
 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 794

Abstract:

Cloud computing is typically defined as a type of com-
puting that relies on sharing computing resources rath-
er than having local servers or personal devices to han-
dle applications. In cloud computing, the word cloud
(also phrased as “the cloud”) is used as a metaphor for
“the Internet,” so the phrase cloud computing means
“a type of Internet-based computing,” where different
services — such as servers, storage and applications
— are delivered to an organization’s computers and
devices through the Internet. Distributed file systems
do not share block level access to the same storage but
use a network protocol.

These are commonly known as network file systems,
even though they are not the only file systems that use
the network to send data.[citation needed] Distrib-
uted file systems can restrict access to the file system
depending on access lists or capabilities on both the
servers and the clients, depending on how the proto-
col is designed. In this paper, a fully distributed load re-
balancing algorithm is studied and presented to cope
with the load imbalance problem.

This method is compared against a centralized ap-
proach in a production system and a competing distrib-
uted solution presented in the literature. The simula-
tion results indicate that our proposal is comparable
with the existing centralized approach and consider-
ably outperforms the prior distributed algorithm in
terms of load imbalance factor, movement cost, and
algorithmic overhead.

Keywords:

Reliability, security, Load balancing, Main controller,
Balancers, Servers, energy conservation, DHT, Central-
ized System, Load Imbalancing.

Bommakanti Nithesh
M.Tech Student,

Department of Computer Science Engineering,
Institute of Aeronautical Engineering.

Dr. N.Chandrashekar Reddy
Professor & HoD,

Department of Computer Science Engineering,
Institute of Aeronautical Engineering.

Introduction:

In a cloud computing system, there’s a significant work-
load shift. Local computers no longer have to do all the
heavy lifting when it comes to running applications. The
network of computers that make up the cloud handles
them instead. Hardware and software demands on the
user’s side decrease. The only thing the user’s com-
puter needs to be able to run is the cloud computing
system’s interface software, which can be as simple as
a Web browser, and the cloud’s network takes care of
the rest.

The National Institute of Standards and Technology’s
definition of cloud computing identifies “five essential
characteristics”:On-demand self-service: A consumer
can unilaterally provision computing capabilities, such
as server time and network storage, as needed auto-
matically without requiring human interaction with
each service provider.Broad network access: Capa-
bilities are available over the network and accessed
through standard mechanisms that promote use by
heterogeneous thin or thick client platforms (e.g.,
mobile phones, tablets, laptops, and workstations).
Resource pooling: The provider’s computing resources
are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Load Performing in Servers by Using Main Server

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 795

resources dynamically assigned and reassigned accord-
ing to consumer demand. Rapid elasticity: Capabilities
can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and in-
ward commensurate with demand.

To the consumer, the capabilities available for provi-
sioning often appear unlimited and can be appropriat-
ed in any quantity at any time.Measured service: Cloud
systems automatically control and optimize resource
use by leveraging a metering capability at some level
of abstraction appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user ac-
counts).

Resource usage can be monitored, controlled, and re-
ported, providing transparency for both the provider
and consumer of the utilized service.

Distributed file system:

The difference between a distributed file system and a
distributed data store is that a distributed file system
allows files to be accessed using the same interfaces
and semantics as local files - e.g. mounting/unmount-
ing, listing directories, read/write at byte boundaries,
system’s native permission model. Distributed data
stores, by contrast, require using a different API or li-
brary and have different semantics (most often those
of a database).

Design goals of DFS:

Distributed file systems may aim for “transparency”
in a number of aspects. That is, they aim to be “invis-
ible” to client programs, which “see” a system which
is similar to a local file system. Behind the scenes, the
distributed file system handles locating files, transport-
ing data, and potentially providing other features listed
below.

•Access transparency is that clients are unaware that
files are distributed and can access them in the same
way as local files are accessed.

•Location transparency; a consistent name space ex-
ists encompassing local as well as remote files. The
name of a file does not give its location.

•Concurrency transparency; all clients have the same
view of the state of the file system. This means that if
one process is modifying a file, any other processes on
the same system or remote systems that are accessing
the files will see the modifications in a coherent man-
ner.

•Failure transparency; the client and client programs
should operate correctly after a server failure.

•Heterogeneity; file service should be provided across
different hardware and operating system platforms.

•Scalability; the file system should work well in small
environments (1 machine, a dozen machines) and also
scale gracefully to huge ones (hundreds through tens
of thousands of systems).

•Replication transparency; to support scalability, we
may wish to replicate files across multiple servers. Cli-
ents should be unaware of this.

•Migration transparency; files should be able to move
around without the client’s knowledge.

Related Work:

This attempt to load-balance can fail in two ways. First,
the typical “random” partition of the address space
among nodes is not completely balanced. Some nodes
end up with a larger portion of the addresses and thus
receive a larger portion of the randomly distributed
items. Second, some applications may preclude the
randomization of data items’ addresses. For example,
to support range searching in a database application
the items may need to be placed in a specific order,
or even at specific addresses, on the ring. In such cas-
es, we may find the items unevenly distributed in ad-
dress space, meaning that balancing the address space
among nodes is not adequate to balance the distribu-
tion of items among nodes. We give protocols to solve
both of the load balancing challenges just described.

Performance in a P2P System:

Our online load balancing algorithms are motivated by
a new application domain for range partitioning peer-
topeer systems. P2P systems store a relation over a
large and dynamic set of nodes, and support queries
over this relation.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 796

Many current systems, known as Distributed Hash
Tables (DHTs) use hash partitioning to ensure storage
balance, and support point queries over the relation.
There has been considerable recent interest in devel-
oping P2P systems that can support efficient range que-
ries. For example, a P2P multi-player game might query
for all objects located in an area in a virtual 2-D space.
In a P2P web cache, a node may request (prefetch) all
pages with a specific URL prefix. It is well-known that
hash partitioning is inefficient for answering such ad
hoc range queries, motivating a search for new net-
works that allow range partitioning while still maintain-
ing the storage balance offered by normal DHTs.

Handling Dynamism in the Network:

 The network is a splits the range of Nh to take over
half the load of Nh, using the NBRADJUST operation.
After this split, there may be NBRBALANCE violations
between two pairs of neighbors and In response, AD-
JUSTLOAD is executed, first at node Nh and then at
node N. It is easy to show (as in Lemma 3) that the re-
sulting sequence of NBRADJUST operations repair all
NBRBALANCE violations.

Node Departure:

While in the network, each node manages data for a
particular range. When the node departs, the data is
stored becomes unavailable to the rest of the peers.
P2P networks reconcile this data loss in two ways: (a)
Do nothing and let the “owners” of the data deal with
its availability. The owners will frequently poll the data
to detect its loss and re-insert the data into the net-
work. Maintain replicas of each range across multiple
nodes.

A Skip Net DHT organizes peers and data objects ac-
cording to their lexicographic addresses in the form
of a variant of a probabilistic skip list. It supports loga-
rithmic time range-based lookups and guarantees path
locality. Mercury is more general than Skip Net since it
supports range-based lookups on multiple-attributes.
Our use of random sampling to estimate query selec-
tivity constitutes a novel contribution towards imple-
menting scalable multi-dimensional range queries.
Load balancing is another important way in which Mer-
cury from Skip Net.

While Skip Net incorporates a constrained load-balanc-
ing mechanism, it is only useful when part of a data
name is hashed, in which case the part is inaccessible
for performing a range query. This implies that Skip Net
supports load-balancing or range queries not both.

Architecture:

EXISTING SYSTEM:

However, recent experience concludes that when
the number of Storage nodes, the number of files and
the number of accesses to files increase linearly, the
central nodes become a performance bottleneck, as
they are unable to accommodate a large number of file
accesses due to clients and Map Reduce applications.
Thus, depending on the central nodes to tackle the load
imbalance problem exacerbate their heavy loads. Even
with the latest development in distributed file systems,
the central nodes may still be overloaded.

PROPOSED SYSTEM:

In this paper, we are interested in studying the load re-
balancing problem in distributed file systems special-
ized for large-scale, dynamic and data-intensive clouds.
(The terms “rebalance” and “balance” are inter-
changeable in this paper.) Such a large-scale cloud has
hundreds or thousands of nodes (and may reach tens
of thousands in the future). Our objective is to allocate
the chunks of files as uniformly as possible among the
nodes such that no node manages an excessive num-
ber of chunks.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 795

resources dynamically assigned and reassigned accord-
ing to consumer demand. Rapid elasticity: Capabilities
can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and in-
ward commensurate with demand.

To the consumer, the capabilities available for provi-
sioning often appear unlimited and can be appropriat-
ed in any quantity at any time.Measured service: Cloud
systems automatically control and optimize resource
use by leveraging a metering capability at some level
of abstraction appropriate to the type of service (e.g.,
storage, processing, bandwidth, and active user ac-
counts).

Resource usage can be monitored, controlled, and re-
ported, providing transparency for both the provider
and consumer of the utilized service.

Distributed file system:

The difference between a distributed file system and a
distributed data store is that a distributed file system
allows files to be accessed using the same interfaces
and semantics as local files - e.g. mounting/unmount-
ing, listing directories, read/write at byte boundaries,
system’s native permission model. Distributed data
stores, by contrast, require using a different API or li-
brary and have different semantics (most often those
of a database).

Design goals of DFS:

Distributed file systems may aim for “transparency”
in a number of aspects. That is, they aim to be “invis-
ible” to client programs, which “see” a system which
is similar to a local file system. Behind the scenes, the
distributed file system handles locating files, transport-
ing data, and potentially providing other features listed
below.

•Access transparency is that clients are unaware that
files are distributed and can access them in the same
way as local files are accessed.

•Location transparency; a consistent name space ex-
ists encompassing local as well as remote files. The
name of a file does not give its location.

•Concurrency transparency; all clients have the same
view of the state of the file system. This means that if
one process is modifying a file, any other processes on
the same system or remote systems that are accessing
the files will see the modifications in a coherent man-
ner.

•Failure transparency; the client and client programs
should operate correctly after a server failure.

•Heterogeneity; file service should be provided across
different hardware and operating system platforms.

•Scalability; the file system should work well in small
environments (1 machine, a dozen machines) and also
scale gracefully to huge ones (hundreds through tens
of thousands of systems).

•Replication transparency; to support scalability, we
may wish to replicate files across multiple servers. Cli-
ents should be unaware of this.

•Migration transparency; files should be able to move
around without the client’s knowledge.

Related Work:

This attempt to load-balance can fail in two ways. First,
the typical “random” partition of the address space
among nodes is not completely balanced. Some nodes
end up with a larger portion of the addresses and thus
receive a larger portion of the randomly distributed
items. Second, some applications may preclude the
randomization of data items’ addresses. For example,
to support range searching in a database application
the items may need to be placed in a specific order,
or even at specific addresses, on the ring. In such cas-
es, we may find the items unevenly distributed in ad-
dress space, meaning that balancing the address space
among nodes is not adequate to balance the distribu-
tion of items among nodes. We give protocols to solve
both of the load balancing challenges just described.

Performance in a P2P System:

Our online load balancing algorithms are motivated by
a new application domain for range partitioning peer-
topeer systems. P2P systems store a relation over a
large and dynamic set of nodes, and support queries
over this relation.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 796

Many current systems, known as Distributed Hash
Tables (DHTs) use hash partitioning to ensure storage
balance, and support point queries over the relation.
There has been considerable recent interest in devel-
oping P2P systems that can support efficient range que-
ries. For example, a P2P multi-player game might query
for all objects located in an area in a virtual 2-D space.
In a P2P web cache, a node may request (prefetch) all
pages with a specific URL prefix. It is well-known that
hash partitioning is inefficient for answering such ad
hoc range queries, motivating a search for new net-
works that allow range partitioning while still maintain-
ing the storage balance offered by normal DHTs.

Handling Dynamism in the Network:

 The network is a splits the range of Nh to take over
half the load of Nh, using the NBRADJUST operation.
After this split, there may be NBRBALANCE violations
between two pairs of neighbors and In response, AD-
JUSTLOAD is executed, first at node Nh and then at
node N. It is easy to show (as in Lemma 3) that the re-
sulting sequence of NBRADJUST operations repair all
NBRBALANCE violations.

Node Departure:

While in the network, each node manages data for a
particular range. When the node departs, the data is
stored becomes unavailable to the rest of the peers.
P2P networks reconcile this data loss in two ways: (a)
Do nothing and let the “owners” of the data deal with
its availability. The owners will frequently poll the data
to detect its loss and re-insert the data into the net-
work. Maintain replicas of each range across multiple
nodes.

A Skip Net DHT organizes peers and data objects ac-
cording to their lexicographic addresses in the form
of a variant of a probabilistic skip list. It supports loga-
rithmic time range-based lookups and guarantees path
locality. Mercury is more general than Skip Net since it
supports range-based lookups on multiple-attributes.
Our use of random sampling to estimate query selec-
tivity constitutes a novel contribution towards imple-
menting scalable multi-dimensional range queries.
Load balancing is another important way in which Mer-
cury from Skip Net.

While Skip Net incorporates a constrained load-balanc-
ing mechanism, it is only useful when part of a data
name is hashed, in which case the part is inaccessible
for performing a range query. This implies that Skip Net
supports load-balancing or range queries not both.

Architecture:

EXISTING SYSTEM:

However, recent experience concludes that when
the number of Storage nodes, the number of files and
the number of accesses to files increase linearly, the
central nodes become a performance bottleneck, as
they are unable to accommodate a large number of file
accesses due to clients and Map Reduce applications.
Thus, depending on the central nodes to tackle the load
imbalance problem exacerbate their heavy loads. Even
with the latest development in distributed file systems,
the central nodes may still be overloaded.

PROPOSED SYSTEM:

In this paper, we are interested in studying the load re-
balancing problem in distributed file systems special-
ized for large-scale, dynamic and data-intensive clouds.
(The terms “rebalance” and “balance” are inter-
changeable in this paper.) Such a large-scale cloud has
hundreds or thousands of nodes (and may reach tens
of thousands in the future). Our objective is to allocate
the chunks of files as uniformly as possible among the
nodes such that no node manages an excessive num-
ber of chunks.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 797

Advantages of Proposed System:

Using this we can use in large scale, failure-prone envi-
ronment because the central load balancer is put un-
der considerable workload that is linearly scaled with
the system size. Another advantage of the proposed
system is the security consistency provided by it. Vari-
ous nodes with heavy loads have been proposed as
alternatives to central node module so that so many
drawbacks of the existing system can be avoided. The
proposed system will help in keeping the system con-
sistent so that we can avoid data loss.

Modules :

1.Data Owner Registration.

2.Data User Registration.

3.TTP (TRUSTED THIRD PARTY) LOGIN.

4.CSP(CLOUD SERVICE PROVIDER) LOGIN.

5.Download File

Data Owner Registration:

In this module if a owner of data(File) have to store
data on a cloud server,he/she should register their de-
tails first.These details are maintained in a Database.
Then he has to upload the file in a file database. The
file which are stored in a database are in an encrypted
form. Authorized users can only decode it.

Data User Registration:

In this module if a user wants to access the data which
is stored in a cloud server,he/she should register their
details first.These details are maintained in a Data-
base.

TTP (TRUSTED THIRD PARTY) LOGIN:

In this module TTP has monitors the data owners file
by verifying the data owner’s file and stored the file in
a database .Also ttp checks the CSP(CLOUD SERVICE
PROVIDER),and find out whether the csp is authorized
one or not.

CSP(CLOUD SERVICE PROVIDER) LOGIN:

In this module CSP has to login first.Then only he can
store the file in his cloud server.Ttp can only check
the csp whether the csp is authorized csp or not.If its
fake,ttp wont allow the file to store in cloud server.

Download File:

If the user is an authorized user,he/she can download
the file by using meta data of the file which have up-
loaded and divided.

CONCLUSION:

An efficient load rebalancing algorithm to deal with the
load imbalance problem in large-scale, dynamic and dis-
tributed file systems in clouds has been presented. The
implementation is demonstrated through a small-scale
cluster environment consisting of a single, dedicated
namenode and datanodes. The proposal strives to bal-
ance the loads of data nodes and task nodes efficiently.
Then only can able to distribute the file chunks as uni-
formly as possible. The proposed algorithm operates
in a distributed manner in which nodes perform their
load-balancing tasks independently without synchroni-
zation or global knowledge regarding the system.

In a load-balanced cloud, the resources can be well
utilized and provisioned, maximizing the performance
of MapReduce-based applications. The load balancing
progress can be tracked by running the cluster. Ama-
zon CloudWatch automatically monitors the load of
the DataNodes based upon the user privilege by using
the monitored alerts dynamically. Hence the monitor-
ing solution is reliable, scalable and flexible. In future
we can able to analyse the cluster status by using this
monitoring solution. If a metric goes outside param-
eters we can able to set alarms. These metrics are au-
tomatically collected and pushed to CloudWatch for
every Amazon EMR cluster.

References:

[1] Hsiao, Hung-Chang , Chung, Hsueh-Yi ; Shen, Hai-
ying ; Chao, Yu-Chang, National Cheng Kung University,
Tainan , Parallel and Distributed Systems, IEEE Transac-
tions on (Volume:24 , Issue: 5).

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 798

[2] J.Dean and S. Ghemawat,proposed a “MapReduce:
Simplified Data Processingon Large Clusters,” in Proc.
6th Symp. Operating System Design and Implementa-
tion (OSDI’04), Dec. 2004, pp. 137–150.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System,” Proc. 19th ACM Symp. Operating
Systems Principles (SOSP ’03), pp. 29-43, Oct. 2003.

[4] Y. Zhu and Y. Hu, proposed a “Efficient, Proximity-
Aware Load Balancing for DHT-Based P2P Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 16,
no. 4, pp. 349-361, Apr. 2005.

[5] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger,
M.F. Kaashoek, F. Dabek, and H. Balakrishnan,proposed
a “Chord: A Scalable Peer-toPeer Lookup Protocol for
Internet Applications,” IEEE/ACM Trans. Networking,
vol. 11, no. 1, pp. 17-21, Feb. 2003.

[6] Q.H. Vu, B.C. Ooi, M. Rinard, and K.-L. Tan, proposed
a “Histogram-Based Global Load Balancing in Struc-
tured Peer-to-Peer Systems,” IEEE Trans. Knowledge
Data Eng., vol. 21, no. 4, pp. 595-608, Apr. 2009.

[7] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load Balancing in Structured P2P Systems,”
Proc. Second Int’l Workshop Peer-to-Peer Systems (IP-
TPS ’02), pp. 68-79, Feb. 2003.

[8] J.W. Byers, J. Considine, and M. Mitzenmacher,
“Simple Load Balancing for Distributed Hash Tables,”
Proc. First Int’l Workshop Peer-toPeer Systems (IPTPS
’03), pp. 80-87, Feb. 2003.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P.
Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly
Available Key-value Store,” in Proc. 21st ACM Symp.

[10] D. Karger and M. Ruhl, “Simple Efficient Load Bal-
ancing Algorithms for Peer-to-Peer Systems,” in Proc.
16th ACM Symp. Parallel Algorithms and Architectures
(SPAA’04), June 2004, pp. 36–43.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

