
Abstract:

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this 
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance 
diagnosis. 

Recent work has shown that it is promising to pinpoint 
performance anomalies with end-to-end request trac-
ing data. However, an efficient, unsupervised diagnosis 
tool for locating fine-grained performance anomalies is 
still lacking. 

Performance diagnosis is labor intensive in production 
cloud computing systems. Such systems typically face 
many real world challenges, which the existing diagno-
sis techniques for such distributed systems cannot ef-
fectively solve. 

An efficient, unsupervised diagnosis tool for locating 
fine-grained performance anomalies is still lacking in 
production cloud computing systems. This paper pro-
poses CloudDiag to bridge this gap. 

Combining a statistical technique and a fast matrix re-
covery algorithm, CloudDiag can efficiently pinpoint 
fine-grained causes of the performance problems, 
which does not require any domain-specific knowledge 
to the target system. CloudDiag has been applied in a 
practical production cloud computing systems to diag-
nose performance problems. We demonstrate the ef-
fectiveness of CloudDiag in three real-world case stud-
ies.
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INTRODUCTION:

PERFORMANCE diagnosis is labor intensive, especially 
for typical production cloud computing systems. In such 
systems, a lot of software components bear a large 
number of replicas (component instances) distributed 
in different physical nodes in the cloud. They can be as-
sembled into multiple types of services, serving large 
amounts of user requests. The services provisioned 
by the cloud are often prone to various performance 
anomalies (e.g., SLA violations [1]) caused by software 
faults, unexpected workload, or hardware failures. 

Such defects may, however, be manifested only in a 
small part of component replicas, hiding themselves in 
a large number of normal component replicas. Our ex-
periences in performance diagnosis for Alibaba Cloud 
Computing1 show that troubleshooting performance 
anomalies in practical production cloud computing 
systems faces many real-world challenges. It is very dif-
ficult to apply existing diagnosis techniques for such 
distributed systems. We summarize the new design 
challenges as follows:

1.Performance diagnosis in fine granularity. A com-
ponent typically hasa lot of replicas in aproduction 
cloudsystem. Within one component, there are many 
performance-related private methods (i.e., those in-
voked inside the component) and public methods (i.e., 
the interfaces invoked by other components). It is very 
challenging to localize anomalous methods as well 
as their corresponding physical replicas. Current ap-
proaches generally focus on locating anomalous physi-
cal nodes (e.g., [2]) or logical components (e.g., [3]). 
Such coarse-grained results are not enough. In the for-
mer case, given an anomalous physical node, a system 
operator has to identify the faulty component among-
manycomponents typically hosted in the same node.

Clouddiag, An Efficient, Unsupervised Diagnosis  For 
Locating Fine-Grained Performance Anomalies



In the latter case, given an anomalous logical compo-
nent, the operator has to identify which one among 
their numerous replicas distributed in the cloud is 
faulty. Consequently, huge human efforts are still re-
quired to further pinpoint the subtle primary cause. 
Performance diagnosis in a fine granularity is of  high 
concern to reduce manual efforts.

2. Unsupervised performance diagnosis. Many existing 
performance diagnosis techniques resort to system 
behavior models in identifying anomalies [4], [5]. Un-
fortunately, it is hard to manually build such models 
in production cloud systems, given their complexity in 
system scale. In addition, cloud services are generally 
composed of many components developed by differ-
ent teams, which are independently updated online. It 
is extremely difficult to maintain the behavior models 
for such evolutional systems. Hence, a performance 
diagnosis tool for production cloud systems should be 
completely unsupervised, without assuming that any 
prior knowledge about the service should be input.

3. Performance diagnosis with high efficiency. Cop-
ing with large runtime data generated by a produc-
tion cloud system efficiently is a challenging task in 
performance diagnosis. Many defects only manifest 
themselves in an online production cloud that involves 
a large number of component replicas. Unlike a small-
scale in-house debugging system, a production cloud 
system can generate massive performance logs during 
its runtime, which are recorded in a distributed manner 
across a large number of cloud nodes. It is, therefore, 
critical to design a fast, scalable performance diagnosis 
tool chain that can assemble the relevant logs on de-
mand when performance anomalies occur, and quickly 
pinpoint the primary cause accordingly. Yet, this is not 
the focus of the current approaches (e.g., [6]).

RELATED WORK:

Typical production cloud systems are service-oriented 
in nature. The response time of user requests directly 
reflects the system performance. In this regard, trac-
ing user requests is a viable means to exposing per-
formance data, so as to help performance diagnosis. 
Recent work [7], [8],[9], [10] has shown that it is prom-
ising to pinpoint performance anomalies with end-to-
end request tracing data.
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However, an efficient, unsupervised diagnosis tool 
for locating fine-grained performance anomalies is 
still lacking. This paper bridges this gap by proposing 
CloudDiag. CloudDiag periodically collects the end-to-
end tracing data (In particular, execution time of meth-
od invocations) from each physical node in the cloud. 
It then employs a customized Map-Reduce algorithm 
to proactively analyze the tracing data. Specifically, it 
assembles the tracing data of each user request, and 
classifies the tracing data into different categories ac-
cording to call trees of the requests. When the cloud 
system is suffering performance degradation (e.g., 
average response time of user requests is larger than 
a threshold), a cloud operator can access CloudDiag 
with its web interfaces to conduct a performance                                   
diagnosis.

With the request tracing data, CloudDiag will per-
form a fast customized matrix recovery algorithm to 
instantly identify the method invocations (together 
with the replicas they locate) which contribute the 
most to the performance anomaly. The whole process 
requires no domain-specific knowledge to the target 
service. CloudDiag has been successfully launched in 
diagnosing performance problems for the production 
cloud systems in Alibaba Cloud Computing. We report 
three case studies in our real-world performance diag-
nosis experiences to demonstrate the effectiveness of 
CloudDiag in helping the operators localize the primary 
causes of performance problems.
SYSTEM ARCHITECTURE:

FRAMEWORK OF CLOUDDIAG:
Performance anomalies in cloud systems will mani-
fest themselves as anomalous response time of user 
requests. Since a service is composed of a lot of com-
ponents, a service with anomalous performance must 
have involved some components with performance 
anomalies.



A component typically has a lot of replicas in a produc-
tion cloud system; however, the  performance anomaly 
of a component may be manifested only in a small part 
of its replicas. This will cause the performance degra-
dation of the involving service, which is frequently ob-
served in the cloud computing systems of Alibaba Inc. 
Fig. 1 shows the execution time of a component meth-
od in different replicas in a 100-node cloud system. 
We can instantly see that only a small part of replicas 
(e.g., nodes 8 and 12) are anomalous when executing 
the method. Such performance problems are the most 
difficult to locate, because the anomalous methods 
hide themselves in numerous well-functioning replicas. 
Therefore, to reduce human efforts in pinpointing per-
formance anomaly, a performance diagnosis tool must 
first identify which component methods contribute to 
the performance.

CloudDiag is composed of three major parts, i.e.,

1) collecting the performance data; 

2) assembling the performance data; and

 3) identifying the primary causes of the  anomalies.

 We briefly overview each part as follows:

Collect performance data. CloudDiag traces user  re-*	
quests at a given sampling rate to expose performance 
data. For the sampled requests, each component rep-
lica records the performance data andsaves them in its 
local storage. An important consideration is what kind 
of performance dataCloudDiag should collect and how. 
CloudDiagadopts an instrumentation-based approach 
that collects the execution time of each component 
method. Details are discussed in Section 3.

Assemble performance data. CloudDiag should first *	
assemble the performance data distributed in numer-
ous component replicas in a request-oriented way. In 
other words, the performance data belonging to the 
same requests are correlated together. CloudDiag 
will then analyze such request-oriented performance 
data and infer the call tree of each sampled request. 
A customized map-reduce processis utilized to group 
requests into different categories based on their call 
trees. Requests within one category share the same 
call tree.
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Identify the primary causes of anomalies. CloudDiag *	
then identifies the anomalous categories according to 
their latency distribution. Then, for each anomalous 
category, a fast customized matrix recoveryalgorithm 
(i.e., robust principal component analysis (RPCA) [11]) 
is employed to identify the anomalous method invoca-
tions together with the replicas they are located. De-
tails are discussed in Section 

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this 
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance 
diagnosis. Recent work has shown that it is promising 
to pinpoint performance anomalies with end-to-end 
request tracing data. However, an efficient, unsuper-
vised diagnosis tool for locating fine-grained perfor-
mance anomalies is still lacking.

It is very challenging to localize anomalous methods *	
as well as their corresponding physical replicas. Conse-
quently, huge human efforts are still required to fur-
ther pinpoint the subtle primary cause.

It is extremely difficult to maintain the behavior mod-*	
els for such evolutional systems. Hence, a performance 
diagnosis tool for production cloud systems should be 
completely unsupervised, without assuming that any 
prior knowledge about the service should be input.

Coping with large runtime data generated by a pro-*	
duction cloud system efficiently is a challenging task 
in performance diagnosis. Many defects only manifest 
themselves in an online production cloud that involves 
a large number of component replicas.

This paper bridges this gap by proposing CloudDiag. 
CloudDiag periodically collects the end-to-end tracing 
data (In particular, execution time of method invoca-
tions) from each physical node in the cloud. 

It then employs a customized Map-Reduce algorithm 
to proactively analyze the tracing data. Specifically, it 
assembles the tracing data of each user request, and 
classifies the tracing data into different categories ac-
cording to call trees of the requests.

CloudDiag has been successfully launched in diag-*	
nosing performance problems for the production cloud 
systems in Alibaba Cloud Computing. 

We report three case studies in our real-world per-*	
formance diagnosis experiences to demonstrate the 
effectiveness of CloudDiag in helping the operators lo-
calize the primary causes of performance problems.

Cloud Server:

we design a Cloud server in local host by having the 
functionalities of a Cloud Storage system. Where the 
data owners can upload their files securely and also 
use it. The Cloud Server allows the access of authorized 
users to access the files of the data owners too.

Data Owner :

we designed a data owner module by having a unique 
registration for each data owner such that a new data 
owner should register in cloud server and then get 
their access to log in. After that the data owner has the 
facility to upload their data in the cloud server.

User :

first the user has to be get access by registering them-
selves when they are new to the system. Once after 
registration they can login the system and can find the 
details of the files uploaded by the data owner. The au-
thorized users can make their request to download the 
file. RequestID should be unique for every request. It is 
assigned when a request arrives the system.

Data Collection and Assembling :

we develop the system to have data collection and 
assembling them into it. It is named as CloudDiag. It 
traces user requests at a given sampling rate to expose 
performance data. For the sampled requests, each 
component replica records the performance data and 
saves them in its local storage. An important consid-
eration is what kind of performance data CloudDiag 
should collect and how. CloudDiag adopts an instru-
mentation-based approach that collects the execution 
time of each component method.
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CloudDiag should first assemble the performance data 
distributed in numerous component replicas in a re-
quest-oriented way. 

In other words, the performance data belonging to 
the same requests are correlated together. CloudDiag 
will then analyze such request-oriented performance 
data and infer the call tree of each sampled request. 
A customized map-reduce process is utilized to group 
requests into different categories based on their call 
trees.

Diagnosing:

From the data collected by the previous module we 
design diagnosing module. Where, CloudDiag then 
identifies the anomalous categories according to their 
latency distribution. 

We can identify the anomalous method by measuring 
the execution time deviation of each method one by 
one. We design an unsupervised machine learning al-
gorithm to automatically learn the characteristics of 
the invoked methods and identify which methods are 
anomalous together with on which replicas they are 
executed.

PERFORMANCE DATA COLLECTION:

In this section, we introduce what kind of performance 
data that CloudDiag should collect and how to collect 
them.

Our instrumentation-based tracing approach will pro-
duce performance data when a sampled request is be-
ing processed in each component replica. Specifically, 
each component method, when being invoked or re-
turning, will generate a log entry. 

The data structure of a tracing log entry is shown in Fig. 
3a, which contains five items. Host indicates the ma-
chine where the component replica locates. 

Time stamp records the time of the event occurrence 
(i.e., a method invocation or a method return). Reques-
tID is the global identifier of a request. MID is a unique 
identifier for request.



A component typically has a lot of replicas in a produc-
tion cloud system; however, the  performance anomaly 
of a component may be manifested only in a small part 
of its replicas. This will cause the performance degra-
dation of the involving service, which is frequently ob-
served in the cloud computing systems of Alibaba Inc. 
Fig. 1 shows the execution time of a component meth-
od in different replicas in a 100-node cloud system. 
We can instantly see that only a small part of replicas 
(e.g., nodes 8 and 12) are anomalous when executing 
the method. Such performance problems are the most 
difficult to locate, because the anomalous methods 
hide themselves in numerous well-functioning replicas. 
Therefore, to reduce human efforts in pinpointing per-
formance anomaly, a performance diagnosis tool must 
first identify which component methods contribute to 
the performance.

CloudDiag is composed of three major parts, i.e.,

1) collecting the performance data; 

2) assembling the performance data; and

 3) identifying the primary causes of the  anomalies.

 We briefly overview each part as follows:

Collect performance data. CloudDiag traces user  re-*	
quests at a given sampling rate to expose performance 
data. For the sampled requests, each component rep-
lica records the performance data andsaves them in its 
local storage. An important consideration is what kind 
of performance dataCloudDiag should collect and how. 
CloudDiagadopts an instrumentation-based approach 
that collects the execution time of each component 
method. Details are discussed in Section 3.

Assemble performance data. CloudDiag should first *	
assemble the performance data distributed in numer-
ous component replicas in a request-oriented way. In 
other words, the performance data belonging to the 
same requests are correlated together. CloudDiag 
will then analyze such request-oriented performance 
data and infer the call tree of each sampled request. 
A customized map-reduce processis utilized to group 
requests into different categories based on their call 
trees. Requests within one category share the same 
call tree.
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Identify the primary causes of anomalies. CloudDiag *	
then identifies the anomalous categories according to 
their latency distribution. Then, for each anomalous 
category, a fast customized matrix recoveryalgorithm 
(i.e., robust principal component analysis (RPCA) [11]) 
is employed to identify the anomalous method invoca-
tions together with the replicas they are located. De-
tails are discussed in Section 

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this 
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance 
diagnosis. Recent work has shown that it is promising 
to pinpoint performance anomalies with end-to-end 
request tracing data. However, an efficient, unsuper-
vised diagnosis tool for locating fine-grained perfor-
mance anomalies is still lacking.

It is very challenging to localize anomalous methods *	
as well as their corresponding physical replicas. Conse-
quently, huge human efforts are still required to fur-
ther pinpoint the subtle primary cause.

It is extremely difficult to maintain the behavior mod-*	
els for such evolutional systems. Hence, a performance 
diagnosis tool for production cloud systems should be 
completely unsupervised, without assuming that any 
prior knowledge about the service should be input.

Coping with large runtime data generated by a pro-*	
duction cloud system efficiently is a challenging task 
in performance diagnosis. Many defects only manifest 
themselves in an online production cloud that involves 
a large number of component replicas.

This paper bridges this gap by proposing CloudDiag. 
CloudDiag periodically collects the end-to-end tracing 
data (In particular, execution time of method invoca-
tions) from each physical node in the cloud. 

It then employs a customized Map-Reduce algorithm 
to proactively analyze the tracing data. Specifically, it 
assembles the tracing data of each user request, and 
classifies the tracing data into different categories ac-
cording to call trees of the requests.

CloudDiag has been successfully launched in diag-*	
nosing performance problems for the production cloud 
systems in Alibaba Cloud Computing. 

We report three case studies in our real-world per-*	
formance diagnosis experiences to demonstrate the 
effectiveness of CloudDiag in helping the operators lo-
calize the primary causes of performance problems.

Cloud Server:

we design a Cloud server in local host by having the 
functionalities of a Cloud Storage system. Where the 
data owners can upload their files securely and also 
use it. The Cloud Server allows the access of authorized 
users to access the files of the data owners too.

Data Owner :

we designed a data owner module by having a unique 
registration for each data owner such that a new data 
owner should register in cloud server and then get 
their access to log in. After that the data owner has the 
facility to upload their data in the cloud server.

User :

first the user has to be get access by registering them-
selves when they are new to the system. Once after 
registration they can login the system and can find the 
details of the files uploaded by the data owner. The au-
thorized users can make their request to download the 
file. RequestID should be unique for every request. It is 
assigned when a request arrives the system.

Data Collection and Assembling :

we develop the system to have data collection and 
assembling them into it. It is named as CloudDiag. It 
traces user requests at a given sampling rate to expose 
performance data. For the sampled requests, each 
component replica records the performance data and 
saves them in its local storage. An important consid-
eration is what kind of performance data CloudDiag 
should collect and how. CloudDiag adopts an instru-
mentation-based approach that collects the execution 
time of each component method.

                  Volume No: 1(2014), Issue No: 12 (December)                                                                                            December 2014
                                                                                   www.ijmetmr.com                                                                                                                                                     Page 349

                                                                                                                         ISSN No: 2348-4845
International Journal & Magazine of Engineering, 

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal   

CloudDiag should first assemble the performance data 
distributed in numerous component replicas in a re-
quest-oriented way. 

In other words, the performance data belonging to 
the same requests are correlated together. CloudDiag 
will then analyze such request-oriented performance 
data and infer the call tree of each sampled request. 
A customized map-reduce process is utilized to group 
requests into different categories based on their call 
trees.

Diagnosing:

From the data collected by the previous module we 
design diagnosing module. Where, CloudDiag then 
identifies the anomalous categories according to their 
latency distribution. 

We can identify the anomalous method by measuring 
the execution time deviation of each method one by 
one. We design an unsupervised machine learning al-
gorithm to automatically learn the characteristics of 
the invoked methods and identify which methods are 
anomalous together with on which replicas they are 
executed.

PERFORMANCE DATA COLLECTION:

In this section, we introduce what kind of performance 
data that CloudDiag should collect and how to collect 
them.

Our instrumentation-based tracing approach will pro-
duce performance data when a sampled request is be-
ing processed in each component replica. Specifically, 
each component method, when being invoked or re-
turning, will generate a log entry. 

The data structure of a tracing log entry is shown in Fig. 
3a, which contains five items. Host indicates the ma-
chine where the component replica locates. 

Time stamp records the time of the event occurrence 
(i.e., a method invocation or a method return). Reques-
tID is the global identifier of a request. MID is a unique 
identifier for request.



EVALUATION:

CloudDiag has been launched in Alibaba Cloud Com-
puting Company to perform anomaly diagnosis in 
itsproduction cloud computing systems. This section 
reports three case studies during our experiences in 
usingCloudDiag in Alibaba. Our target cloud system 
is a cloud facility for Aliyun Mail, a production e-mail 
system that provides free e-mail service to the public.2 
ListMail, ReadMail, and SendMail are three services 
that are utilized to handle requests of listing mail titles, 
reading mail contents, and sending mails, respectively. 
They are the typical services of our target system, and 
are the focus of our experimental studies.Services are 
composed of a series of components (e.g.,storage and 
communication). Each component has many homoge-
neous replicas that are deployed on different hosts.

Currently, more than 20 million user requests are han-
dled per day. On average, a request will typically go 
through over 10 hosts, invoking over 100 instrumented 
methods. By default, requests are sampled with the ra-
tio of 1/200.
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Generally, the target cloud system would produce 
about 30-50 gigabytes (around 120-200 million lines) of-
tracing logs per hour. CloudDiag is deployed in a small 
cluster with 10 nodes. Each node is a typical low-end 
computer running Linux RHEL 5.4. 

CloudDiag proactively pulls the tracing data from the 
target cloud in a periodical manner (once every hour in 
our experiments). It then runs a customized mapredu-
ceprocess to assemble and classify tracing data. First, 
map tasks assign correlated tracing logs that belong to 
the same requests to corresponding reduce tasks. 

Second, reduce tasks generate and classify requests 
into categories. For the map-reduce cluster, one impor-
tant parameter is the split size, i.e., the volume of data 
assigned to each Maptask. The split size determines 
the number of Map tasks. 

A smaller split size indicates that more Map tasks are 
required to process a given data set. We vary the split 
sizes from 32 to 512 MB for three data sets (with trace 
entries sizesbeing 120, 160, and 200 million lines of 
trace logs). 

The computational time of the map-reduce procedure 
is shown in Fig. 8. We can see the cluster performs the 
best when the split size is 128 MB. Hence, in the rest of 
our experiments, we set the split size 128 MB.Finally, 

CloudDiag adopts a state-of-the-art RPCA implemen-
tation, called inexact ALM algorithm [21] in its per-
formance anomaly detection approach. It is a mature 
open-source implementation, and can be used in a 
blackboxway for CloudDiag.

SCALABILITY EVALUATION:

For efficiency consideration, CloudDiag is required to 
be scalable to the massive performance data. Since 
CloudDiag conducts the tracing data collection and as-
sembly proactively,the anomaly diagnosing step is the 
only issue that will influence the scalability of CloudDi-
ag. We study the efficiency of the RPCA-based anomaly 
detection approach. The inputs are the performance 
data of a typical category of requests to the SendMail 
service, which bears

a critical call tree that contains 117 methods. There are 
about 4 million of requests following this call tree each 
day. Fig. 9 plots the computation time of the anomaly 
detection approach under different request numbers. 

It shows that the computational time of the approach 
also scales almost linearly with the performance data 
volumesof up to 100 thousand requests. This demon-
strates the high scalability of the RPCA-based anom-
aly detection algorithm.The process of computing a 
100;000 _ 117 matrix takes lessthan 200 seconds.

DISCUSSIONS:

In the above three case studies, we compare CloudDiag 
with the PCA-based approach in terms of precision and 
recall. From Table 2, we can see that CloudDiag out-
performs the PCA-based approach in both measures, 
especially in term of precision. Hence, CloudDiag can 
savemore effort in troubleshooting the primary cause 
of the performance anomalies. This shows that the 
PCA-based approach cannot well handle the perfor-
mance data with gross errors. 

It consequently generates more false positives and 
false negatives. The RPCA-based approach CloudDiag, 
on the other hand, can work well for such non-Gauss-
ian performance data.

There are two thresholds in our approach. _ and _ are, 
respectively, utilized to detect whether categories or 
invoked methods are anomalous or not. _ is conven-
tionallyset to 1 [15]. In our experimental study, we have 
set _ in range [0.4, 0.8]. Although anomalous methods 
can be successfully identified by CloudDiag in our three 
casestudies, we observe that the value of beta can 
slightly influence the precision. Empirically, the value 
0.5 is a best choice for _.
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CONCLUSION AND FUTURE WORK:

Request tracing technologies have been proven ef-
fective in performance debugging. Here, CloudDiag 
resorts to a white-box instrumentation mechanism to 
trace service requests, because the source codes of ser-
vices are generally available in typical production cloud 
systems. Note that such a white-box performance data 
acquisition component of CloudDiag can also be substi-
tuted with another tracing mechanism if it can obtain 
the latency data of method invocations.

Another way to trace requests is via black-box mecha-
nisms. Black-box tracing mechanisms assume no knowl-
edge of the source codes. But, existing approaches 
generally cannot directly obtain the latency data of 
method invocations. In this regard, a black-box trac-
ing mechanism can be deemed as a tracing mechanism 
with the large granularity (e.g., in node level). 

There is a tradeoff between tracing granularity and de-
bugging effort. As a result, more effort will be increased 
in troubleshooting the performance anomalies if a 
black-box tracing mechanism is applied. To incorporate 
black-box tracing mechanisms with CloudDiag, a future 
direction is to explore black-box tracing mechanisms so 
that a fine granularity (i.e., in method invocation level) 
can be achieved. To this end, the runtime instrumenta-
tion can be a promising technique.

In conclusion, the work proposes CloudDiag, an ef-
ficient, unsupervised diagnosis tool for locating fine-
grained performance anomalies. The experimental 
results demonstrate that our approach scales well to 
massive tracing data. In future, the work implements 
that CloudDiag can effectively and conveniently help 
operators diagnose three real-world performance 
problems with high precision and recall.
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Generally, the target cloud system would produce 
about 30-50 gigabytes (around 120-200 million lines) of-
tracing logs per hour. CloudDiag is deployed in a small 
cluster with 10 nodes. Each node is a typical low-end 
computer running Linux RHEL 5.4. 

CloudDiag proactively pulls the tracing data from the 
target cloud in a periodical manner (once every hour in 
our experiments). It then runs a customized mapredu-
ceprocess to assemble and classify tracing data. First, 
map tasks assign correlated tracing logs that belong to 
the same requests to corresponding reduce tasks. 

Second, reduce tasks generate and classify requests 
into categories. For the map-reduce cluster, one impor-
tant parameter is the split size, i.e., the volume of data 
assigned to each Maptask. The split size determines 
the number of Map tasks. 

A smaller split size indicates that more Map tasks are 
required to process a given data set. We vary the split 
sizes from 32 to 512 MB for three data sets (with trace 
entries sizesbeing 120, 160, and 200 million lines of 
trace logs). 

The computational time of the map-reduce procedure 
is shown in Fig. 8. We can see the cluster performs the 
best when the split size is 128 MB. Hence, in the rest of 
our experiments, we set the split size 128 MB.Finally, 

CloudDiag adopts a state-of-the-art RPCA implemen-
tation, called inexact ALM algorithm [21] in its per-
formance anomaly detection approach. It is a mature 
open-source implementation, and can be used in a 
blackboxway for CloudDiag.

SCALABILITY EVALUATION:

For efficiency consideration, CloudDiag is required to 
be scalable to the massive performance data. Since 
CloudDiag conducts the tracing data collection and as-
sembly proactively,the anomaly diagnosing step is the 
only issue that will influence the scalability of CloudDi-
ag. We study the efficiency of the RPCA-based anomaly 
detection approach. The inputs are the performance 
data of a typical category of requests to the SendMail 
service, which bears

a critical call tree that contains 117 methods. There are 
about 4 million of requests following this call tree each 
day. Fig. 9 plots the computation time of the anomaly 
detection approach under different request numbers. 

It shows that the computational time of the approach 
also scales almost linearly with the performance data 
volumesof up to 100 thousand requests. This demon-
strates the high scalability of the RPCA-based anom-
aly detection algorithm.The process of computing a 
100;000 _ 117 matrix takes lessthan 200 seconds.

DISCUSSIONS:

In the above three case studies, we compare CloudDiag 
with the PCA-based approach in terms of precision and 
recall. From Table 2, we can see that CloudDiag out-
performs the PCA-based approach in both measures, 
especially in term of precision. Hence, CloudDiag can 
savemore effort in troubleshooting the primary cause 
of the performance anomalies. This shows that the 
PCA-based approach cannot well handle the perfor-
mance data with gross errors. 

It consequently generates more false positives and 
false negatives. The RPCA-based approach CloudDiag, 
on the other hand, can work well for such non-Gauss-
ian performance data.

There are two thresholds in our approach. _ and _ are, 
respectively, utilized to detect whether categories or 
invoked methods are anomalous or not. _ is conven-
tionallyset to 1 [15]. In our experimental study, we have 
set _ in range [0.4, 0.8]. Although anomalous methods 
can be successfully identified by CloudDiag in our three 
casestudies, we observe that the value of beta can 
slightly influence the precision. Empirically, the value 
0.5 is a best choice for _.
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CONCLUSION AND FUTURE WORK:

Request tracing technologies have been proven ef-
fective in performance debugging. Here, CloudDiag 
resorts to a white-box instrumentation mechanism to 
trace service requests, because the source codes of ser-
vices are generally available in typical production cloud 
systems. Note that such a white-box performance data 
acquisition component of CloudDiag can also be substi-
tuted with another tracing mechanism if it can obtain 
the latency data of method invocations.

Another way to trace requests is via black-box mecha-
nisms. Black-box tracing mechanisms assume no knowl-
edge of the source codes. But, existing approaches 
generally cannot directly obtain the latency data of 
method invocations. In this regard, a black-box trac-
ing mechanism can be deemed as a tracing mechanism 
with the large granularity (e.g., in node level). 

There is a tradeoff between tracing granularity and de-
bugging effort. As a result, more effort will be increased 
in troubleshooting the performance anomalies if a 
black-box tracing mechanism is applied. To incorporate 
black-box tracing mechanisms with CloudDiag, a future 
direction is to explore black-box tracing mechanisms so 
that a fine granularity (i.e., in method invocation level) 
can be achieved. To this end, the runtime instrumenta-
tion can be a promising technique.

In conclusion, the work proposes CloudDiag, an ef-
ficient, unsupervised diagnosis tool for locating fine-
grained performance anomalies. The experimental 
results demonstrate that our approach scales well to 
massive tracing data. In future, the work implements 
that CloudDiag can effectively and conveniently help 
operators diagnose three real-world performance 
problems with high precision and recall.
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