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Abstract: 

Automatic defects detection in MR images is very 

important in many diagnostic and therapeutic 

applications. Because of high quantity data in MR 

images and blurred boundaries, tumour segmentation 

and classification is very hard. This work has 

introduced one automatic brain tumour detection 

method to increase the accuracy and yield and decrease 

the diagnosis time. The goal is classifying the tissues to 

three classes of normal, begin and malignant. . In MR 

images, the amount of data is too much for manual 

interpretation and analysis. During past few years, 

brain tumor segmentation in magnetic resonance 

imaging (MRI) has become an emergent research area 

in the field of medical imaging system. Accurate 

detection of size and location of brain tumor plays a 

vital role in the diagnosis of tumor. The diagnosis 

method consists of four stages, pre-processing of MR 

images, feature extraction, and classification. After 

histogram equalization of image, the features are 

extracted based on Dual-Tree Complex wavelet 

transformation (DTCWT).  

 

In the last stage, Back Propagation Neural Network 

(BPN) are employed to classify the Normal and 

abnormal brain. An efficient algorithm is proposed for 

tumor detection based on the Spatial Fuzzy C-Means 

Clustering. 

 

Index Terms—Magnetic Resonance Imaging, Glioma, 

Brain Tumor, Brain Tumor Segmentation, back 

propagation neural network classifier , Dual-Tree 

Complex wavelet transformation(dtcwt) ,Spatial Fuzzy 

C-Means Clustering(SFCM), Gray level co occurrence 

matrix(GLCM). 

I INTRODUCTION 

Gliomas are the brain tumors with the highest mortality 

rate and prevalence. These neoplasms can be graded into 

Low Grade Gliomas (LGG) and High Grade Gliomas 

(HGG), with the former being less aggressive and 

infiltrative than the latter. Even under treatment, patients 

do not survive on average more than 14 months after 

diagnosis. Current treatments include surgery, 

chemotherapy, radiotherapy, or a combination of them. 

MRI is especially useful to assess gliomas in clinical 

practice, since it is possible to acquire MRI sequences 

providing complementary information.The accurate 

segmentation of gliomas and its intra-tumoral structures 

is important not only for treatment planning, but also for 

follow-up evaluations. However, manual segmentation is 

time-consuming and subjected to inter- and intra-rater 

errors difficult to characterize. Thus, physicians usually 

use rough measures for evaluation. For these reasons, 

accurate semi-automatic or automatic methods are 

required. However, it is a challenging task, since the 

shape, structure, and location of these abnormalities are 

highly variable. Additionally, the tumor mass effect 

change the arrangement of the surrounding normal 

tissues. Also, MRI images may present some problems, 

such as intensity in homogeneity, or different intensity 

ranges among the same sequences and acquisition 

scanners. In brain tumor segmentation, we find several 

methods that explicitly develop a parametric or non-

parametric probabilistic model for the underlying data. 

These models usually include a likelihood function 

corresponding to the observations and a prior model. 

Being abnormalities, tumors can be segmented as 

outliers of normal tissue, subjected to shape and 

connectivity constrains. Other approaches rely on 

probabilistic atlases. In the case of brain tumors, the atlas 



 
 

 Page 221 
 

must be estimated at segmentation time, because of the 

variable shape and location of the neoplasms. Tumor 

growth models can be used as estimates of its mass 

effect, being useful to improve the atlases . The 

neighborhood of the voxels provides useful information 

for achieving smoother segmentations through Markov 

Random Fields (MRF). Zhao at al.  also used a MRF to 

segment brain tumors after a first oversegmentation of 

the image into supervoxels, with a histogram-based 

estimation of the likelihood function. As observed by 

Menze et al., generative models generalize well in 

unseen data, but it may be difficult to explicitly translate 

prior knowledge into an appropriate probabilistic 

model.Another class of methods learns a distribution 

directly from the data. Although a training stage can be a 

disadvantage, these methods can learn brain tumor 

patterns that do not follow a specific model. This kind of 

approaches commonly consider voxels as independent 

and identically distributed, although context information 

may be introduced through the features. Because of this, 

some isolated voxels or small clusters may be mistakenly 

classified with the wrong class, some-times in 

physiological and anatomically unlikely locations. To 

overcome this problem, some authors include 

information of the neighborhood by embedding the 

probabilistic predictions of the classifier into a 

Conditional Random Field. Classifiers such as Support 

Vector Machines and, more recently, Random Forests 

(RF) were success-fully applied in brain tumor 

segmentation. The RF became very used due to its 

natural capability in handling multi-class problems and 

large feature vectors. A variety of features were 

proposed in the literature: encoding context, first-order 

and fractals-based texture [gradients [brain symmetry 

[and physical properties . Using supervised classifiers, 

some authors developed other ways of applying them. 

Tustison et al.  developed a two-stage segmentation 

framework based on RFs, using the output of the first 

classifier to improve a second stage of segmentation. 

Geremia et al.  proposed a Spatially Adaptive RF for 

hierarchical segmentation, going from coarser to finer 

scales. Meier et al. used a semi-supervised RF to train a 

subject-specific classifier for post-operative brain tumor 

segmentation.Other methods known as Deep Learning 

deal with representation learning by automatically 

learning an hierarchy of increasingly complex features 

directly from data. So, the focus is on designing 

architectures instead of developing hand-crafted features, 

which may require specialized knowledge. CNNs have 

been used to win several object recognition  and 

biological image segmentation challenges. Since a CNN 

operates over patches using kernels, it has the advantages 

of taking context into account and being used with raw 

data. In the field of brain tumor segmentation, recent 

proposals also investigate the use of CNNs. Zikic et al.  

used a shallow CNN with two convolutional layers 

separated by max-pooling with stride 3, followed by one 

fully-connected (FC) layer and a softmax layer. In 

addition to their two-pathway network, Havaei et al.  

built a cascade of two networks and performed a two-

stage training, by training with balanced classes and then 

refining it with proportions near the originals. Lyksborg 

et al.use a binary CNN to identify the complete tumor. 

Then, a cellular automata smooths the segmentation, 

before a multi-class CNN discriminates the sub-regions 

of tumor. Rao et al.extracted patches in each plane of 

each voxel and trained a CNN in each MRI sequence; 

the outputs of the last FC layer with softmax of each 

CNN are concatenated and used to train a RF classifier. 

Dvo˘rak´ and Menze [35] divided the brain tumor 

regions segmentation tasks into binary sub-tasks and 

proposed structured predictions using a CNN as learning 

method. Patches of labels are clustered into a dictionary 

of label patches, and the CNN must predict the 

membership of the input to each of the clusters.In this 

paper, inspired by the groundbreaking work of Si-

monyan and Zisserman  on deep CNNs, we investigate 

the potential of using deep architectures with small 

convolutional kernels for segmentation of gliomas in 

MRI images. Simonyan and Zisserman proposed the use 

of small 3 3 kernels to obtain deeper CNNs. With 

smaller kernels we can stack more convolutional layers, 

while having the same receptive field of bigger kernels. 

For instance, two 3 3 cascaded convolutional layers have 

the same effective receptive field of one 5 5 layer, but 

fewer weights . At the same time, it has the advantages 
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of applying more nonlinearities and being less prone to 

overfitting because small kernels have fewer weights 

than bigger kernels . We also investigate the use of the 

intensity normalization method proposed by Nyul´ et al. 

as a pre-processing step that aims to address data 

heterogeneity caused by multi-site multi-scanner 

acquisitions of MRI images. The large spatial and 

structural variability in brain tumors are also an 

important concern that we study using two kinds of data 

augmentation.The remainder of this paper is organized 

as follows. In Section II, the proposed method is 

presented. The databases used for evaluation and the 

experimental setup are detailed in Section III. Results are 

presented and discussed in Section IV. Finally, the main 

conclusions are presented in Section V. 

 

II. PROPOSED METHOD 

Fig. 1 presents an overview of the proposed approach. 

There are four main stages: pre-processing, feature 

extraction through Gray level co ocurrence 

matrix(GLCM), classification via Back propagation 

neural network(BPN) and post-processing. 

 
Fig. : Overview of the proposed method. 

Pre-processing:  

MRI images are altered by the bias field distortion. This 

makes the intensity of the same tissues to vary across the 

image. To correct it, we applied the N4ITK method [6].  

 

However, this is not enough to ensure that the intensity 

distribution of a tissue type is in a similar intensity scale 

across different subjects for the same MRI sequence, 

which is an explicit or implicit assumption in most 

segmentation methods [37]. In fact, it can vary even if 

the image of the same patient is acquired in the same 

scanner in different time points, or in the presence of a 

pathology [7], [38]. So, to make the contrast and 

intensity ranges more similar across patients and 

acquisitions, we apply the intensity normalization 

method proposed by Nyul´ et al. on each sequence. In 

this intensity normalization method, a set of intensity 

landmarks IL = fpc1; ip10 ; ip20 ; ; ip90 ; pc2g are learned for 

each sequence from the training set. pc1 and pc2 are 

chosen for each MRI sequence as described. ipl 

represents the intensity at the l
th
 percentile. After 

training, the intensity normalization is accomplished by 

linearly transforming the original intensities between two 

landmarks into the corresponding learned land-marks. In 

this way, the histogram of each sequence is more similar 

across subjects. After normalizing the MRI images, we 

compute the mean intensity value and standard deviation 

across all training patches extracted for each sequence. 

Then, we normalize the patches on each sequence to 

have zero mean and unit variance
1
. 

1
The mean and 

standard deviation computed in the training patches are 

used to normalize the testing patches. 

 

Feature extraction through GLCM: 

Feature extraction is the procedure of data reduction to 

find a subset of helpful variables based on the image. In 

this work, seven textural features based on the gray level 

co-occurrence matrix (GLCM) are extracted from each 

image. Co-occurrence matrices are calculated for four 

directions: 0º, 45º, 90º and 135º degrees. The seven 

Haralick texture descriptors are extracted from each co-

occurrence matrices which are computed in each of four 

angles. Energy, Contrast, Homogeneity, correlation 
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Back propagation neural network (BPN): 

Multilayer neural networks use a most common 

technique from a variety of learning technique, called the 

back propagation algorithm. In back propagation neural 

network, the output values are compared with the correct 

answer to compute the value of some predefined error 

function. By various techniques the error is then fed back 

through the network. Using this information, the 

algorithms adjust the weights of each connection in order 

to reduce the value of the error function by some small 

amount. After repeating this process for a sufficiently 

large number of training cycles the network will usually 

converge to some state where the error of the calculation 

is small. 

 

The optimization algorithm repeats a two phase cycle, 

propagation and weight update. When an input vector is 

presented to the network, it is propagated forward 

through the network, layer by layer, until it reaches the 

output layer. The output of the network is then compared 

to the desired output, using a loss function, and an error 

value is calculated for each of the neurons in the output 

layer. The error values are then propagated backwards, 

starting from the output, until each neuron has an 

associated error value which roughly represents its 

contribution to the original output 

 

Post-processing: 

Some small clusters may be erroneously classified as 

tumor. To deal with that, we impose volumetric 

constrains by removing clusters in the segmentation 

obtained by the CNN that are smaller than a predefined 

threshold tV OL. 

 

III. RESULTS 
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IV. CONCLUSION 

In summary, we propose a novel CNN-based method for 

segmentation of brain tumors in MRI images. We start 

by a pre-processing stage consisting of bias field 

correction, intensity and patch normalization. After that, 

during training, the number of training patches is 

artificially augmented by rotating the training patches, 

and using samples of HGG to augment the number of 

rare LGG classes. The CNN is built over convolutional 

layers with small 3 3 kernels to allow deeper 

architectures.In designing our method, we address the 

heterogeneity caused by multi-site multi-scanner 

acquisitions of MRI images using intensity 

normalization as proposed by Nyul´ et al. We show that 

this is important in achieving a good segmentation. Brain 

tumors are highly variable in their spatial localization 

and structural composition, so we have investigated the 

use of data augmentation to cope with such variability.  

We studied augmenting our training data set by rotating 

the patches as well as by sampling from classes of HGG 

that were underrepresented in LGG. We found that data 

augmentation was also quite effective, although not 

thoroughly explored in Deep Learning methods for brain 

tumor segmentation. Also, we investigated the potential 

of deep architectures through small kernels by 

comparing our deep CNN with shallow architectures 

with larger filters. We found that shallow architectures 

presented a lower performance, even when using a larger 

number of feature maps. Finally, we verified that the 

activation function LReLU was more important than 

ReLU in effectively training our CNN. We evaluated the 

proposed method in BRATS 2013 and 2015 databases.  

 

Concerning 2013 database, we were ranked in the first 

position by the online evaluation platform. Also, it was 

obtained simultaneously the first position in DSC metric 

in the complete, core, and enhancing regions in the 

Challenge data set. Comparing with the best generative 

model, we were able to reduce the computation time 

approximately by ten-fold. Concerning the 2015 

database, we obtained the second position among twelve 

contenders in the on-site challenge. We argue, therefore, 

that the components that were studied have potential to 

be incorporated in CNN-based methods and that as a 

whole our method is a strong candidate for brain tumor 

segmentation using MRI images. 
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