-level multiplication scheme is

characterized by an important latency feature. It has an

ability to sequentially generate an output bit of the

multiplication result in each clock cycle. However, the

computational complexity of the existing serial-out bit-

level multipliers in GF (2
m
) using normal basis

representation, limits its usefulness in many

applications; hence, an optimized serial out bit-level

multiplier using polynomial basis representation is

needed. In this paper, we propose new serial-out bit-

level Mastrovito multiplier schemes. We show that in

terms of the time complexities, the proposed multiplier

schemes outperform the existing serial out bit-level

schemes available in the literature. In addition, using

the proposed multiplier schemes, we present new

hybrid-double multiplication architectures. To the best

of our knowledge, this is the first time such a hybrid

multiplier structure using the polynomial basis is

proposed. Prototypes of the presented serial-out bit-

level schemes and the proposed hybrid-double

multiplication architectures (10 schemes in total) are

implemented over both GF (2
163

) and GF (2
233

), and

experimental results are presented

Keywords:

Mastrovito multiplier, hybrid-double multiplication

architectures.

I .INTRODUCTION:

FINITE field arithmetic has been widely applied in

applications of different fields like error-control

coding, cryptography, and digital signal processing.

The arithmetic operations in the finite fields over

characteristic two GF (2m) have gained widespread

use in public-key cryptography such as point

multiplication in elliptic curve cryptography, and

exponentiation-based cryptosystems. The finite field

GF (2m) has 2melements and each of its elements can

be represented by its m binary coordinates based on

the choice of field-generating polynomial. For such a

representation, the addition is relatively straight-

forward by bit-wise XORing of the corresponding

coordinates of two field elements. On the other hand,

the multiplication operation requires larger and slower

hardware. Other complex and time-consuming

operations such as exponentiation, and

division/inversion are implemented by the iterative

application of the multiplication operations.

Much of the ongoing research in this area is focused

on finding new architectures to implement the

arithmetic multiplication operation more efficiently

(see for example). Finite field multipliers with

different properties are obtained by choosing different

representations of the field elements. With the

advantages of low design complexity, simplicity,

regularity, and modularity in architecture, the standard

or polynomial basis (PB) representation, is extensively

used for cryptographic applications. In the PB, a

multiplier requires a polynomial multiplication

followed by a modular reduction. In practice, these

two steps can be combined into a single step by using

the so-called Mastrovito matrix [14], [15]. The

properties and complexities of the PB multipliers

depend heavily on the choice of a field-generating

polynomial.

 Page 348

In this paper, we first consider an irreducible

polynomial with !, ! 3, non-zero terms (denoted by !-

nomials). We then obtain a further optimized structure

for the special irreducible trinomial (! = 3). The

implementation of finite field multipliers can be

categorized, in terms of their structures, into three

groups of parallel-level, digit-level and bit-level types.

The bit-level multiplier scheme, which processes one

bit of input per clock cycle, is area-efficient and

suitable for resource-constrained and low-weighted

devices. The bitlevel type multiplication algorithms,

when the PB is used are classified as least significant

bit first (LSB-first), and most significant bit first

(MSB-first) schemes.

II. MASTROVITO MULTIPLIER:

Software and hardware implementations of the basic

arithmetic operations (addition, multiplication, and

inversion) in the Galois field GF(2m) are desired in

coding theory, computer algebra, and cryptography [7,

4]. The cryptographic applications include elliptic

curve cryptosystems [8, 2], in which m is quite large,

usually around several hundreds. The efficiency of an

algorithm is often measured by the number of bit-level

or word-level operations. In the hardware

implementations, it is often desired to reduce the total

number of gates (space complexity) and the total gate

delay (time complexity) of the algorithm. The

representation of the field elements has a crucial role

in determining the space and time complexity of the

arithmetic operations, particularly the field

multiplication. In this paper, we are interested in space

and time complexity of the finite field multiplication

operation, where the field elements are represented

using the standard basis. The standard basis

multiplication operation in GF(2m) is often

accomplished in two steps: polynomial multiplication

and modular reduction. Let a(x), b(x), c(x) ∈ GF(2m)

and p(x) be the irreducible polynomial generating

GF(2m). In order to compute c(x) = a(x)b(x) mod p(x),

we first obtain the product polynomial d(x) which is of

degree (at most) 2m − 2 as

The next step is then the reduction operation c(x) =

d(x) mod p(x) to obtain the m − 1 degree polynomial

c(x). In practice, the multiplication and the reduction

steps are often combined for efficiency reasons. An

architecture for performing the field multiplication was

proposed by Mastrovito [5, 6]. In this method, we

represent the computation of d(x) as a matrix-vector

product d = Mb, where (2m − 1) × m dimensional

matrix M consists of the coefficients of the polynomial

a(x). We then obtain an m × m dimensional matrix Z

by reducing the matrix M using the generating

polynomial p(x). The product c(x) is computed using

the matrix-vector product c = Zb. The space

complexity of the multiplier for the special generating

trinomial xm+x+1 is shown to be m2−1 XOR and m2

AND gates [5, 6, 9, 10]. Paar [11] conjectured that the

space complexity of the Mastrovito multiplier would

be the same for all trinomials xm+xn +1, where 1 ≤ n ≤

m−1.

In this project, we describe an architecture for the

Mastrovito type multiplier using a general trinomial of

the form xm + xn +1, and show that the proposed

architecture requires m2 − 1 XOR and m2 AND gates

when n _= m/2. However, when m is even and n = m/2

there is further reduction: The proposed architecture

requires only m2 − m/2 XOR gates. A few examples of

irreducible polynomials of the form xm + xn +1 are

given in Table 1. Furthermore, it is known [7] that a

trinomial of the form xm + xm/2 +1 is irreducible over

GF(2) if m is of the form m = 2· 3r for some r ≥ 0.

Table 1: Examples of irreducible polynomials.

 Page 349

III. ELLIPTIC CURVE SCALAR

MULTIPLICATION

Considering the area overhead, this paper uses only

one FF MAC and one FF squarer to achieve high

performance ECSM. The FF MAC merges addition

with the reduction in FF multiplication. This brings

advantages that no extra clock cycle is needed for

addition, and it would not deteriorate the critical-path

delay. The multiplier can be implemented in serial,

parallel, or digit-serial way. The serial and digit-serial

multipliers consume less area, but require more clock

cycles. For high-speed consideration, we use the

parallel multiplier, which takes only one clock cycle to

finish one multiplication. Later, we will talk about area

reduction using the Karatsuba–Ofman algorithm.

Fig 1. Data dependence graph of (a) point addition

and (b) point doubling in the Montgomery ladder

algorithm

IV. Proposed Architecture of Elliptic Curve Scalar

multiplication

The post process stage of ECSM also requires careful

consideration. While this stage is not the crucial part of

ECSM, its optimization goal is to share the data path

with the main loop as much as possible, rather than to

reduce the required number of clock cycles. After

proper scheduling of ECSM, we propose the high-

performance architecture based on the improved

Montgomery ladder scalar multiplication algorithm, as

shown in Fig. 2.

Fig. 2. Proposed architecture of ECSM.

The proposed ECSM architecture consists of one bit-

parallel FF MAC, one FF squarer, a register bank, a

finite-state machine, and a 6×18 control ROM. The FF

MAC is implemented using the Karatsuba–Ofman

algorithm, and is well pipelined. Then-stage pipelined

FF MAC takes nclock cycles to finish one

multiplication. The FF squarer is not pipelined, and

one clock cycle is required to finish one square. The

inputs to FF MAC, A, B,andC, and the input to FF

squarer, S, are all registered. Another four registers T1,

T2, T3,andT4 are used in the data path for data

caching. Each register has a MUX before it. The

control signals of MUXs are given at each clock cycle

to switch between different operations in ECSM. The

inputs fed to MUXs of registers are carefully allocated

with the guideline that each MUX contains at most

four branches. In this way, the input delay for registers

is only the delay of a 4:1 MUX.

The control signals are different at every clock cycle

for each iteration of the main loop and the post process

stage. A heavy state machine is required to provide all

the control signals in sequence. Here, we use a 6×18

control ROM to store the control signals for MUXs (16

bits) and the swapping selection (2 bits). A small state

machine is used for conditional branching and

jumping, and is providing the 6-bit address to the

control ROM. For the FPGA implementation, the

control ROM can be realized using Block RAMs in

Xilinx devices or embedded memory blocks in Altera

devices. Thus, it does not consume logic resources in

FPGA. The data path of ECSM using a three-stage

pipelined FF MAC is given for example in Fig. 3.

 Page 350

Fig. 3. Data path of ECSM using a three-stage

pipelined FF MAC.

The termsX1, X2, Z1, and Z2 are not presented,

because they are the intermediate results of the FF

MAC or FF Squarer. The bold dashed line in Fig. 6

shows the critical path of the three-stage pipelined

architecture, which consists of a pipelined FF MAC,

an addition (XOR), and a 4:1 MUX. Data paths with

other pipeline stages are similar to Fig. 6 except for

different data connections. Control signals stored in

the control ROM are also different. But, the critical

path delay remains unchanged.

V. FPGA Design Flow

5.1 Design Entry:

There are different techniques for design entry.

Schematic based, Hardware Description Language and

combination of both etc. Selection of a method

depends on the design and designer. If the designer

wants to deal more with Hardware, then Schematic

entry is the better choice. When the design is complex

or the designer thinks the design in an algorithmic way

then HDL is the better choice. Language based entry is

faster but lag in performance and density. HDLs

represent a level of abstraction that can isolate the

designers from the details of the hardware

implementation. Schematic based entry gives

designers much more visibility into the hardware. It is

the better choice for those who are hardware oriented.

Another method but rarely used is state-machines. It is

the better choice for the designers who think the design

as a series of states.

But the tools for state machine entry are limited. In this

documentation we are going to deal with the HDL

based design entry.

5.2 Synthesis:

The process which translates VHDL or Verilog code

into a device netlist format. i.e. a complete circuit with

logical elements(gates, flip flops, etc…) for the

design. If the design contains more than one sub

designs, ex. to implement a processor, we need a CPU

as one design element and RAM as another and so on,

then the synthesis process generates netlist for each

design element Synthesis process will check code

syntax and analyze the hierarchy of the design which

ensures that the design is optimized for the design

architecture, the designer has selected. The resulting

netlist(s) is saved to an NGC(Native Generic Circuit)

file (for Xilinx® Synthesis Technology (XST)).

Figure 4 FPGA Synthesis

5.3 Implementation:

In this work, design of a DWT and IDWT is made

using Verilog HDL and is synthesized on FPGA

family of Spartan 3E through XILINX ISE Tool. This

process includes following:

 Translate

 Map

 Place and Route

5.4 Translate:

Process combines all the input netlists and constraints

to a logic design file. This information is saved as a

NGD (Native Generic Database) file. This can be done

using NGD Build program. Here, defining constraints

is nothing but, assigning the ports in the design to the

physical elements (ex. pins, switches, buttons etc) of

the targeted device and specifying time requirements

 Page 351

of the design. This information is stored in a file

named UCF (User Constraints File). Tools used to

create or modify the UCF are PACE, Constraint Editor

etc.

Figure 5 FPGA Translate

5.5 Map:

Process divides the whole circuit with logical elements

into sub blocks such that they can be fit into the FPGA

logic blocks. That means map process fits the logic

defined by the NGD file into the targeted FPGA

elements (Combinational Logic Blocks (CLB), Input

Output Blocks (IOB)) and generates an NCD (Native

Circuit Description) file which physically represents

the design mapped to the components of FPGA. MAP

program is used for this purpose.

Figure 6 FPGA map

5.6 Place and Route:

PAR program is used for this process. The place and

route process places the sub blocks from the map

process into logic blocks according to the constraints

and connects the logic blocks. Ex. if a sub block is

placed in a logic block which is very near to IO pin,

then it may save the time but it may affect some other

constraint. So tradeoff between all the constraints is

taken account by the place and route process

The PAR tool takes the mapped NCD file as input and

produces a completely routed NCD file as output.

Output NCD file consists the routing information.

Figure 7 FPGA Place and route

5.7 Device Programming:

Now the design must be loaded on the FPGA. But the

design must be converted to a format so that the FPGA

can accept it. BITGEN program deals with the

conversion. The routed NCD file is then given to the

BITGEN program to generate a bit stream (a .BIT file)

which can be used to configure the target FPGA

device. This can be done using a cable. Selection of

cable depends on the design.

5.8 Behavioral Simulation (RTL Simulation):

This is first of all simulation steps; those are

encountered throughout the hierarchy of the design

flow. This simulation is performed before synthesis

process to verify RTL (behavioral) code and to

confirm that the design is functioning as intended.

Behavioral simulation can be performed on either

VHDL or Verilog designs. In this process, signals and

variables are observed, procedures and functions are

traced and breakpoints are set. This is a very fast

simulation and so allows the designer to change the

HDL code if the required functionality is not met with

in a short time period. Since the design is not yet

synthesized to gate level, timing and resource usage

properties are still unknown.

VI. SIMULATION RESULT

 Page 352

SYNTHESIS RESULTS:

The developed project is simulated and verified their

functionality. Once the functional verification is done,

the RTL model is taken to the synthesis process using

the Xilinx ISE tool. In synthesis process, the RTL

model will be converted to the gate level netlist

mapped to a specific technology library. Here in this

Spartan 3E family, many different devices were

available in the Xilinx ISE tool. In order to synthesis

this design the device named as “XC3S500E” has been

chosen and the package as “FG320” with the device

speed such as “-4”. This design is synthesized and its

results were analyzed as follows

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

 Page 353

DESIGN SUMMARY:

TIMING REPORT:

VII. CONCLUSION:

We have presented new hardware schemes for the

serialout bit-level (SOBL) multiplier in PB

representation over GF(2m) for both the !-nomial and

the irreducible trinomial. Compared to previously

published results in terms of time complexities, the

work presented here outperform the existing SOBL

multiplier schemes. We have also extended the

traditional POBL multiplier schemes to new POBL

double multiplication architectures, which perform two

multiplications after 2m clock cycles.

Then, we proposed three hybrid-double multiplication

architectures in PB over GF(2m). These hybrid

multiplier structures perform two multiplications with

latency comparable to the latency of a single

multiplication, i.e., after m + 1 clock cycles. We have

obtained the space and time complexities of the

presented multipliers and have compared them with

their counterparts. For the practical purposes, all the 10

schemes presented in this work have been

implemented in ASIC technology over both GF(2163)

and GF(2233), and the area, timing, power

consumption, and energy results have been presented.

REFERENCES:

[1] R. Lidl, and H. Niederreiter, Introduction to Finite

Fields and Their Applications. 2nd Ed., Cambridge

Univ. Press, Cambridge, UK, Aug. 1994.

[2] R. E. Blahut, Theory and Practice of Error Control

Codes. Addison- Wesley, Reading, MA, May 1983.

[3] A. J Menezes, I. F. Blake, X. Gao, R. C. Mullin, S.

A. Vanstone, and T. Yaghoobian, Applications of

Finite Fields. Kluwer Academic Publishers, Boston,

MA, 1993.

[4] R. E. Blahut, Fast Algorithms for Digital Signal

Processing. 1st Ed., Addison-Wesley, Reading, MA,

Sept. 1985.

[5] V. S. Miller, “Use of Elliptic Curves in

Cryptography,” In Proc. of Advances in Cryptology-

CRYPTO’85, LNCS, 1986, vol. 218, pp. 417-426.

[6] N. Koblitz, “Elliptic Curve Cryptosystems,”

Mathematics of Computation, vol. 48, no. 177, pp.

203-209, Jan. 1987.

[7] T. Elgamal, “A Public Key Cryptosystem and a

Signature Scheme Based on Discrete Logarithms,”

IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469-472,

Jul. 1985.

 Page 354

[8] W. Diffie, and M. Hellman, “New Directions in

Cryptography,” IEEE Trans. Inf. Theory, vol. 22, no.

6, pp. 644-654, Nov. 1976.

[9] M. A. Hasan, A. H. Namin, and C. Negre,

“Toeplitz Matrix Approach for Binary Field

Multiplication Using Quadrinomials,” IEEE Trans.

VLSI Systems, vol. 20, no. 3, pp. 449-458, Mar. 2012.

[10] H. Wu, “Bit-Parallel Polynomial Basis Multiplier

for New Classes of Finite Fields,” IEEE Trans.

Computers, vol. 57, no. 8, pp. 1023- 1031, Aug. 2008.

[11] A. Hariri, and A. Reyhani-Masoleh, “Bit-Serial

and Bit-Parallel Montgomery Multiplication and

Squaring over GF(2m),” IEEE Trans. Computers, vol.

58, no. 10, pp. 1332-1345, Oct. 2009.

[12] I.S. Hsu, T. K. Truong, L. J. Deutsch, and I. S

Reed, “A Comparison of VLSI Architecture of Finite

Field Multipliers Using Dual, Normal, or Stnadard

Basis,” IEEE Trans. Computers, vol. 37, no. 6, pp.

735-739, Jun. 1988.

[13] D. Hankerson, A. Menezes, and S. Vanstone,

Guide to Elliptic Curve Cryptography. New York:

Springer-Verlag, 2004.

[14] E. D. Mastrovito, “VLSI Designs for

Multiplication over Finite Field GF(2m),” Proc. Sixth

Symp. Applied Algebra, Algebraic Algorithms, and

Error Correcting Codes (AAECC-6), pp. 297-309, Jul.

1988.

[15] E. D. Mastrovito, “VLSI Architectures for

Computation in Galois Fields,” PhD thesis, Link¨oping

Univ., Link¨oping, Sweden 1991.

[16] T. Beth, and D. Gollmann, “Algorithm

Engineering for Public Key Algorithms,” IEEE J.

Selected Areas in Communications, vol. 7, no. 4, pp.

458-466, May 1989.

[17] R. Azarderakhsh, and A. Reyhani-Masoleh,

“Low-Complexity Multiplier Architectures for Single

and Hybrid-Double Multiplications in Gaussian

Normal Bases,” IEEE Trans. Computers, vol. 62, no.

4, pp. 744-757, Jan. 2012.

[18] R. Azarderakhsh, K. J¨arvinen, and V. Dimitrov,

“Fast Inversion in GF(2m) with Normal Basis Using

Hybrid-Double Multipliers,” IEEE Trans. Computers,

in process.

[19] A. Reyhani-Masoleh, “A New Bit-Serial

Architecture for Field Multiplication Using

Polynomial Bases,” In Proc. of CHES 2008, Aug.

2008, LNCS 5154, pp. 300-314.

[20] H. Wu, “Bit-Parallel Finite Field Multiplier and

Squarer Using Polynomial Basis,” IEEE Trans.

Computers, vol. 51, no. 7, pp. 750- 758, Jul. 2002.

[21] F. Rodriguez-Henriguez, and C ̧ . K. Koc ,̧

“Parallel Multipliers Based on Special Irreducible

Pentanomials,” IEEE Trans. Computers, vol. 52, no.

12, pp. 1535-1542, Dec. 2003.

[22] B. Sunar, and C¸ . K. Koc¸, “Mastrovito

Multiplier for All Trinomials,” IEEE Trans.

Computers, vol. 48, no. 5, pp. 522-527, May 1999.

[23] A. Halbuo˘ gullari, and C¸ . K. Koc¸, “Mastrovito

Multiplier for General Irreducible Polynomial,” IEEE

Trans. Computers, vol. 49, no. 5, pp. 503-518, May

2000.

