
Abstract:

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance
diagnosis.

Recent work has shown that it is promising to pinpoint
performance anomalies with end-to-end request trac-
ing data. However, an efficient, unsupervised diagnosis
tool for locating fine-grained performance anomalies is
still lacking.

Performance diagnosis is labor intensive in production
cloud computing systems. Such systems typically face
many real world challenges, which the existing diagno-
sis techniques for such distributed systems cannot ef-
fectively solve.

An efficient, unsupervised diagnosis tool for locating
fine-grained performance anomalies is still lacking in
production cloud computing systems. This paper pro-
poses CloudDiag to bridge this gap.

Combining a statistical technique and a fast matrix re-
covery algorithm, CloudDiag can efficiently pinpoint
fine-grained causes of the performance problems,
which does not require any domain-specific knowledge
to the target system. CloudDiag has been applied in a
practical production cloud computing systems to diag-
nose performance problems. We demonstrate the ef-
fectiveness of CloudDiag in three real-world case stud-
ies.

Keywords:
Fine-Grained, Unsupervised, Scalable, Cloud comput-
ing, performance diagnosis, request tracing.

Mandalaneni Vijaykumar
M. Tech Student,

Department Of CSE,
Guntur Engineering College, Yanamadala.

N.Bhagya Lakshmi, M.Tech
Assistant Professor,
Department Of CSE,

Guntur Engineering College, Yanamadala.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 346

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

INTRODUCTION:

PERFORMANCE diagnosis is labor intensive, especially
for typical production cloud computing systems. In such
systems, a lot of software components bear a large
number of replicas (component instances) distributed
in different physical nodes in the cloud. They can be as-
sembled into multiple types of services, serving large
amounts of user requests. The services provisioned
by the cloud are often prone to various performance
anomalies (e.g., SLA violations [1]) caused by software
faults, unexpected workload, or hardware failures.

Such defects may, however, be manifested only in a
small part of component replicas, hiding themselves in
a large number of normal component replicas. Our ex-
periences in performance diagnosis for Alibaba Cloud
Computing1 show that troubleshooting performance
anomalies in practical production cloud computing
systems faces many real-world challenges. It is very dif-
ficult to apply existing diagnosis techniques for such
distributed systems. We summarize the new design
challenges as follows:

1.Performance diagnosis in fine granularity. A com-
ponent typically hasa lot of replicas in aproduction
cloudsystem. Within one component, there are many
performance-related private methods (i.e., those in-
voked inside the component) and public methods (i.e.,
the interfaces invoked by other components). It is very
challenging to localize anomalous methods as well
as their corresponding physical replicas. Current ap-
proaches generally focus on locating anomalous physi-
cal nodes (e.g., [2]) or logical components (e.g., [3]).
Such coarse-grained results are not enough. In the for-
mer case, given an anomalous physical node, a system
operator has to identify the faulty component among-
manycomponents typically hosted in the same node.

Clouddiag, An Efficient, Unsupervised Diagnosis For
Locating Fine-Grained Performance Anomalies

In the latter case, given an anomalous logical compo-
nent, the operator has to identify which one among
their numerous replicas distributed in the cloud is
faulty. Consequently, huge human efforts are still re-
quired to further pinpoint the subtle primary cause.
Performance diagnosis in a fine granularity is of high
concern to reduce manual efforts.

2. Unsupervised performance diagnosis. Many existing
performance diagnosis techniques resort to system
behavior models in identifying anomalies [4], [5]. Un-
fortunately, it is hard to manually build such models
in production cloud systems, given their complexity in
system scale. In addition, cloud services are generally
composed of many components developed by differ-
ent teams, which are independently updated online. It
is extremely difficult to maintain the behavior models
for such evolutional systems. Hence, a performance
diagnosis tool for production cloud systems should be
completely unsupervised, without assuming that any
prior knowledge about the service should be input.

3. Performance diagnosis with high efficiency. Cop-
ing with large runtime data generated by a produc-
tion cloud system efficiently is a challenging task in
performance diagnosis. Many defects only manifest
themselves in an online production cloud that involves
a large number of component replicas. Unlike a small-
scale in-house debugging system, a production cloud
system can generate massive performance logs during
its runtime, which are recorded in a distributed manner
across a large number of cloud nodes. It is, therefore,
critical to design a fast, scalable performance diagnosis
tool chain that can assemble the relevant logs on de-
mand when performance anomalies occur, and quickly
pinpoint the primary cause accordingly. Yet, this is not
the focus of the current approaches (e.g., [6]).

RELATED WORK:

Typical production cloud systems are service-oriented
in nature. The response time of user requests directly
reflects the system performance. In this regard, trac-
ing user requests is a viable means to exposing per-
formance data, so as to help performance diagnosis.
Recent work [7], [8],[9], [10] has shown that it is prom-
ising to pinpoint performance anomalies with end-to-
end request tracing data.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 347

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

However, an efficient, unsupervised diagnosis tool
for locating fine-grained performance anomalies is
still lacking. This paper bridges this gap by proposing
CloudDiag. CloudDiag periodically collects the end-to-
end tracing data (In particular, execution time of meth-
od invocations) from each physical node in the cloud.
It then employs a customized Map-Reduce algorithm
to proactively analyze the tracing data. Specifically, it
assembles the tracing data of each user request, and
classifies the tracing data into different categories ac-
cording to call trees of the requests. When the cloud
system is suffering performance degradation (e.g.,
average response time of user requests is larger than
a threshold), a cloud operator can access CloudDiag
with its web interfaces to conduct a performance
diagnosis.

With the request tracing data, CloudDiag will per-
form a fast customized matrix recovery algorithm to
instantly identify the method invocations (together
with the replicas they locate) which contribute the
most to the performance anomaly. The whole process
requires no domain-specific knowledge to the target
service. CloudDiag has been successfully launched in
diagnosing performance problems for the production
cloud systems in Alibaba Cloud Computing. We report
three case studies in our real-world performance diag-
nosis experiences to demonstrate the effectiveness of
CloudDiag in helping the operators localize the primary
causes of performance problems.
SYSTEM ARCHITECTURE:

FRAMEWORK OF CLOUDDIAG:
Performance anomalies in cloud systems will mani-
fest themselves as anomalous response time of user
requests. Since a service is composed of a lot of com-
ponents, a service with anomalous performance must
have involved some components with performance
anomalies.

A component typically has a lot of replicas in a produc-
tion cloud system; however, the performance anomaly
of a component may be manifested only in a small part
of its replicas. This will cause the performance degra-
dation of the involving service, which is frequently ob-
served in the cloud computing systems of Alibaba Inc.
Fig. 1 shows the execution time of a component meth-
od in different replicas in a 100-node cloud system.
We can instantly see that only a small part of replicas
(e.g., nodes 8 and 12) are anomalous when executing
the method. Such performance problems are the most
difficult to locate, because the anomalous methods
hide themselves in numerous well-functioning replicas.
Therefore, to reduce human efforts in pinpointing per-
formance anomaly, a performance diagnosis tool must
first identify which component methods contribute to
the performance.

CloudDiag is composed of three major parts, i.e.,

1) collecting the performance data;

2) assembling the performance data; and

 3) identifying the primary causes of the anomalies.

 We briefly overview each part as follows:

Collect performance data. CloudDiag traces user re-*	
quests at a given sampling rate to expose performance
data. For the sampled requests, each component rep-
lica records the performance data andsaves them in its
local storage. An important consideration is what kind
of performance dataCloudDiag should collect and how.
CloudDiagadopts an instrumentation-based approach
that collects the execution time of each component
method. Details are discussed in Section 3.

Assemble performance data. CloudDiag should first *	
assemble the performance data distributed in numer-
ous component replicas in a request-oriented way. In
other words, the performance data belonging to the
same requests are correlated together. CloudDiag
will then analyze such request-oriented performance
data and infer the call tree of each sampled request.
A customized map-reduce processis utilized to group
requests into different categories based on their call
trees. Requests within one category share the same
call tree.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 348

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Identify the primary causes of anomalies. CloudDiag *	
then identifies the anomalous categories according to
their latency distribution. Then, for each anomalous
category, a fast customized matrix recoveryalgorithm
(i.e., robust principal component analysis (RPCA) [11])
is employed to identify the anomalous method invoca-
tions together with the replicas they are located. De-
tails are discussed in Section

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance
diagnosis. Recent work has shown that it is promising
to pinpoint performance anomalies with end-to-end
request tracing data. However, an efficient, unsuper-
vised diagnosis tool for locating fine-grained perfor-
mance anomalies is still lacking.

It is very challenging to localize anomalous methods *	
as well as their corresponding physical replicas. Conse-
quently, huge human efforts are still required to fur-
ther pinpoint the subtle primary cause.

It is extremely difficult to maintain the behavior mod-*	
els for such evolutional systems. Hence, a performance
diagnosis tool for production cloud systems should be
completely unsupervised, without assuming that any
prior knowledge about the service should be input.

Coping with large runtime data generated by a pro-*	
duction cloud system efficiently is a challenging task
in performance diagnosis. Many defects only manifest
themselves in an online production cloud that involves
a large number of component replicas.

This paper bridges this gap by proposing CloudDiag.
CloudDiag periodically collects the end-to-end tracing
data (In particular, execution time of method invoca-
tions) from each physical node in the cloud.

It then employs a customized Map-Reduce algorithm
to proactively analyze the tracing data. Specifically, it
assembles the tracing data of each user request, and
classifies the tracing data into different categories ac-
cording to call trees of the requests.

CloudDiag has been successfully launched in diag-*	
nosing performance problems for the production cloud
systems in Alibaba Cloud Computing.

We report three case studies in our real-world per-*	
formance diagnosis experiences to demonstrate the
effectiveness of CloudDiag in helping the operators lo-
calize the primary causes of performance problems.

Cloud Server:

we design a Cloud server in local host by having the
functionalities of a Cloud Storage system. Where the
data owners can upload their files securely and also
use it. The Cloud Server allows the access of authorized
users to access the files of the data owners too.

Data Owner :

we designed a data owner module by having a unique
registration for each data owner such that a new data
owner should register in cloud server and then get
their access to log in. After that the data owner has the
facility to upload their data in the cloud server.

User :

first the user has to be get access by registering them-
selves when they are new to the system. Once after
registration they can login the system and can find the
details of the files uploaded by the data owner. The au-
thorized users can make their request to download the
file. RequestID should be unique for every request. It is
assigned when a request arrives the system.

Data Collection and Assembling :

we develop the system to have data collection and
assembling them into it. It is named as CloudDiag. It
traces user requests at a given sampling rate to expose
performance data. For the sampled requests, each
component replica records the performance data and
saves them in its local storage. An important consid-
eration is what kind of performance data CloudDiag
should collect and how. CloudDiag adopts an instru-
mentation-based approach that collects the execution
time of each component method.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 349

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CloudDiag should first assemble the performance data
distributed in numerous component replicas in a re-
quest-oriented way.

In other words, the performance data belonging to
the same requests are correlated together. CloudDiag
will then analyze such request-oriented performance
data and infer the call tree of each sampled request.
A customized map-reduce process is utilized to group
requests into different categories based on their call
trees.

Diagnosing:

From the data collected by the previous module we
design diagnosing module. Where, CloudDiag then
identifies the anomalous categories according to their
latency distribution.

We can identify the anomalous method by measuring
the execution time deviation of each method one by
one. We design an unsupervised machine learning al-
gorithm to automatically learn the characteristics of
the invoked methods and identify which methods are
anomalous together with on which replicas they are
executed.

PERFORMANCE DATA COLLECTION:

In this section, we introduce what kind of performance
data that CloudDiag should collect and how to collect
them.

Our instrumentation-based tracing approach will pro-
duce performance data when a sampled request is be-
ing processed in each component replica. Specifically,
each component method, when being invoked or re-
turning, will generate a log entry.

The data structure of a tracing log entry is shown in Fig.
3a, which contains five items. Host indicates the ma-
chine where the component replica locates.

Time stamp records the time of the event occurrence
(i.e., a method invocation or a method return). Reques-
tID is the global identifier of a request. MID is a unique
identifier for request.

A component typically has a lot of replicas in a produc-
tion cloud system; however, the performance anomaly
of a component may be manifested only in a small part
of its replicas. This will cause the performance degra-
dation of the involving service, which is frequently ob-
served in the cloud computing systems of Alibaba Inc.
Fig. 1 shows the execution time of a component meth-
od in different replicas in a 100-node cloud system.
We can instantly see that only a small part of replicas
(e.g., nodes 8 and 12) are anomalous when executing
the method. Such performance problems are the most
difficult to locate, because the anomalous methods
hide themselves in numerous well-functioning replicas.
Therefore, to reduce human efforts in pinpointing per-
formance anomaly, a performance diagnosis tool must
first identify which component methods contribute to
the performance.

CloudDiag is composed of three major parts, i.e.,

1) collecting the performance data;

2) assembling the performance data; and

 3) identifying the primary causes of the anomalies.

 We briefly overview each part as follows:

Collect performance data. CloudDiag traces user re-*	
quests at a given sampling rate to expose performance
data. For the sampled requests, each component rep-
lica records the performance data andsaves them in its
local storage. An important consideration is what kind
of performance dataCloudDiag should collect and how.
CloudDiagadopts an instrumentation-based approach
that collects the execution time of each component
method. Details are discussed in Section 3.

Assemble performance data. CloudDiag should first *	
assemble the performance data distributed in numer-
ous component replicas in a request-oriented way. In
other words, the performance data belonging to the
same requests are correlated together. CloudDiag
will then analyze such request-oriented performance
data and infer the call tree of each sampled request.
A customized map-reduce processis utilized to group
requests into different categories based on their call
trees. Requests within one category share the same
call tree.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 348

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Identify the primary causes of anomalies. CloudDiag *	
then identifies the anomalous categories according to
their latency distribution. Then, for each anomalous
category, a fast customized matrix recoveryalgorithm
(i.e., robust principal component analysis (RPCA) [11])
is employed to identify the anomalous method invoca-
tions together with the replicas they are located. De-
tails are discussed in Section

Typical productions in existing cloud systems are ser-
vice-oriented in nature. The response time of user re-
quests directly reflects the system performance. In this
regard, tracing user requests is a viable means to ex-
posing performance data, so as to help performance
diagnosis. Recent work has shown that it is promising
to pinpoint performance anomalies with end-to-end
request tracing data. However, an efficient, unsuper-
vised diagnosis tool for locating fine-grained perfor-
mance anomalies is still lacking.

It is very challenging to localize anomalous methods *	
as well as their corresponding physical replicas. Conse-
quently, huge human efforts are still required to fur-
ther pinpoint the subtle primary cause.

It is extremely difficult to maintain the behavior mod-*	
els for such evolutional systems. Hence, a performance
diagnosis tool for production cloud systems should be
completely unsupervised, without assuming that any
prior knowledge about the service should be input.

Coping with large runtime data generated by a pro-*	
duction cloud system efficiently is a challenging task
in performance diagnosis. Many defects only manifest
themselves in an online production cloud that involves
a large number of component replicas.

This paper bridges this gap by proposing CloudDiag.
CloudDiag periodically collects the end-to-end tracing
data (In particular, execution time of method invoca-
tions) from each physical node in the cloud.

It then employs a customized Map-Reduce algorithm
to proactively analyze the tracing data. Specifically, it
assembles the tracing data of each user request, and
classifies the tracing data into different categories ac-
cording to call trees of the requests.

CloudDiag has been successfully launched in diag-*	
nosing performance problems for the production cloud
systems in Alibaba Cloud Computing.

We report three case studies in our real-world per-*	
formance diagnosis experiences to demonstrate the
effectiveness of CloudDiag in helping the operators lo-
calize the primary causes of performance problems.

Cloud Server:

we design a Cloud server in local host by having the
functionalities of a Cloud Storage system. Where the
data owners can upload their files securely and also
use it. The Cloud Server allows the access of authorized
users to access the files of the data owners too.

Data Owner :

we designed a data owner module by having a unique
registration for each data owner such that a new data
owner should register in cloud server and then get
their access to log in. After that the data owner has the
facility to upload their data in the cloud server.

User :

first the user has to be get access by registering them-
selves when they are new to the system. Once after
registration they can login the system and can find the
details of the files uploaded by the data owner. The au-
thorized users can make their request to download the
file. RequestID should be unique for every request. It is
assigned when a request arrives the system.

Data Collection and Assembling :

we develop the system to have data collection and
assembling them into it. It is named as CloudDiag. It
traces user requests at a given sampling rate to expose
performance data. For the sampled requests, each
component replica records the performance data and
saves them in its local storage. An important consid-
eration is what kind of performance data CloudDiag
should collect and how. CloudDiag adopts an instru-
mentation-based approach that collects the execution
time of each component method.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 349

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CloudDiag should first assemble the performance data
distributed in numerous component replicas in a re-
quest-oriented way.

In other words, the performance data belonging to
the same requests are correlated together. CloudDiag
will then analyze such request-oriented performance
data and infer the call tree of each sampled request.
A customized map-reduce process is utilized to group
requests into different categories based on their call
trees.

Diagnosing:

From the data collected by the previous module we
design diagnosing module. Where, CloudDiag then
identifies the anomalous categories according to their
latency distribution.

We can identify the anomalous method by measuring
the execution time deviation of each method one by
one. We design an unsupervised machine learning al-
gorithm to automatically learn the characteristics of
the invoked methods and identify which methods are
anomalous together with on which replicas they are
executed.

PERFORMANCE DATA COLLECTION:

In this section, we introduce what kind of performance
data that CloudDiag should collect and how to collect
them.

Our instrumentation-based tracing approach will pro-
duce performance data when a sampled request is be-
ing processed in each component replica. Specifically,
each component method, when being invoked or re-
turning, will generate a log entry.

The data structure of a tracing log entry is shown in Fig.
3a, which contains five items. Host indicates the ma-
chine where the component replica locates.

Time stamp records the time of the event occurrence
(i.e., a method invocation or a method return). Reques-
tID is the global identifier of a request. MID is a unique
identifier for request.

EVALUATION:

CloudDiag has been launched in Alibaba Cloud Com-
puting Company to perform anomaly diagnosis in
itsproduction cloud computing systems. This section
reports three case studies during our experiences in
usingCloudDiag in Alibaba. Our target cloud system
is a cloud facility for Aliyun Mail, a production e-mail
system that provides free e-mail service to the public.2
ListMail, ReadMail, and SendMail are three services
that are utilized to handle requests of listing mail titles,
reading mail contents, and sending mails, respectively.
They are the typical services of our target system, and
are the focus of our experimental studies.Services are
composed of a series of components (e.g.,storage and
communication). Each component has many homoge-
neous replicas that are deployed on different hosts.

Currently, more than 20 million user requests are han-
dled per day. On average, a request will typically go
through over 10 hosts, invoking over 100 instrumented
methods. By default, requests are sampled with the ra-
tio of 1/200.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 350

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Generally, the target cloud system would produce
about 30-50 gigabytes (around 120-200 million lines) of-
tracing logs per hour. CloudDiag is deployed in a small
cluster with 10 nodes. Each node is a typical low-end
computer running Linux RHEL 5.4.

CloudDiag proactively pulls the tracing data from the
target cloud in a periodical manner (once every hour in
our experiments). It then runs a customized mapredu-
ceprocess to assemble and classify tracing data. First,
map tasks assign correlated tracing logs that belong to
the same requests to corresponding reduce tasks.

Second, reduce tasks generate and classify requests
into categories. For the map-reduce cluster, one impor-
tant parameter is the split size, i.e., the volume of data
assigned to each Maptask. The split size determines
the number of Map tasks.

A smaller split size indicates that more Map tasks are
required to process a given data set. We vary the split
sizes from 32 to 512 MB for three data sets (with trace
entries sizesbeing 120, 160, and 200 million lines of
trace logs).

The computational time of the map-reduce procedure
is shown in Fig. 8. We can see the cluster performs the
best when the split size is 128 MB. Hence, in the rest of
our experiments, we set the split size 128 MB.Finally,

CloudDiag adopts a state-of-the-art RPCA implemen-
tation, called inexact ALM algorithm [21] in its per-
formance anomaly detection approach. It is a mature
open-source implementation, and can be used in a
blackboxway for CloudDiag.

SCALABILITY EVALUATION:

For efficiency consideration, CloudDiag is required to
be scalable to the massive performance data. Since
CloudDiag conducts the tracing data collection and as-
sembly proactively,the anomaly diagnosing step is the
only issue that will influence the scalability of CloudDi-
ag. We study the efficiency of the RPCA-based anomaly
detection approach. The inputs are the performance
data of a typical category of requests to the SendMail
service, which bears

a critical call tree that contains 117 methods. There are
about 4 million of requests following this call tree each
day. Fig. 9 plots the computation time of the anomaly
detection approach under different request numbers.

It shows that the computational time of the approach
also scales almost linearly with the performance data
volumesof up to 100 thousand requests. This demon-
strates the high scalability of the RPCA-based anom-
aly detection algorithm.The process of computing a
100;000 _ 117 matrix takes lessthan 200 seconds.

DISCUSSIONS:

In the above three case studies, we compare CloudDiag
with the PCA-based approach in terms of precision and
recall. From Table 2, we can see that CloudDiag out-
performs the PCA-based approach in both measures,
especially in term of precision. Hence, CloudDiag can
savemore effort in troubleshooting the primary cause
of the performance anomalies. This shows that the
PCA-based approach cannot well handle the perfor-
mance data with gross errors.

It consequently generates more false positives and
false negatives. The RPCA-based approach CloudDiag,
on the other hand, can work well for such non-Gauss-
ian performance data.

There are two thresholds in our approach. _ and _ are,
respectively, utilized to detect whether categories or
invoked methods are anomalous or not. _ is conven-
tionallyset to 1 [15]. In our experimental study, we have
set _ in range [0.4, 0.8]. Although anomalous methods
can be successfully identified by CloudDiag in our three
casestudies, we observe that the value of beta can
slightly influence the precision. Empirically, the value
0.5 is a best choice for _.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 351

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CONCLUSION AND FUTURE WORK:

Request tracing technologies have been proven ef-
fective in performance debugging. Here, CloudDiag
resorts to a white-box instrumentation mechanism to
trace service requests, because the source codes of ser-
vices are generally available in typical production cloud
systems. Note that such a white-box performance data
acquisition component of CloudDiag can also be substi-
tuted with another tracing mechanism if it can obtain
the latency data of method invocations.

Another way to trace requests is via black-box mecha-
nisms. Black-box tracing mechanisms assume no knowl-
edge of the source codes. But, existing approaches
generally cannot directly obtain the latency data of
method invocations. In this regard, a black-box trac-
ing mechanism can be deemed as a tracing mechanism
with the large granularity (e.g., in node level).

There is a tradeoff between tracing granularity and de-
bugging effort. As a result, more effort will be increased
in troubleshooting the performance anomalies if a
black-box tracing mechanism is applied. To incorporate
black-box tracing mechanisms with CloudDiag, a future
direction is to explore black-box tracing mechanisms so
that a fine granularity (i.e., in method invocation level)
can be achieved. To this end, the runtime instrumenta-
tion can be a promising technique.

In conclusion, the work proposes CloudDiag, an ef-
ficient, unsupervised diagnosis tool for locating fine-
grained performance anomalies. The experimental
results demonstrate that our approach scales well to
massive tracing data. In future, the work implements
that CloudDiag can effectively and conveniently help
operators diagnose three real-world performance
problems with high precision and recall.

REFERENCES:

1]. Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael
Rung-Tsong Lyu and Hua Cai, “Toward Fine-Grained,
Unsupervised, Scalable Performance Diagnosis for Pro-
duction Cloud Computing Systems.”IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 6, pp
1245-1254, June-2013.

EVALUATION:

CloudDiag has been launched in Alibaba Cloud Com-
puting Company to perform anomaly diagnosis in
itsproduction cloud computing systems. This section
reports three case studies during our experiences in
usingCloudDiag in Alibaba. Our target cloud system
is a cloud facility for Aliyun Mail, a production e-mail
system that provides free e-mail service to the public.2
ListMail, ReadMail, and SendMail are three services
that are utilized to handle requests of listing mail titles,
reading mail contents, and sending mails, respectively.
They are the typical services of our target system, and
are the focus of our experimental studies.Services are
composed of a series of components (e.g.,storage and
communication). Each component has many homoge-
neous replicas that are deployed on different hosts.

Currently, more than 20 million user requests are han-
dled per day. On average, a request will typically go
through over 10 hosts, invoking over 100 instrumented
methods. By default, requests are sampled with the ra-
tio of 1/200.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 350

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Generally, the target cloud system would produce
about 30-50 gigabytes (around 120-200 million lines) of-
tracing logs per hour. CloudDiag is deployed in a small
cluster with 10 nodes. Each node is a typical low-end
computer running Linux RHEL 5.4.

CloudDiag proactively pulls the tracing data from the
target cloud in a periodical manner (once every hour in
our experiments). It then runs a customized mapredu-
ceprocess to assemble and classify tracing data. First,
map tasks assign correlated tracing logs that belong to
the same requests to corresponding reduce tasks.

Second, reduce tasks generate and classify requests
into categories. For the map-reduce cluster, one impor-
tant parameter is the split size, i.e., the volume of data
assigned to each Maptask. The split size determines
the number of Map tasks.

A smaller split size indicates that more Map tasks are
required to process a given data set. We vary the split
sizes from 32 to 512 MB for three data sets (with trace
entries sizesbeing 120, 160, and 200 million lines of
trace logs).

The computational time of the map-reduce procedure
is shown in Fig. 8. We can see the cluster performs the
best when the split size is 128 MB. Hence, in the rest of
our experiments, we set the split size 128 MB.Finally,

CloudDiag adopts a state-of-the-art RPCA implemen-
tation, called inexact ALM algorithm [21] in its per-
formance anomaly detection approach. It is a mature
open-source implementation, and can be used in a
blackboxway for CloudDiag.

SCALABILITY EVALUATION:

For efficiency consideration, CloudDiag is required to
be scalable to the massive performance data. Since
CloudDiag conducts the tracing data collection and as-
sembly proactively,the anomaly diagnosing step is the
only issue that will influence the scalability of CloudDi-
ag. We study the efficiency of the RPCA-based anomaly
detection approach. The inputs are the performance
data of a typical category of requests to the SendMail
service, which bears

a critical call tree that contains 117 methods. There are
about 4 million of requests following this call tree each
day. Fig. 9 plots the computation time of the anomaly
detection approach under different request numbers.

It shows that the computational time of the approach
also scales almost linearly with the performance data
volumesof up to 100 thousand requests. This demon-
strates the high scalability of the RPCA-based anom-
aly detection algorithm.The process of computing a
100;000 _ 117 matrix takes lessthan 200 seconds.

DISCUSSIONS:

In the above three case studies, we compare CloudDiag
with the PCA-based approach in terms of precision and
recall. From Table 2, we can see that CloudDiag out-
performs the PCA-based approach in both measures,
especially in term of precision. Hence, CloudDiag can
savemore effort in troubleshooting the primary cause
of the performance anomalies. This shows that the
PCA-based approach cannot well handle the perfor-
mance data with gross errors.

It consequently generates more false positives and
false negatives. The RPCA-based approach CloudDiag,
on the other hand, can work well for such non-Gauss-
ian performance data.

There are two thresholds in our approach. _ and _ are,
respectively, utilized to detect whether categories or
invoked methods are anomalous or not. _ is conven-
tionallyset to 1 [15]. In our experimental study, we have
set _ in range [0.4, 0.8]. Although anomalous methods
can be successfully identified by CloudDiag in our three
casestudies, we observe that the value of beta can
slightly influence the precision. Empirically, the value
0.5 is a best choice for _.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 351

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CONCLUSION AND FUTURE WORK:

Request tracing technologies have been proven ef-
fective in performance debugging. Here, CloudDiag
resorts to a white-box instrumentation mechanism to
trace service requests, because the source codes of ser-
vices are generally available in typical production cloud
systems. Note that such a white-box performance data
acquisition component of CloudDiag can also be substi-
tuted with another tracing mechanism if it can obtain
the latency data of method invocations.

Another way to trace requests is via black-box mecha-
nisms. Black-box tracing mechanisms assume no knowl-
edge of the source codes. But, existing approaches
generally cannot directly obtain the latency data of
method invocations. In this regard, a black-box trac-
ing mechanism can be deemed as a tracing mechanism
with the large granularity (e.g., in node level).

There is a tradeoff between tracing granularity and de-
bugging effort. As a result, more effort will be increased
in troubleshooting the performance anomalies if a
black-box tracing mechanism is applied. To incorporate
black-box tracing mechanisms with CloudDiag, a future
direction is to explore black-box tracing mechanisms so
that a fine granularity (i.e., in method invocation level)
can be achieved. To this end, the runtime instrumenta-
tion can be a promising technique.

In conclusion, the work proposes CloudDiag, an ef-
ficient, unsupervised diagnosis tool for locating fine-
grained performance anomalies. The experimental
results demonstrate that our approach scales well to
massive tracing data. In future, the work implements
that CloudDiag can effectively and conveniently help
operators diagnose three real-world performance
problems with high precision and recall.

REFERENCES:

1]. Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael
Rung-Tsong Lyu and Hua Cai, “Toward Fine-Grained,
Unsupervised, Scalable Performance Diagnosis for Pro-
duction Cloud Computing Systems.”IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 6, pp
1245-1254, June-2013.

[2]. B. Sigelman, L. Barroso, M. Burrows, P. Stephen-
son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag,
“Dapper, a Large-Scale Distributed Systems Tracing In-
frastructure,” Technical Report Dapper-2010-1, Google,
2010.

[3]. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber,
“Bigtable: A Distributed Storage System for Structured
Data,” ACM Transaction Computer Systems, vol. 26,
no. 2, pp. 1-26, 2008.

[4]. H. Mi, H. Wang, Y. Zhou, M.R. Lyu, and H. Cai,
“P-tracer: Path-Base Performance Profiling in Cloud
Computing Systems,” proc. IEEE 36th Ann. Computer
Software Applications Conference (COMPSAC), pp.
509-514, 2012.

 [5]. M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E.
Brewer, “Pinpoint: Problem Determination in Large,
Dynamic Internet Services,” Proc. IEEE International
Conference Dependable Systems and Networks (DSN),
pp. 595-604, 2002.

 [6]. P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah,
and A. Vahdat, “Pip: Detecting the Unexpected in Dis-
tributed Systems,” Proc. USENIX 3rd Symposium Net-
worked Systems Design and Implementation (NSDI),
pp. 115-128, 2006.

[7]. Jens-Matthias Bohli, Nils Gruschka, Meiko Jensen,
Luigi Lo Iacono and Ninja Marnau, “Security and Priva-
cy-Enhancing Multicloud Architectures”, IEEE Transac-
tions on Dependable and Secure Computing, Vol. 10,
No. 4, pp. 212-224, July/August 2013.

 [8]. M. V. Mahoney and P. K. Chan. “Learning Rules
for Anomaly Detection of Hostile Network Traffic”, 3rd
IEEE International Conference on Data Mining, pp. 601-
604,2003.

[9]. Varun Chandola, Arindam Banerjee and Vipin Ku-
mar “Model-based Thermal Anomaly Detection in
Cloud Datacenters”, ACM Computing Surveys,pp. 1-72,
Sept.-2009.

 [10]. Kaustav Das and Jeff Schneider “Detecting Anom-
alous Records in Categorical Datasets”, 13th ACM SIG-
KDD international conference on Knowledge discovery
and data mining, pp. 220-229, 2007.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 352

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[11]. Chengwei Wang, Vanish Talwar, Karsten Schwan
and Parthasarathy Ranganathan “Online Detection of
Utility Cloud Anomalies using Metric Distributions”,
IEEE Network Operations and Management Sympo-
sium (NOMS), pp. 96-103, april 2010.

 [12]. Lena Tenenboim-Chekina, Lior Rokach and Brach
Shapira “Ensemble of Feature Chains for Anomaly De-
tection”, © Springer-Verlag Berlin Heidelberg, 2011.

 [13]. Husanbir S. Pannu, Jianguo Liu and Song Fu “AAD:
Adaptive Anomaly Detection System for Cloud Com-
puting Infrastructures”, 31st International Symposium
on Reliable Distributed Systems, pp. 396-397, 2012.

[14]. Matthias Gander, Basel Katt, Michael Felderer,
Adrian Tolbaru, Ruth Breu, and Alessandro Moschitti
“Anomaly Detection in the Cloud: Detecting Security
Incidents via Machine Learning”,©Springer Verlag Ber-
lin Heidelberg, pp. 103-116, july 2013.

[15]. Haroon Malik,Bram Adams, Ahmed E. Hassan”
Automatic Detection of Performance Deviations in the
Load Testing of Large Scale Systems” IEEE 35th Inter-
national Conference on Software Engineering (ICSE),
pp. 1012-1021, may-2013.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jor-
dan, “Online System Problem Detection by Mining Pat-
terns of Console Logs,” Proc. IEEE Int’l Conf. Data Min-
ing (ICDM), pp. 588-597, 2009.

[17] A. Oliner and A. Aiken, “Online Detection of Multi-
Component Interactions in Production Systems,” Proc.
IEEE/IFIP 41st Int’l Conf. Dependable Systems and Net-
works (DSN), pp. 49-60, 2011.

[18] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sen-
sitivity of PCA for Traffic Anomaly Detection,” ACM SIG-
METRICS Performance Evaluation Rev., vol. 35, no. 1,
pp. 109-120, 2007.

[19] H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, and T. Sun,
“Performance Problems Diagnosis in Cloud Comput-
ing Systems by Mining Request Trace Logs,” Proc. IEEE
Network Operations and Management Symp. (NOMS),
pp. 893-899, 2012.

[20] I. Jolliffe, Principal Component Analysis. Springer,
2002.

[21] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The Augment-
ed Lagrange Multiplier Method for Exact Recovery
of Corrupted Low-Rank Matrices,” Arxiv preprint
arXiv:1009.5055, 2010.

[22] K. Nagaraja, F. Oliveira, R. Bianchini, R. Martin, and
T. Nguyen, “Understanding and Dealing with Opera-
tor Mistakes in Internet Services,” Proc. USENIX Sixth
Conf. Symp. Operating Systems Design and Implemen-
tation (OSDI), pp. 5-20, 2004.

[23] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier,
“Using Magpie for Request Extraction and Workload
Modelling,” Proc. USENIX Sixth Conf. Symp. Operating
Systems Design and Implementation (OSDI), pp. 259-
272, 2004.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 353

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[24] E. Thereska and G. Ganger, “Ironmodel: Robust
Performance Models in the Wild,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 36, no. 1, pp. 253-
264, 2008.

[25] B. Sigelman, L. Barroso, M. Burrows, P. Stephen-
son, M. Plaka l, D. Beaver, S. Jaspan, and C. Shanbhag,
“Dapper, a Large-Scale Distributed Systems Tracing In-
frastructure,” Technical Report dapper-2010-1, Google,
2010.

[26] H. Mi, H. Wang, Y. Zhou, M.R. Lyu, and H. Cai, “P-
tracer: Path- Base Performance Profiling in Cloud Com-
puting Systems,” Proc.

[2]. B. Sigelman, L. Barroso, M. Burrows, P. Stephen-
son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag,
“Dapper, a Large-Scale Distributed Systems Tracing In-
frastructure,” Technical Report Dapper-2010-1, Google,
2010.

[3]. F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber,
“Bigtable: A Distributed Storage System for Structured
Data,” ACM Transaction Computer Systems, vol. 26,
no. 2, pp. 1-26, 2008.

[4]. H. Mi, H. Wang, Y. Zhou, M.R. Lyu, and H. Cai,
“P-tracer: Path-Base Performance Profiling in Cloud
Computing Systems,” proc. IEEE 36th Ann. Computer
Software Applications Conference (COMPSAC), pp.
509-514, 2012.

 [5]. M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E.
Brewer, “Pinpoint: Problem Determination in Large,
Dynamic Internet Services,” Proc. IEEE International
Conference Dependable Systems and Networks (DSN),
pp. 595-604, 2002.

 [6]. P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah,
and A. Vahdat, “Pip: Detecting the Unexpected in Dis-
tributed Systems,” Proc. USENIX 3rd Symposium Net-
worked Systems Design and Implementation (NSDI),
pp. 115-128, 2006.

[7]. Jens-Matthias Bohli, Nils Gruschka, Meiko Jensen,
Luigi Lo Iacono and Ninja Marnau, “Security and Priva-
cy-Enhancing Multicloud Architectures”, IEEE Transac-
tions on Dependable and Secure Computing, Vol. 10,
No. 4, pp. 212-224, July/August 2013.

 [8]. M. V. Mahoney and P. K. Chan. “Learning Rules
for Anomaly Detection of Hostile Network Traffic”, 3rd
IEEE International Conference on Data Mining, pp. 601-
604,2003.

[9]. Varun Chandola, Arindam Banerjee and Vipin Ku-
mar “Model-based Thermal Anomaly Detection in
Cloud Datacenters”, ACM Computing Surveys,pp. 1-72,
Sept.-2009.

 [10]. Kaustav Das and Jeff Schneider “Detecting Anom-
alous Records in Categorical Datasets”, 13th ACM SIG-
KDD international conference on Knowledge discovery
and data mining, pp. 220-229, 2007.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 352

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[11]. Chengwei Wang, Vanish Talwar, Karsten Schwan
and Parthasarathy Ranganathan “Online Detection of
Utility Cloud Anomalies using Metric Distributions”,
IEEE Network Operations and Management Sympo-
sium (NOMS), pp. 96-103, april 2010.

 [12]. Lena Tenenboim-Chekina, Lior Rokach and Brach
Shapira “Ensemble of Feature Chains for Anomaly De-
tection”, © Springer-Verlag Berlin Heidelberg, 2011.

 [13]. Husanbir S. Pannu, Jianguo Liu and Song Fu “AAD:
Adaptive Anomaly Detection System for Cloud Com-
puting Infrastructures”, 31st International Symposium
on Reliable Distributed Systems, pp. 396-397, 2012.

[14]. Matthias Gander, Basel Katt, Michael Felderer,
Adrian Tolbaru, Ruth Breu, and Alessandro Moschitti
“Anomaly Detection in the Cloud: Detecting Security
Incidents via Machine Learning”,©Springer Verlag Ber-
lin Heidelberg, pp. 103-116, july 2013.

[15]. Haroon Malik,Bram Adams, Ahmed E. Hassan”
Automatic Detection of Performance Deviations in the
Load Testing of Large Scale Systems” IEEE 35th Inter-
national Conference on Software Engineering (ICSE),
pp. 1012-1021, may-2013.

[16] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jor-
dan, “Online System Problem Detection by Mining Pat-
terns of Console Logs,” Proc. IEEE Int’l Conf. Data Min-
ing (ICDM), pp. 588-597, 2009.

[17] A. Oliner and A. Aiken, “Online Detection of Multi-
Component Interactions in Production Systems,” Proc.
IEEE/IFIP 41st Int’l Conf. Dependable Systems and Net-
works (DSN), pp. 49-60, 2011.

[18] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sen-
sitivity of PCA for Traffic Anomaly Detection,” ACM SIG-
METRICS Performance Evaluation Rev., vol. 35, no. 1,
pp. 109-120, 2007.

[19] H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, and T. Sun,
“Performance Problems Diagnosis in Cloud Comput-
ing Systems by Mining Request Trace Logs,” Proc. IEEE
Network Operations and Management Symp. (NOMS),
pp. 893-899, 2012.

[20] I. Jolliffe, Principal Component Analysis. Springer,
2002.

[21] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The Augment-
ed Lagrange Multiplier Method for Exact Recovery
of Corrupted Low-Rank Matrices,” Arxiv preprint
arXiv:1009.5055, 2010.

[22] K. Nagaraja, F. Oliveira, R. Bianchini, R. Martin, and
T. Nguyen, “Understanding and Dealing with Opera-
tor Mistakes in Internet Services,” Proc. USENIX Sixth
Conf. Symp. Operating Systems Design and Implemen-
tation (OSDI), pp. 5-20, 2004.

[23] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier,
“Using Magpie for Request Extraction and Workload
Modelling,” Proc. USENIX Sixth Conf. Symp. Operating
Systems Design and Implementation (OSDI), pp. 259-
272, 2004.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 353

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[24] E. Thereska and G. Ganger, “Ironmodel: Robust
Performance Models in the Wild,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 36, no. 1, pp. 253-
264, 2008.

[25] B. Sigelman, L. Barroso, M. Burrows, P. Stephen-
son, M. Plaka l, D. Beaver, S. Jaspan, and C. Shanbhag,
“Dapper, a Large-Scale Distributed Systems Tracing In-
frastructure,” Technical Report dapper-2010-1, Google,
2010.

[26] H. Mi, H. Wang, Y. Zhou, M.R. Lyu, and H. Cai, “P-
tracer: Path- Base Performance Profiling in Cloud Com-
puting Systems,” Proc.

