
 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 151

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Abstract:

High speed data transmission is the current scenario
in networking environment. Cyclic redundancy check
(CRC) is essential method for detecting error when
the data is transmitted. With challenging the speed of
transmitting data, to synchronize with speed, it’s nec-
essary to increase speed of CRC generation. Starting
from the serial architecture identified a recursive for-
mula from which parallel design is derived.

This paper presents 64 bits parallel CRC architecture
based on F matrix with order of generator polynomial
is 32. Proposed design is hardware efficient and re-
quired 50% less cycles to generate CRC with same order
of generator polynomial. The whole design is function-
ally verified using Xilinx ISE Simulator.

I.INTRODUCTION:

A cyclic redundancy check (CRC) is an error-detecting
code commonly used in digital networks and storage
devices to detect accidental changes to raw data.
Blocks of data entering these systems get a short check
value attached, based on the remainder of a polynomi-
al division of their contents; on retrieval the calculation
is repeated, and corrective action can be taken against
presumed data corruption if the check values do not
match.

CRCs are so called because the check (data verification)
value is a redundancy (it expands the message without
adding information) and the algorithm is based on cy-
clic codes.

Dasari Mahesh
M.Tech Student,

Digital Electronics & Communication Systems,
Department Of Electronics and Communication

Engineering,
ACE Engineering College.

B. Giriraju
Professor,

Department Of Electronics and Communication
Engineering,

ACE Engineering College.

CRCs are popular because they are simple to imple-
ment in binary hardware, easy to analyze mathemati-
cally, and particularly good at detecting common er-
rors caused by noise in transmission channels. Because
the check value has a fixed length, the function that
generates it is occasionally used as a hash function.

Background:

There are several techniques for generating check bits
that can be added to a message. Perhaps the simplest
is to append a single bit, called the “parity bit,” which
makes the total number of 1-bits in the code vector
(message with parity bit appended) even (or odd). If a
single bit gets altered in transmission, this will change
the parity from even to odd (or the reverse).

The sender generates the parity bit by simply summing
the message bits modulo 2—that is, by exclusive or’ing
them together. It then appends the parity bit (or its
complement) to the message. The receiver can check
the message by summing all the message bits modulo
2 and checking that the sum agrees with the parity bit.
Equivalently, the receiver can sum all the bits (message
and parity) and check that the result is 0 (if even parity
is being used).

For bit serial sending and receiving, the hardware to
generate and check a single parity bit is very simple.
It consists of a single exclusive or gate together with
some control circuitry. For bit parallel transmission, an
exclusive or tree may be used, as illustrated in Figure
14–1. Efficient ways to compute the parity bit in soft-
ware.

Design and Implementation of Parallel CRC Generator
for 64-Data Bit

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 152

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Figure 1: XOR Tree
Theory:

The CRC is based on polynomial arithmetic, in particu-
lar, on computing the remainder of dividing one poly-
nomial in GF (Galois field with two elements) by an-
other. It is a little like treating the message as a very
large binary number, and computing the remainder on
dividing it by a fairly large prime such as intuitively, one
would expect this to give a reliable checksum.

Table 1: generator polynomials of some CRC codes

II.CYCLIC REDUDENCY CHECK:

Cyclic Redundancy Check (CRC) is an error-checking
code that is widely used in data communication sys-
tems and other serial data transmission systems. CRC
is based on polynomial manipulations using modulo
arithmetic. Some of the common Cyclic Redundancy
Check standards are CRC-8, CRC-12, CRC-16, CRC-32,
and CRC-CCIT. The bits of data to be transmitted are
the coefficients of the polynomial. As an example, the
bit stream 1101011011 has 10-bits, representing a 10-term
polynomial:

To compute the CRC of a message, another polynomial
called the generator polynomial G(x) is chosen. G(x)
should have a degree greater than zero and less than
that of the polynomial M(x).

Advantages:

•Little overhead.

•Extreme error detection capabilities (it is virtually im-
possible for a random change in a block of data to still
generate the same checksum.)

•Ease of implementation.

Applications:

•Storage devices (including tape, Compact Disk, DVD,
etc)

•Wireless or mobile communications (including cellu-
lar telephones, microwave links, etc)

•Satellite communications

•Computer networking and communication.
Hardware feedback shift register.

Figure 2: hardware feedback shift register

Initialize the CRC register to all 0-bits. Get first/next
message bit m. If the high-order bit of CRC is 1, Shift
CRC and m together left 1 position, and XOR the result
with the low-order r bits of G. Otherwise, Just shift CRC
and m left 1 position. If there are more message bits, go
back to get the next one.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 153

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Since the leftmost divisor bit zeroed every input bit it
touched, when this process ends the only bits in the in-
put row that can be nonzero are the n bits at the right-
hand end of the row. These n bits are the remainder of
the division step, and will also be the value of the CRC
function (unless the chosen CRC specification calls for
some post processing).

The validity of a received message can easily be veri-
fied by performing the above calculation again, this
time with the check value added instead of zeroes. The
remainder should equal zero if there are no detectable
errors.

Implementation:

Traditional method for generating serial CRC is based
on linear feedback shift registers (LFSR). The main op-
eration of LFSR for CRC calculations is nothing more
than the binary divisions. Binary divisions generally can
be performed by a sequence of shifts and subtractions.
In modulo 2 arithmetic the addition and subtraction are
equivalent to bitwise XORs and multiplication is equiv-
alent to AND. Figure 1 illustrates the basic architecture
of LFSRs for serial CRC calculation.

Figure 3: basic LFSR architecture

Serial data input, X is present state (generated CRC), X’
is next state and p is generator polynomial.

There are different techniques for parallel CRC genera-
tion given as follow.
•A Table-Based Algorithm for Pipelined CRC Calcula-
tion.
•Fast CRC Update
•F matrix based parallel CRC generation.
•Unfolding, Retiming and pipelining Algorithm

III.PARALLEL CRC:

LUT base architecture provides lower memory LUT and
by the high pipelining Table base architecture has in-
put, LUT3, LUT2, and LUT1. LUT3 contains CRC values
for the input followed by 12 bytes of zeros, LUT2 8
bytes, and LUT4 4 bytes. Basically this algorithm it can
be obtain higher throughput. The main problem it with
pre-calculating CRC and store it in LUT so, every time
required to change LUT when changing the polynomi-
al. Pipelining algorithm used to reducing critical path
by adding the delay element.

Parallel processing used to increasing the throughput
by producing the no. of output same time. Retiming
used to increasing clock rate of circuit by reducing the
computation time of critical path.

In fast CRC update technique not required to calculate
CRC each time for all the data bits, instead of that cal-
culating CRC for only those bits that are change. There
are different approaches to generate the parallel CRC
having advantages and disadvantages for each tech-
nique. Table based architecture required pre-calculat-
ed LUT, so, it will not used for generalized CRC, fast
CRC update technique required buffer to store the old
CRC and data. In unfolding architecture increases the
no. of iteration bound. The F matrix based architecture
more simple and low complex. Below algorithm and
its’ implementation is given.

Figure 4: fast CRC update architecture
Algorithm for F matrix based architecture:

Algorithm and Parallel architecture for CRC generation
based on F matrix is discussed in this section. As shown
in fig. 2 it is basic algorithm for F matrix based parallel
CRC generation

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 154

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Property of the Fw matrix and the previously men-
tioned fact that Equation (8) can be regarded as a re-
cursive calculation of the next state X’ by matrix Fw,
current state X and parallel input D, make the 32-bit
parallel input vector suitable for any length of messag-
es besides the multiple of 32 bits. Remember that the
length of the message is byte based.

D (0 to 31) =first 32 bits of parallel data input

D (0 to 63) = next 32 bits of parallel data input

X’=next state

X=present state

Figure 7: block diagram of 64-bit parallel calculation
of crc-32.

In proposed architecture di is the parallel input and F(i)
(j) is the element of F32 matrix located at ith row and
jth column.

As shown in figure 3 input data bits d0….d31 anded-
With each row of FW matrix and result will be xored
individually with d32, d33 …….d63. Then each xored
result is then xored with the X’ (i) term of CRC32.

Finally X will be the CRC generated after (k +m)/w cycle,
where w=64.

Figure 5: algorithm for f matrix based architecture

Parallel data input and each element of F matrix, which
is generated from given generator polynomial is and-
ed, result of that will xoring with present state of CRC
checksum. The final result generated after (k+ m) /w
cycle. In proposed architecture w= 64 bits are parallel
processed and order of generator polynomial is m= 32
as shown in fig. 3. As discussed in section 3, if 32 bits are
processed parallel then CRC-32 will be generated after
(k +m)/w cycles..

F Matrix Generation:
F matrix is generated from generator polynomial as
per (2).

Where, {p0……pm-1} is generator polynomial.

Figure 6: parallel calculation of crc-32 for 32 bit.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 155

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

IV.RESULTS:
Simulation Results:

Figure 8: Simulation Result of Cyclic Redundancy
Check

Timing Report:

Figure 9: Timing Summary of Cyclic Redundancy
Check

RTL SCHEMATIC:

Figure 10: RTL Schematic of Cyclic Redundancy Check

Device Utilization Report:

Figure 11: Device Utilization Summary of Cyclic Redun-
dancy Check

V.CONCLUSION:

32bit parallel architecture required 17 ((k + m)/w) clock
cycles for 64 byte data. Proposed design (64bit) re-
quired only 9 cycles to generate CRC with same or-
der of generator polynomial. So, it drastically reduces
computation time to 50% and same time increases the
throughput. Pre-calculation of F matrix is not required
in proposed architecture. Hence, this is compact and
easy method for fast CRC generation.

REFERENCES:

[1] Campobello, G.; Patane, G.; Russo, M.; “Parallel CRC
realization,” Computers, IEEE Transactions on , vol.52,
no.10, pp. 1312- 1319, Oct.2003.

[2] Albertengo, G.; Sisto, R.; , “Parallel CRC generation,”
Micro, IEEE , vol.10, no.5, pp.63-71,Oct1990.

[3] M.D.Shieh et al., “A Systematic Approach for Paral-
lel CRC Computations,” Journal of Information Science
and Engineering, May 2001.

[4] Braun, F.; Waldvogel, M.; , “Fast incremental CRC
updates for IP over ATM networks,” High Performance
Switching and Routing, 2001 IEEE Workshop on , vol.,
no., pp.48-52, 2001.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 156

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[5] Weidong Lu and Stephan Wong, “A Fast CRC Up-
date Implementation”, IEEE Workshop on High Perfor-
mance Switching and Routing , pp. 113-120, Oct. 2003.

[6] S.R. Ruckmani, P. Anbalagan, “ High Speed cyclic
Redundancy Check for USB” Reasearch Scholar, De-
partment of Electrical Engineering, Coimbatore Insti-
tute of Technology, Coimbatore- 641014, DSP Journal,
Volume 6, Issue 1, September, 2006.

[7] Yan Sun; Min Sik Kim; , “A Pipelined CRC Calculation
Using Lookup Tables,” Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE , vol.,
no., pp.1-2, 9-12 Jan. 2010.

[8] Sprachmann, M.; , “Automatic generation of par-
allel CRC circuits,” Design & Test of Computers, IEEE ,
vol.18, no.3, pp.108-114, May 2001.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 155

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

IV.RESULTS:
Simulation Results:

Figure 8: Simulation Result of Cyclic Redundancy
Check

Timing Report:

Figure 9: Timing Summary of Cyclic Redundancy
Check

RTL SCHEMATIC:

Figure 10: RTL Schematic of Cyclic Redundancy Check

Device Utilization Report:

Figure 11: Device Utilization Summary of Cyclic Redun-
dancy Check

V.CONCLUSION:

32bit parallel architecture required 17 ((k + m)/w) clock
cycles for 64 byte data. Proposed design (64bit) re-
quired only 9 cycles to generate CRC with same or-
der of generator polynomial. So, it drastically reduces
computation time to 50% and same time increases the
throughput. Pre-calculation of F matrix is not required
in proposed architecture. Hence, this is compact and
easy method for fast CRC generation.

REFERENCES:

[1] Campobello, G.; Patane, G.; Russo, M.; “Parallel CRC
realization,” Computers, IEEE Transactions on , vol.52,
no.10, pp. 1312- 1319, Oct.2003.

[2] Albertengo, G.; Sisto, R.; , “Parallel CRC generation,”
Micro, IEEE , vol.10, no.5, pp.63-71,Oct1990.

[3] M.D.Shieh et al., “A Systematic Approach for Paral-
lel CRC Computations,” Journal of Information Science
and Engineering, May 2001.

[4] Braun, F.; Waldvogel, M.; , “Fast incremental CRC
updates for IP over ATM networks,” High Performance
Switching and Routing, 2001 IEEE Workshop on , vol.,
no., pp.48-52, 2001.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 156

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[5] Weidong Lu and Stephan Wong, “A Fast CRC Up-
date Implementation”, IEEE Workshop on High Perfor-
mance Switching and Routing , pp. 113-120, Oct. 2003.

[6] S.R. Ruckmani, P. Anbalagan, “ High Speed cyclic
Redundancy Check for USB” Reasearch Scholar, De-
partment of Electrical Engineering, Coimbatore Insti-
tute of Technology, Coimbatore- 641014, DSP Journal,
Volume 6, Issue 1, September, 2006.

[7] Yan Sun; Min Sik Kim; , “A Pipelined CRC Calculation
Using Lookup Tables,” Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE , vol.,
no., pp.1-2, 9-12 Jan. 2010.

[8] Sprachmann, M.; , “Automatic generation of par-
allel CRC circuits,” Design & Test of Computers, IEEE ,
vol.18, no.3, pp.108-114, May 2001.

