DESIGN AND ANALYSIS OF PELTON WHEEL

ABSTRACT:
In this project we have checked newly developed design known as hooped runner or advanced pelton wheel in which there are two hoops which supports the bucket from back side and giving it to rest on it. The new design is based on redistribution of the function of different parts of pelton wheel. In conventional runner the jet of water is directly strike to splitter of the bucket and transfers the force to it buckets convert it into momentum by which the shaft is rotate and giving us power. Whereas in advanced pelton wheel bucket does not directly transport the force to the runner but transfer the force via these hoops and these hoops is connected to shaft and by that producing the power so due to hooped runner bucket act as simply supported beam comparing to simple pelton wheel so stress developed in hooped pelton is less due to this construction. In this project we want to achieve some critical data like stress developed.

The project is directed towards the modeling of both traditional and advanced bucket pelton wheel in a 3D Cad tool called SOLIDWORKS 2014. The both the buckets have been analyzed in SOLIDWORKS simulation tool by using two different materials namely 1020 steel and 1060 alloy under given loading conditions of 269N and 10000N. Among the both materials the best material is 1020 steel as the stresses developed in 1020 steel is less than the material yield strength under given loading condition.

Key Words: Pelton wheel, Yield, Stress, Shaft, 3D CAD

INTRODUCTION

Turbine
A turbine, from the Greek ("turbulence"), is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. A turbine is a turbo machine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels. Gas, steam, and water turbines usually have a casing around the blades that contains and controls the working fluid. Credit for invention of the steam turbine is given both to the British engineer Sir Charles Parsons (1854–1931), for invention of the reaction turbine and to Swedish engineer Gustaf de Laval (1845–1913), for invention of the impulse turbine. Modern steam turbines frequently employ both reaction and impulse in the same unit, typically varying the degree of reaction and impulse from the blade root to its periphery.

The word "turbine" was coined in 1822 by the French mining engineer Claude Burdin from the Latin "turbina", which he submitted to the Académie royale des sciences in Paris,[3] Benoît Fourneyron, a former student of Claude Burdin, built the first practical water turbine.

Types of turbines
Steam turbines are used for the generation of electricity in thermal power plants, such as plants using coal, fuel oil or nuclear power. They were once used to directly drive mechanical devices such as ships' propellers (for example the Turbinia, the first turbine-powered steam launch) but most such applications now use reduction gears or an intermediate electrical step, where the turbine is used to generate electricity, which then powers an electric motor connected to the mechanical load. Turbo electric ship machinery was particularly popular in the period immediately before and during World War II, primarily due to a lack of sufficient gear-cutting facilities in US and UK shipyards.

B.Vinod
M.Tech (Machine Design),
Department Of Mechanical Engineering,
Anurag Engineering College,
Kodad, Nalgonda, T.S, India.

B. Biksham
Assistant Professor
Department Of Mechanical Engineering,
Anurag Engineering College,
Kodad, Nalgonda, T.S, India.

Veeranjaneyulu
Assistant Professor
Department of Mechanical Engineering,
Anurag Engineering College,
Kodad, Nalgonda, T.S, India.
Classification of hydraulic turbines

The hydraulic turbines are classified according to the type of energy available at the inlet of the turbine, direction of flow through the vanes, head at the inlet of the turbine and specific speed of the turbines. Thus the following are the important classification of the turbine:

- **Impulse Turbine**
- **Reaction Turbine**

![Figure 1: Classification according to action of fluid on moving blades](image1)

PELTON WHEEL

The Pelton wheel is an impulse type water turbine. It was invented by Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many variations of impulse turbines existed prior to Pelton's design, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels. Pelton's paddle geometry was designed so that when the rim ran at ½ the speed of the water jet, the water left the wheel with very little speed; thus his design extracted almost all of the water's impulse energy—which allowed for a very efficient turbine.

The pelton turbine operating principle

The Pelton turbine is an impulse turbine that only converts kinetic energy of the flow into mechanical energy. The transfer of the total energy from the nozzle exit to the downstream Reservoir occurs at atmospheric pressure. The jet stemming from the injector impinges on buckets, located at the periphery of a wheel.

![Figure 3: Buckets Geometric Definitions](image3)

Layout of pelton wheel

The Pelton wheel or Pelton turbine is a tangential flow impulse turbine. The water strikes the bucket along the tangent of the runner. The energy available at the inlet of the turbine is only kinetic energy. The pressure at the inlet and outlet of the turbine is atmosphere. This turbine is used for high heads and is named after L.A. Pelton, an American Engineer. The water from the reservoir flows through the penstocks at the outlet of which a nozzle is fitted. The nozzle increases the kinetic energy of the water flowing through the penstock. At the outlet of the nozzle, the water comes out in the form of a jet and strikes the buckets (vanes).
of the runner. The main parts of the Pelton turbine are Nozzle
and flow regulating arrangement (spear), Runner and buckets,
Casing, and Breaking jet.

Efficiencies of turbine
The following are the important Efficiencies of a turbine.
(A) Hydraulic efficiency (η_h)
(B) Mechanical efficiency (η_m)
(C) Volumetric efficiency (η_v)
(D) Overall efficiency (η_o)

Hydraulic efficiency (η_h)
It is defined as the ratio of the power given by water to the
runner of a turbine (runner is a rotating part of a turbine and
on the runner vanes are fixed) to the power supplied by the
water at the inlet of the turbine. The power at the inlet
of the turbine is more and this power goes decreasing as the
water flow over the vanes of the turbine due to hydraulic
losses as the vanes are not smooth. Hence the power delivered
to the runner of the turbine will be less than the power
available at the inlet of the turbine. Thus mathematically, the
hydraulic efficiency of the turbine is written as

$$\eta_h = \frac{\text{Power delivered to the runner}}{\text{Power supplied at the inlet}} = \frac{R.P.}{W.P.}$$

Power supplied at the inlet of turbine and also called water power
$$W.P. = \frac{g \times Q \times H}{1000} \text{ kW}$$

Mechanical efficiency (η_m)
The power delivered by water to the runner of turbine is
transmitted to the shaft of the turbine. Due to mechanical
losses, the power available at the shaft of the turbine is less
than the power delivered to the runner of a turbine. The ratio
of the power available at the shaft of the turbine (known as
S.P. or B.P.) the power delivered to the runner is defined as
mechanical efficiency. Hence, mathematically, it is written as:

$$\eta_m = \frac{\text{Power at the shaft of the turbine}}{\text{Power delivered by water to the runner}} = \frac{S.P.}{R.P.}$$

Volumetric efficiency (η_v)
The volume of the water striking the runner of a turbine is
slightly less than the volume of the water supply to the
turbine. Some of the volume of the water is discharged to
the tailrace without striking the runner of the turbine. Thus
the ratio of the volume of the water actually striking the
runner to the volume of water supplied to the turbine is
defined as volumetric efficiency. It is written as:

$$\eta_v = \frac{\text{volume of water actually striking the runner}}{\text{volume of water supplied to the turbine}}$$

Overall efficiency (η_o)
It is defined as the ratio of power available at the shaft of the
turbine to the power supplied by the water at the inlet of the
turbine. It is written as

$$\eta_o = \frac{\text{power available at the shaft of the turbine}}{\text{power supplied at the inlet of the turbine}} = \frac{S.P.}{W.P.} = \frac{S.P. \times R.P.}{R.P. \times W.P.} = \eta_v \times \eta_h$$

Force calculation
Here we shown sample force calculation for one flow rate
only, whole data including readings and results at different
flow rate & different opening is given in Appendix-A. The jet
of water is comes out from nozzle and strikes on splitter of
the bucket. The force which transferred by jet to the bucket is
calculated below

Flow rate $Q = 10 \times 10^{-3}$ m3/sec
Runner mean diameter $D = 360$ mm
Head $H = 40$ m
Speed $N = 680$ rpm
MODELING OF PELTON WHEEL

Solid works

Solid Works is mechanical design automation software that takes advantage of the familiar Microsoft Windows graphical user interface. It is an easy-to-learn tool which makes it possible for mechanical designers to quickly sketch ideas, experiment with features and dimensions, and produce models and detailed drawings.

Introduction to solid works

Solidworks mechanical design automation software is a feature-based, parametric solid modeling design tool which advantage of the easy to learn windows graphical user interface. We can create fully associate 3-D solid models with or without while utilizing automatic or user defined relations to capture design intent. Parameters refer to constraints whose values determine the shape or geometry of the model or assembly. Parameters can be either numeric parameters, such as line lengths or circle diameters, or geometric parameters, such as tangent, parallel, concentric, horizontal or vertical, etc. Numeric parameters can be associated with each other through the use of relations, which allow them to capture design intent.

Layer-cake approach

The layer-cake approach builds the part one piece at a time, adding each layer, or feature, onto the previous one.

Potter’s wheel approach

The potter’s wheel approach builds the part as a single revolved feature. As a single sketch representing the cross section includes all the information and dimensions necessary to make the part as one feature.

Manufacturing approach

The manufacturing approach to modeling mimics the way the part would be manufactured. For example, if the stepped shaft was turned a lathe, we would start with a piece of bar stock and remove material using a series of cuts.

STRESS ANALYSIS OF SIMPLE AND ADVANCED PELTON WHEEL

The stress analyses of the traditional and hooped runner carried out and compare stress level. Models of traditional and hooped runner have same number of buckets and tip diameter which is used in present numerical simulation, models showing in this chapter.
Modeling

In a traditional runner the bucket is work as a cantilever beam subjected to the force generated by the jet. These alternated forces lead to fatigue stresses. Due to the geometry of the bucket, the seat of these stresses is in the connection radius between the rim and the centre edge in the upper part of the bucket thereby generating traction stresses. In a hooped runner the arms are worked as an embedded beam. By this type of design decrease stress at a most failure zone and the transformation of traction stresses by compression stresses, as the geometry of the discharge radius is inverted. The hoop is connected with buckets on a runner where buckets are fitted.

Introduction to solidworks simulation:

SolidWorks Simulation is a design analysis system fully integrated with SolidWorks. SolidWorks Simulation provides simulation solutions for linear and nonlinear static, frequency, buckling, thermal, fatigue, pressure vessel, drop test, linear and nonlinear dynamic, and optimization analyses. Powered by fast and accurate solvers, SolidWorks Simulation enables you to solve large problems intuitively while you design. SolidWorks Simulation comes in two bundles: SolidWorks Simulation shortens time to market by saving time and effort in searching for the optimum design.

Benefits of Simulation:

After building your model, you need to make sure that it performs efficiently in the field. In the absence of analysis tools, this task can only be answered by performing expensive and time-consuming product development cycles.

Simulation
A factor of safety less than 1 at a location indicates that the material at that location has failed. A factor of safety of 1 at a location indicates that the material at that location has just started to fail. So our design is safe.

Simulation of traditional bucket using 1060 alloy applying 10000N load
Performing same analysis on bucket by varying load of 10000N the results obtained are as follows
A factor of safety less than 1 at a location indicates that the material at that location has failed. A factor of safety of 1 at a location indicates that the material at that location has just started to fail. A factor of safety greater than 1 at a location indicates that the material at that location is safe. So our design is not safe.

Simulation of traditional bucket using 1020 steel applying 269n load: Performing same analysis on bucket by varying load of 10000N the results obtained are as follows.
Simulation of traditional bucket using 1020 steel applying 10000 n loads

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress1</td>
<td>VON von Mises Stress</td>
<td>0.0091046 N/mm²</td>
<td>0.0132756 N/mm²</td>
</tr>
</tbody>
</table>

Node: 12075
Node: 937

Simulation of advanced or hooped bucket using 1060 alloy applying 269 n load

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress1</td>
<td>VON von Mises Stress</td>
<td>4.0844e-005 N/mm²</td>
<td>0.88375 N/mm²</td>
</tr>
</tbody>
</table>

Node: 812
Node: 587

Simulation of advanced or hooped bucket using 1020 steel applying 269 n loads

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain1</td>
<td>Equivalent Strain</td>
<td>9.28586e-009</td>
<td>9.93977e-005</td>
</tr>
</tbody>
</table>

Element: 9287
Element: 6099
RESULTS AND DISCUSSIONS
Advance or hooped runner

The design of the hooped runner is intended to achieve easy maintenance, and the separation of functions facilitates optimization. This runner is composed of two half hoops and buckets.

The definition of the attachment of the various elements to each other is obtained from the stresses transmitted to the various components. The attachment of the buckets is defined based on the centrifugal forces and the jet load. The bucket is modeled as an Inner beam simply supported, resting on its central section and subjected to a force generated by a pre-stressed screw on the outer side. The centrifugal forces are completely taken up by a compound pin (hinge) fixed to the hoops. For the jet force, the Screw load is multiplied by a lever arm effect so as to exert a contact load of the bucket to the rim that is much higher than that of the jet. The stresses transmitted to the hoops are tangential and symmetrical only, the attachment of the hoops to each other is therefore simply a classical assembly using studs. To sum up, buckets are enclosed between two hoops.

By comparing the results obtained from traditional and advanced bucket of pelton wheel we can select the best material under given loading conditions.
Displacements and stress results prove the validity of the concept. Calculation at synchronous speed shows the participation of the entire hoops to support the water jet forces. This distribution of the water jets forces on the entire hoops involves a decrease of the stress level in the runner. The following figure shows the equivalent stress distribution (VON MISES) in the structural parts of the runner, it means the hoops.

CONCLUSION & FUTURE SCOPE

The development of hooped runner on Pelton wheel during the course of this work leads to the following conclusions. The pelton wheels with traditional bucket have been modeled in a 3D CAD called SOLIDWORKS 2014. The pelton wheel with advanced bucket has been modeled in a 3d Cad SOLIDWORKS. Both the traditional and advanced buckets have been simulated in SOLIDWORKS simulation tool. Two different materials such as 1060 alloy and 1020 steel have been applied to traditional and advanced bucket under given loading conditions 269N and 10000N. Even though the von misses' stresses values are almost equal for both traditional and advanced bucket of both the materials. The displacement has been optimal for advanced bucket of pelton wheel. So the best suitable material among the two is 1020 steel.

The analysis carried out in this project is just one step towards optimization. There is large scope of work in this subject. Hoop optimization can be done by parametric study of hoop in which by varying the thickness of hoop it can be achieved. The fatigue analysis of pelton wheel can be done. By conducting experiment Life cycle prediction of pelton wheel is also possible.

REFERENCES

[9] Dr.S.A.Channiwala and Mr.Gaurang C. Chaudhari, “Analysis, design and flow simulation of advanced pelton wheel”, SVNIT, Surat, June 2008

<table>
<thead>
<tr>
<th>TRADITIONAL</th>
<th>1060 alloy</th>
<th>1020 steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>269N</td>
<td>10000N</td>
</tr>
<tr>
<td>Von misses stress(MPa)</td>
<td>0.843068</td>
<td>31.3609</td>
</tr>
<tr>
<td>Displacement (mm)</td>
<td>0.008109</td>
<td>0.30106</td>
</tr>
<tr>
<td>Strain developed</td>
<td>7.89E-006</td>
<td>0.00029E-006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADVANCED</th>
<th>1060 alloy</th>
<th>1020 Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>269N</td>
<td>10000N</td>
</tr>
<tr>
<td>Von misses stress(MPa)</td>
<td>0.88077</td>
<td>32.7423</td>
</tr>
<tr>
<td>Displacement (mm)</td>
<td>0.007675</td>
<td>0.2853</td>
</tr>
<tr>
<td>Strain developed</td>
<td>9.582E-008</td>
<td>0.0003E-006235</td>
</tr>
</tbody>
</table>

Displacements and stress results prove the validity of the concept. Calculation at synchronous speed shows the participation of the entire hoops to support the water jet forces. This distribution of the water jets forces on the entire hoops involves a decrease of the stress level in the runner. The following figure shows the equivalent stress distribution (VON MISES) in the structural parts of the runner, it means the hoops.