
 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 693

Abstract:

This paper describes an embedded monitoring system
based on μC/OS II operating system using ARM7. It
deals with the porting of Micro C/OS-II kernel in ARM
powered microcontroller for the implementation of
multitasking and time scheduling. Here a real time ker-
nel is the software that manages the time of a micro
controller to ensure that all time critical events are
processed as efficiently as possible. Different interface
modules of ARM7 microcontroller like UART, ADC,
LCD are used and data acquired from these interfaces
is tested using μC/OS-II based real time operating sys-
tem. It mainly emphasizes on the porting of μC/OS-II.

A real-time operating system (RTOS) is key to many
embedded systems today and, provides a software
platform upon which to build applications. Not all em-
bedded systems, however, are designed with an RTOS.
Many embedded systems, however, with moderate-
to-large software applications require some form of
scheduling, and these systems require an RTOS.In this
project we are going to perform multitasking simulta-
neously. We going to perform tasks like LED blinking,
LCD message display, serial communication (UART0
and UART1), buzzer simultaneously using Micro C/OS –
II kernel based RTOS.

Index Terms: embedded system, μC/OS-II, arm 7,
RTOS.

I. INTRODUCTION :

In high end applications, sometimes devices may mal-
function or totally fail due to long duration of usage
or any technical problem which give fatal results. An
embedded monitoring system is necessary for continu-
ously collecting data from onsite and later analyzing
that and eventually taking proper measures to solve
the problem.

G.Vamsi Krishna
M.Tech Student,

Loyala Institute of Technology and Management.

M.Lakshmi Narayana, M.Tech
Asst Professor,

Loyala Institute of Technology and Management.

The systems that are in use today use non real time op-
erating systems based on mono-task mechanism that
hardly satisfies the current requirements. This paper
will focus on porting of μC/OS II in ARM7 controller that
performs multitasking and time scheduling. The μC/OS
II features and its porting to ARM7 are discussed. Fi-
nally it provides an overview for design of embedded
monitoring system using μC/OS II as application soft-
ware that helps in building the total application.

II. MICRO C/OS II :

μC/OS II (pronounced “Micro C O S 2”) stands for Mi-
cro-Controller Operating System Version 2 and can be
termed as μC/OS-II or uC/OS-II),. It is a very small real-
time kernel with memory footprint is about 20KB for a
fully functional kernel and source code is about 5,500
lines, mostly in ANSI C. It’s source is open but not free
for commercial usages. μC/OS-II is upward compatible
with μC/OS V1.11 but provides many improvements,
such as the addition of a fixed-sized memory manager;
user-definable callouts on task creation, task deletion,
task switch, and system tick; TCB extensions support;
stack checking; and much more.

A. μC/OS II using ARM :
μC/OS-II, The Real-Time Kernel is a highly portable,
ROMable, scalable, preemptive real-time, multitask-
ing kernel (RTOS) for microprocessors and microcon-
trollers. μC/OS-II can manage up to 250 application
tasks. μC/OS-II runs on a large number of processor ar-
chitectures and ports. The vast number of ports should
convince that μC/OS-II is truly very portable and thus
will most likely be ported to new processors as they be-
come available. μC/OS-II can be scaled to only contain
the features you need for your application and thus
provide a small footprint. Depending on the processor,
on an ARM (Thumb mode) μC/OS-II can be reduced to
as little as 6K bytes of code space and 500 bytes of data
space (excluding stacks).

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Design of UC/OS - Ii Rtos Based Scalable Cost Effective
Monitoring System Using Arm Powered Controller

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 694

The execution time for most of the services provided
by μC/OS-II is both constant and deterministic. This
means that the execution times do not depend on the
number of tasks running in the application.

B. Choosing μC/OS II :
μC/OS II is chosen for the following features.

1. Portable
Most of μC/OS-II is written in highly portable ANSI C,
with target microprocessor specific code written in as-
sembly language. Assembly language is kept to a mini-
mum to take μC/OS-II easy to port to other processors.
Like Micro C/OS, Micro C/OS-II can be ported to a large
number of microprocessors as long as the micropro-
cessors provides a stack pointer and the CPU register
can be pushed onto and popped from the stack. Also,
the C compiler should provide either in-line assembly
or language extension that allows you to enable and
disable interrupt from C. μC/OS-II can run on most 8-,
16-,32 or even 64- bit microprocessors or microcon-
trollers and DSPs.

2. ROMable
μC/OS-II was designed for embedded application. This
means that if you have the proper tool chain (i.e. C
compiler, assembler and linker/locater), you can em-
bed Micro C/OS-II as part of a product.

3. Scalable
μC/OS-II is designed such a way so that only the servic-
es needed in the application can be used. This means
that a product can use just a few μC/OS-II services. An-
other product may require the full set of features. This
allows to reduce the amount of memory (both RAM
and ROM) needed by μC/OS-II on a per product basis.
Scalability is accomplished with the use of conditional
complication.

4. Preemptive
μC/OS-II is a fully preemptive real time kernel. This
means that Micro C/OS-II always runs the highest prior-
ity task that is ready.

6. Deterministic:

Execution time of all μC/OS-II functions and services
are deterministic.

This means that one can always know how much time
μC/OS-II will take to execute a function or a service.
Furthermore except for one service, execution time all
C/OS-II services do not depend on the number of tasks
running in the application.

7. Robust and Reliable :

μC/OS-II is based on μC/OS which has been used in hun-
dreds of commercial applications. μC/OS-II uses the
same core and most of the same functions as μC/OS
yet offers more features.

C. Starting μC/OS-II :

In any application μC/OS-II is started as shown in the
figure 1. Initially the hardware and software are initial-
ized. The hardware is the ARM core and software is the
μC/OS-II. The resources are allocated for the tasks de-
fined in the application. The scheduler is started then.
It schedules the tasks in preemptive manner. All these
are carried out using specified functions defined in μC/
OS-II.

Figure 1: Starting μC/OS-II

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 695

Intializing μC/OS-II
Figure 2: Initializing μC/OS-II
μC/OS-II can be initialized as shown in the figure 2. The
detailed steps are shown in the figure. Below shows
the sample program for the steps shown in the figure.
void main (main)
{
/* user initialization */
OSInit(); /* kernel initialization */
/* Install interrupt vectors */
/* Create at least 1 task (start task) */
/* Additional User code */
OSStart(); /* start multitasking */

E. Task Creation
To make it ready for multitasking, the kernel needs to
have information about the task: its starting address,
top-of-stack (TOS), priority, arguments passed to the
task, other information about the task.
You create a taskby calling a service provider by μC/OS-
II:
OStaskCreate(void (*task) (void *parg),

You can create task:
before you start multitasking (at initialization time)
(or) during run time.
F. Implementation through μC/OS-II
In embedded systems, a board support package (BSP)
is implementation specific support code for a given
(device motherboard) board that conforms to a given
operating system.

It is commonly built with a boot loader that contains
the minimal device support to load the operating sys-
tem and device drivers for all the devices on the board.
Some suppliers also provide a root file system, a tool
chain for making programs to run on the embedded
system (which would be part of the architecture sup-
port package), and configurations for the devices
(while running). A board support package.

In Micro C/OS-II maximum number of tasks is 64. In
the figure shown above the application has six tasks.
Depending on the required application the number of
tasks may vary.

To perform a sample experiment to understand the
porting of μC/OS-II we can perform simple tasks like
Temperature sensor (i.e., ADC), Graphical LCD (i.e., de-
gree to graphical Fahrenheit), UART (i.e., digital data
displaying), LED toggle (ie., 8-bit data flow control)
Buzzer (i.e., alarm device).

The ARM runs the Real time operating system to col-
lect information from the external world. Here RTOS is
used to achieve real time data acquisitions. Micro C/OS-
II kernel is ported in ARM powered microcontroller for
the implementation of multitasking and time schedul-
ing as shown in previous sections.

Keil IDE is used for implementation. Keil IDE is a win-
dows operating system software program that runs on
a PC to develop applications for ARM microcontroller
and digital signal controller. It is also called Integrated
Development Environment or IDE because it provides
a single integrated environment to develop code for
embedded microcontroller.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 696

Conclusion::

The project is been designed and implemented with
Atmel LPC2148 MCU in embedded system domain. Ex-
perimental work has been carried out carefully. Here
we have designed a simple, low-cost controller based
implementing uc/os - ii kernel based rtos using ARM7
TDMI (lpc2148) based controller

REFERENCES :

[1] Liu Zhongyuan, Cui Lili, Ding Hong, “Design of
Monitors Based on ARM7 and Micro C/OS-II”, College
of Computer and Information, Shanghai Second Poly-
technic University, Shanghai, China, IEEE 2010.

[2] Tianmiao Wang The Design And Development of
Em bedded System Based on ARM Micro System and
IlC/OS-II Real-Time Operating System Tsinghua Univer-
sity Press.

[3] Jean J Labrosse, MicroC/OS-II The Real-Time Kernel,
Second Edition Beijing University of Aeronautics and
Astronautics Press,

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 695

Intializing μC/OS-II
Figure 2: Initializing μC/OS-II
μC/OS-II can be initialized as shown in the figure 2. The
detailed steps are shown in the figure. Below shows
the sample program for the steps shown in the figure.
void main (main)
{
/* user initialization */
OSInit(); /* kernel initialization */
/* Install interrupt vectors */
/* Create at least 1 task (start task) */
/* Additional User code */
OSStart(); /* start multitasking */

E. Task Creation
To make it ready for multitasking, the kernel needs to
have information about the task: its starting address,
top-of-stack (TOS), priority, arguments passed to the
task, other information about the task.
You create a taskby calling a service provider by μC/OS-
II:
OStaskCreate(void (*task) (void *parg),

You can create task:
before you start multitasking (at initialization time)
(or) during run time.
F. Implementation through μC/OS-II
In embedded systems, a board support package (BSP)
is implementation specific support code for a given
(device motherboard) board that conforms to a given
operating system.

It is commonly built with a boot loader that contains
the minimal device support to load the operating sys-
tem and device drivers for all the devices on the board.
Some suppliers also provide a root file system, a tool
chain for making programs to run on the embedded
system (which would be part of the architecture sup-
port package), and configurations for the devices
(while running). A board support package.

In Micro C/OS-II maximum number of tasks is 64. In
the figure shown above the application has six tasks.
Depending on the required application the number of
tasks may vary.

To perform a sample experiment to understand the
porting of μC/OS-II we can perform simple tasks like
Temperature sensor (i.e., ADC), Graphical LCD (i.e., de-
gree to graphical Fahrenheit), UART (i.e., digital data
displaying), LED toggle (ie., 8-bit data flow control)
Buzzer (i.e., alarm device).

The ARM runs the Real time operating system to col-
lect information from the external world. Here RTOS is
used to achieve real time data acquisitions. Micro C/OS-
II kernel is ported in ARM powered microcontroller for
the implementation of multitasking and time schedul-
ing as shown in previous sections.

Keil IDE is used for implementation. Keil IDE is a win-
dows operating system software program that runs on
a PC to develop applications for ARM microcontroller
and digital signal controller. It is also called Integrated
Development Environment or IDE because it provides
a single integrated environment to develop code for
embedded microcontroller.

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 696

Conclusion::

The project is been designed and implemented with
Atmel LPC2148 MCU in embedded system domain. Ex-
perimental work has been carried out carefully. Here
we have designed a simple, low-cost controller based
implementing uc/os - ii kernel based rtos using ARM7
TDMI (lpc2148) based controller

REFERENCES :

[1] Liu Zhongyuan, Cui Lili, Ding Hong, “Design of
Monitors Based on ARM7 and Micro C/OS-II”, College
of Computer and Information, Shanghai Second Poly-
technic University, Shanghai, China, IEEE 2010.

[2] Tianmiao Wang The Design And Development of
Em bedded System Based on ARM Micro System and
IlC/OS-II Real-Time Operating System Tsinghua Univer-
sity Press.

[3] Jean J Labrosse, MicroC/OS-II The Real-Time Kernel,
Second Edition Beijing University of Aeronautics and
Astronautics Press,

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

