
ABSTRACT:

Provable data possession (PDP) is a technique for en-
suring the integrity of data in storage outsourcing. In
this paper, we address the construction of an efficient
PDP scheme for distributed cloud storage to support
the scalability of service and data migration, in which
we consider the existence of multiple cloud service pro-
viders to cooperatively store and maintain the clients’
data. We present a cooperative PDP (CPDP) scheme
based on homomorphic verifiable response and hash
index hierarchy.

 We prove the security of our scheme based on multi-
prover zero-knowledge proof system, which can satisfy
completeness, knowledge soundness, and zero-knowl-
edge properties. In addition, we articulate perfor-
mance optimization mechanisms for our scheme, and
in particular present an efficient method for selecting
optimal parameter values to minimize the computa-
tion costs of clients and storage service providers. Our
experiments show that our solution introduces lower
computation and communication overheads in com-
parison with non-cooperative approaches.

1. INTRODUCTION:

There exist various tools and technologies for multi
cloud, such as Platform VM Orchestrator, VMwarev-
Sphere, and Ovirt. These tools help cloud providers
construct a distributed cloud storage platform for man-
aging clients’ data. However, if such an important plat-
form is vulnerable to security attacks, it would bring
irretrievable losses to the clients. For example, the con-
fidential data in an enterprise may be illegally accessed
through a remote interface provided by a multi-cloud,
or relevant data and archives may be lost or tampered
with when they are stored into an∙ uncertain storage
pool outside the enterprise. Therefore, it is indispens-
able for cloud service providers to provide security
techniques for managing their storage services.

Podila Brijesh Babu
Nimra College of Engineering & Technology.

Padmaja
Nimra College of Engineering & Technology.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 427

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

2. SYSTEM DESIGN:

This section would analyze the system based on the
requirement gathered in the previous section. Analy-
sis would concentrate on what the system should have
and should do rather than how it is going to be done.
Basically, there are two areas of analysis: data analysis
and data flow analysis.

2.1 SOFTWARE TECHNIQUES:
A) OBJECT ORIENTED ANALYSIS AND DE-
SIGN:
Object-oriented analysis and design (OAD) is often
part of the development of large scale systems and
programs often using the Unified Modeling Language
(UML). OAD applies object-modeling techniques to
analyze the requirements for a context for example, a
system, and a set of system modules, an organization,
or a business unit and to design a solution. Most mod-
ern object-oriented analysis and design methodolo-
gies are use case driven across requirements, design,
implementation, testing, and deployment.Use cases
were invented with object oriented programming, but
they’re also very well suited for systems that will be
implemented in the procedural paradigm. The Unified
Modeling Language (UML) has become the standard
modeling language used in object-oriented analysis
and design to graphically illustrate system concepts.
Part of the reason for OAD is its use in developing pro-
grams that will have an extended lifetime.

B) Object Oriented Systems:

An object-oriented system is composed of objects. The
behavior of the system is achieved through collabora-
tion between these objects, and the state of the system
is the combined state of all the objects in it. Collabora-
tion between objects involves those sending messages
to each other. The exact semantics of message send-
ing between objects varies depending on what kind of
system is being modeled.

Integrity Verification of Cooperative Provable Data Using
Cloud Storage Factors

In some systems, “sending a message” is the same
as “invoking a method”. In other systems, “sending a
message” might involve sending data via a socket.

C) Object Oriented Analysis:

Object-Oriented Analysis (OOA) aims to model the
problem domain, the problem we want to solve by de-
veloping an object-oriented (OO) system. The source
of the analysis is a written requirement statements,
and/or written use cases, UML diagrams can be used
to illustrate the statements. An analysis model will not
take into account implementation constraints, such as
concurrency, distribution, persistence, or inheritance,
nor how the system will be built.

 The model of a system can be divided into multiple do-
mains each of which are separately analyzed, and rep-
resent separate business, technological, or conceptual
areas of interest. The result of object-oriented analysis
is a description of what is to be built, using concepts
and relationships between concepts, often expressed
as a conceptual model. Any other documentation that
is needed to describe what is to be built is also included
in the result of the analysis. That can include a detailed
user interface mock-up document. The implementa-
tion constraints are decided during the object-oriented
design (OOD) process.

D) Object Oriented Design:

Object-Oriented Design (OOD) is an activity where the
designers are looking for logical solutions to solve a
problem, using objects. Object-oriented design takes
the conceptual model that is the result of object-ori-
ented analysis, and adds implementation constraints
imposed by the environment, the programming lan-
guage and the chosen tools, as well as architectural as-
sumptions chosen as basis of design. The concepts in
the conceptual model are mapped to concrete classes,
to abstract interfaces in APIs and to roles that the ob-
jects take in various situations. The interfaces and their
implementations for stable concepts can be made
available as reusable services. Concepts identified as
unstable in object-oriented analysis will form basis for
policy classes that make decisions, implement environ-
ment-specific or situation specific logic or algorithms.
The result of the object-oriented design is a detail de-
scription how the system can be built, using objects.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 428

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Object-oriented software engineering (OOSE) is an ob-
ject modeling language and methodology. OOSE was
developed by Ivar Jacobson in 1992 while at Objectory
AB After Rational bought Objectory AB, the OOSE no-
tation, methodology, and tools became superseded.

•As one of the primary sources of the Unified Mod-
eling Language (UML), concepts and notation from
OOSE have been incorporated into UML.

•The methodology part of OOSE has since evolved
into the Rational Unified Process (RUP).

•The OOSE tools have been replaced by tools support-
ing UML and RUP.

OOSE has been largely replaced by the UML notation
and by the RUP methodology.

3) MODULE DESCRIPTION:
A) MULTI CLOUD STORAGE:

Distributed computing is used to refer to any large col-
laboration in which many individual personal computer
owners allow some of their computer’s processing
time to be put at the service of a large problem. In our
system the each cloud admin consist of data blocks.
The cloud user uploads the data into multi cloud.

Cloud computing environment is constructed based on
open architectures and interfaces; it has the capability
to incorporate multiple internal and/or external cloud
services together to provide high interoperability. We
call such a distributed cloud environment as a multi-
Cloud .A multi-cloud allows clients to easily access his/
her resources remotely through interfaces.

B) COOPERATIVE PDP:

Cooperative PDP (CPDP) schemes adopting zero-
knowledge property and three-layered index hier-
archy, respectively. In particular efficient method for
selecting the optimal number of sectors in each block
to minimize the computation costs of clients and stor-
age service providers. Cooperative PDP (CPDP) scheme
without compromising data privacy based on modern
cryptographic techniques

C) DATA INTEGRITY:

Data Integrity is very important in database operations
in particular and Data warehousing and Business intel-
ligence in general. Because Data Integrity ensured that
data is of high quality, correct, consistent and acces-
sible.

D) THIRD PARTY AUDITOR:

Trusted Third Party (TTP) whois trusted to store veri-
fication parameters and offerpublic query services for
these parameters. In our system the Trusted Third Par-
ty, view the user data blocks and uploaded to the dis-
tributed cloud. In distributed cloud environment each
cloud has user data blocks. If any odification tried by
cloud owner a alert is send to the Trused Third Party.

E) CLOUD USER:

The Cloud User who has a large amount of data to be
stored in multiple clouds and have the permissions to
access and manipulate stored data. The User’s Data is
converted into data blocks. The data blocks are upload-
ed to the cloud. The TPA views the data blocks and Up-
loaded in multi cloud. The user can update the upload-
ed data. If the user wants to download their files, the
data’s in multi cloud is integrated and downloaded.

4. DATA-FLOW DIAGRAM (DFDS):

Data flow diagrams (“bubble charts”) are directed
graphs in which the nodes specify processing activi-
ties and the arcs specify data items transmitted be-
tween processing nodes. A data flow diagram might
represent data flow between individual statements or
blocks of statements in a routine, data flow between
sequential routines, data flow between concurrent
process, or data flow in a distributed computing sys-
tem, where each node represents a geographically re-
mote processing unit.

Unlike flow charts, data flow diagrams do not indicate
decision logic or condition under which various nodes
in the diagram might be activated. Data flow diagrams
can be expressed using special symbols. These symbols
can be used to denote processing nodes, data nodes,
and data sources and data stores

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 429

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Context Level DFD (0-Level)

Detailed level DFD (Level-1)

5. UNIFIED MODELING LANGUAGE:

 The Unified Modeling Language (UML) is a standard
language for writing software blueprints. The UML may
be used to visualize, specify, construct, and document
the artifacts of a software-intensive system. The UML
is a appropriate for modeling systems ranging from en-
terprise information systems to distributed Web-based
applications and even to hard real time embedded sys-
tems.

It is a very expressive language, addressing all the
views needed to develop and then deploy such sys-
tems. The UML is only a language and so is just one
part of a software development method. The UML is
process independent, although optimally it should be
used in a process that is use case driven, architecture-
centric, iterative, and incremental.

Class Diagram:

In some systems, “sending a message” is the same
as “invoking a method”. In other systems, “sending a
message” might involve sending data via a socket.

C) Object Oriented Analysis:

Object-Oriented Analysis (OOA) aims to model the
problem domain, the problem we want to solve by de-
veloping an object-oriented (OO) system. The source
of the analysis is a written requirement statements,
and/or written use cases, UML diagrams can be used
to illustrate the statements. An analysis model will not
take into account implementation constraints, such as
concurrency, distribution, persistence, or inheritance,
nor how the system will be built.

 The model of a system can be divided into multiple do-
mains each of which are separately analyzed, and rep-
resent separate business, technological, or conceptual
areas of interest. The result of object-oriented analysis
is a description of what is to be built, using concepts
and relationships between concepts, often expressed
as a conceptual model. Any other documentation that
is needed to describe what is to be built is also included
in the result of the analysis. That can include a detailed
user interface mock-up document. The implementa-
tion constraints are decided during the object-oriented
design (OOD) process.

D) Object Oriented Design:

Object-Oriented Design (OOD) is an activity where the
designers are looking for logical solutions to solve a
problem, using objects. Object-oriented design takes
the conceptual model that is the result of object-ori-
ented analysis, and adds implementation constraints
imposed by the environment, the programming lan-
guage and the chosen tools, as well as architectural as-
sumptions chosen as basis of design. The concepts in
the conceptual model are mapped to concrete classes,
to abstract interfaces in APIs and to roles that the ob-
jects take in various situations. The interfaces and their
implementations for stable concepts can be made
available as reusable services. Concepts identified as
unstable in object-oriented analysis will form basis for
policy classes that make decisions, implement environ-
ment-specific or situation specific logic or algorithms.
The result of the object-oriented design is a detail de-
scription how the system can be built, using objects.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 428

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Object-oriented software engineering (OOSE) is an ob-
ject modeling language and methodology. OOSE was
developed by Ivar Jacobson in 1992 while at Objectory
AB After Rational bought Objectory AB, the OOSE no-
tation, methodology, and tools became superseded.

•As one of the primary sources of the Unified Mod-
eling Language (UML), concepts and notation from
OOSE have been incorporated into UML.

•The methodology part of OOSE has since evolved
into the Rational Unified Process (RUP).

•The OOSE tools have been replaced by tools support-
ing UML and RUP.

OOSE has been largely replaced by the UML notation
and by the RUP methodology.

3) MODULE DESCRIPTION:
A) MULTI CLOUD STORAGE:

Distributed computing is used to refer to any large col-
laboration in which many individual personal computer
owners allow some of their computer’s processing
time to be put at the service of a large problem. In our
system the each cloud admin consist of data blocks.
The cloud user uploads the data into multi cloud.

Cloud computing environment is constructed based on
open architectures and interfaces; it has the capability
to incorporate multiple internal and/or external cloud
services together to provide high interoperability. We
call such a distributed cloud environment as a multi-
Cloud .A multi-cloud allows clients to easily access his/
her resources remotely through interfaces.

B) COOPERATIVE PDP:

Cooperative PDP (CPDP) schemes adopting zero-
knowledge property and three-layered index hier-
archy, respectively. In particular efficient method for
selecting the optimal number of sectors in each block
to minimize the computation costs of clients and stor-
age service providers. Cooperative PDP (CPDP) scheme
without compromising data privacy based on modern
cryptographic techniques

C) DATA INTEGRITY:

Data Integrity is very important in database operations
in particular and Data warehousing and Business intel-
ligence in general. Because Data Integrity ensured that
data is of high quality, correct, consistent and acces-
sible.

D) THIRD PARTY AUDITOR:

Trusted Third Party (TTP) whois trusted to store veri-
fication parameters and offerpublic query services for
these parameters. In our system the Trusted Third Par-
ty, view the user data blocks and uploaded to the dis-
tributed cloud. In distributed cloud environment each
cloud has user data blocks. If any odification tried by
cloud owner a alert is send to the Trused Third Party.

E) CLOUD USER:

The Cloud User who has a large amount of data to be
stored in multiple clouds and have the permissions to
access and manipulate stored data. The User’s Data is
converted into data blocks. The data blocks are upload-
ed to the cloud. The TPA views the data blocks and Up-
loaded in multi cloud. The user can update the upload-
ed data. If the user wants to download their files, the
data’s in multi cloud is integrated and downloaded.

4. DATA-FLOW DIAGRAM (DFDS):

Data flow diagrams (“bubble charts”) are directed
graphs in which the nodes specify processing activi-
ties and the arcs specify data items transmitted be-
tween processing nodes. A data flow diagram might
represent data flow between individual statements or
blocks of statements in a routine, data flow between
sequential routines, data flow between concurrent
process, or data flow in a distributed computing sys-
tem, where each node represents a geographically re-
mote processing unit.

Unlike flow charts, data flow diagrams do not indicate
decision logic or condition under which various nodes
in the diagram might be activated. Data flow diagrams
can be expressed using special symbols. These symbols
can be used to denote processing nodes, data nodes,
and data sources and data stores

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 429

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Context Level DFD (0-Level)

Detailed level DFD (Level-1)

5. UNIFIED MODELING LANGUAGE:

 The Unified Modeling Language (UML) is a standard
language for writing software blueprints. The UML may
be used to visualize, specify, construct, and document
the artifacts of a software-intensive system. The UML
is a appropriate for modeling systems ranging from en-
terprise information systems to distributed Web-based
applications and even to hard real time embedded sys-
tems.

It is a very expressive language, addressing all the
views needed to develop and then deploy such sys-
tems. The UML is only a language and so is just one
part of a software development method. The UML is
process independent, although optimally it should be
used in a process that is use case driven, architecture-
centric, iterative, and incremental.

Class Diagram:

Database Relations:

Oracle 7.3 is a relational database and data driven not
design driven. Designed once a relational database the
data changes over time does not affect the applica-
tions. In oracle 7.3 data is self-describing.

Data stored in one place read from one place and modi-
fied in one place. Data is stored once so maintaining
consistency. The objective of oracle 7.3 is to manage
corporate data, no matter what the type of data type
it is. This includes structured data and unstructured
data.

Oracle focuses mainly on the following areas

1.High-end online-transaction processing and data
warehousing requirements.

2.Object-relational extensions.

3.Performance, manageability, and functional enhance-
ments.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 430

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Steps in the execution of a JSP Application:

1.The client sends a request to the web server for a JSP
file by giving the name of the JSP file within the form
tag of a HTML page.

2.This request is transferred to the JavaWebServer. At
the server side JavaWebServer receives the request
and if it is a request for a jsp file server gives this re-
quest to the JSP engine.

3. JSP engine is program which can under stands the
tags of the jsp and then it converts those tags into a
Servlet program and it is stored at the server side. This
Servlet is loaded in the memory and then it is executed
and the result is given back to the JavaWebServer and
then it is transferred back to the result is given back to
the JavaWebServer and then it is transferred back to
the client.

User Acceptance Testing is a critical phase of any proj-
ect and requires significant participation by the end
user. It also ensures that the system meets the func-
tional requirements.

TEST RESULTS:

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 431

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CONCLUSION:

We presented the construction of an efficient PDP
scheme for distributed cloud storage. Based on homo-
morphic verifiable response and hash index hierarchy,
we have proposed a cooperative PDP scheme to sup-
port dynamic scalability on multiple storage servers.

We also showed that our scheme provided all securi-
ty properties required by zero knowledge interactive
proof system, so that it can resist various attacks even
if it is deployed as a public audit service in clouds. Fur-
thermore, we optimized the probabilistic query and pe-
riodic verification to improve the audit performance.

Our experiments clearly demonstrated that our ap-
proaches only introduce a small amount of computa-
tion and communication overheads. Therefore, our
solution can be treated as a new candidate for data
integrity verification in outsourcing data storage sys-
tems.

As part of future work, we would extend our work to
explore more effective CPDP constructions. Finally, it
is still a challenging problem for the generation of tags
with the length irrelevant to the size of data blocks. We
would explore such a issue to provide the support of
variable-length block verification.

REFERENCES:

[1] B. Sotomayor, R. S. Montero, I. M. Llorente, and I.
T. Foster, Virtual infrastructure management in private
and hybrid clouds,” IEEE Internet Computing, vol. 13,
no. 5, pp. 14–22,2009.

Database Relations:

Oracle 7.3 is a relational database and data driven not
design driven. Designed once a relational database the
data changes over time does not affect the applica-
tions. In oracle 7.3 data is self-describing.

Data stored in one place read from one place and modi-
fied in one place. Data is stored once so maintaining
consistency. The objective of oracle 7.3 is to manage
corporate data, no matter what the type of data type
it is. This includes structured data and unstructured
data.

Oracle focuses mainly on the following areas

1.High-end online-transaction processing and data
warehousing requirements.

2.Object-relational extensions.

3.Performance, manageability, and functional enhance-
ments.

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 430

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

Steps in the execution of a JSP Application:

1.The client sends a request to the web server for a JSP
file by giving the name of the JSP file within the form
tag of a HTML page.

2.This request is transferred to the JavaWebServer. At
the server side JavaWebServer receives the request
and if it is a request for a jsp file server gives this re-
quest to the JSP engine.

3. JSP engine is program which can under stands the
tags of the jsp and then it converts those tags into a
Servlet program and it is stored at the server side. This
Servlet is loaded in the memory and then it is executed
and the result is given back to the JavaWebServer and
then it is transferred back to the result is given back to
the JavaWebServer and then it is transferred back to
the client.

User Acceptance Testing is a critical phase of any proj-
ect and requires significant participation by the end
user. It also ensures that the system meets the func-
tional requirements.

TEST RESULTS:

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 431

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

CONCLUSION:

We presented the construction of an efficient PDP
scheme for distributed cloud storage. Based on homo-
morphic verifiable response and hash index hierarchy,
we have proposed a cooperative PDP scheme to sup-
port dynamic scalability on multiple storage servers.

We also showed that our scheme provided all securi-
ty properties required by zero knowledge interactive
proof system, so that it can resist various attacks even
if it is deployed as a public audit service in clouds. Fur-
thermore, we optimized the probabilistic query and pe-
riodic verification to improve the audit performance.

Our experiments clearly demonstrated that our ap-
proaches only introduce a small amount of computa-
tion and communication overheads. Therefore, our
solution can be treated as a new candidate for data
integrity verification in outsourcing data storage sys-
tems.

As part of future work, we would extend our work to
explore more effective CPDP constructions. Finally, it
is still a challenging problem for the generation of tags
with the length irrelevant to the size of data blocks. We
would explore such a issue to provide the support of
variable-length block verification.

REFERENCES:

[1] B. Sotomayor, R. S. Montero, I. M. Llorente, and I.
T. Foster, Virtual infrastructure management in private
and hybrid clouds,” IEEE Internet Computing, vol. 13,
no. 5, pp. 14–22,2009.

[2] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. N. J. Peterson, and D. X. Song, “Provable
data possession at untrusted stores,” in ACM Confer-
ence on Computer and Communications Security, P.
Ning, S. D. C. di Vimercati, and P. F. Syverson, Eds. ACM,
2007, pp. 598–609.

[3] A. Juels and B. S. K. Jr., “Pors: proofs of retrievabil-
ity for large files,” in ACMConference on Computer and
Communications Security, P. Ning, S. D. C. di Vimercati,
and P. F. Syverson, Eds. ACM, 2007, pp. 584–597.

[4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,
“Scalabl and efficient provable data possession,” in
Proceedings of the 4th international conference on Se-
curity and privacy in communication netowrks, Secure-
Comm, 2008.

[5] C. C. Erway, A. K¨upc¸ ¨u, C. Papamanthou, and R.
Tamassia, “Dynamic provable data possession,” in
ACM Conference on Computer and Communications
Security, E. Al-Shaer, S. Jha, and A. D. Keromytis, Eds.
ACM, 2009, pp. 213–222.

[6] H. Shacham and B. Waters, “Compact proofs of
retrievability,” in ASIACRYPT, ser. Lecture Notes in
Computer Science, J. Pieprzyk, Ed., vol. 5350. Springer,
2008, pp. 90–107.

[7] Q. Wang, C.Wang, J. Li, K. Ren, and W. Lou, “En-
abling public verifiability and data dynamics for storage
security in cloud computing,” in

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 432

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S.
Yau, “Dynamic audit services for integrity verification
of outsourced storages in clouds,” in SAC, W. C. Chu,
W. E. Wong, M. J. Palakal, and C.-C. Hung, Eds. ACM,
2011, pp. 1550–1557.

[9] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-
availability and integrity layer for cloud storage,” in
ACM Conference on Computer and Communications
Security, E. Al-Shaer, S. Jha, and A. D. Keromytis, Eds.
ACM, 2009, pp. 187–198.

[10] Y. Dodis, S. P. Vadhan, and D. Wichs, “Proofs of
retrievability via hardness amplification,” in TCC, ser.
Lecture Notes in Computer Science, O. Reingold, Ed.,
vol. 5444. Springer, 2009, pp. 109–127.

[11] L. Fortnow, J. Rompel, and M. Sipser, “On the pow-
er of multiprover interactive protocols,” in Theoretical
Computer Science, 1988, pp. 156–161.

[12] Y. Zhu, H. Hu, G.-J. Ahn, Y. Han, and S. Chen, “Col-
laborative integrity verification in hybrid clouds,” in
IEEE Conference on the 7th International Conference
on Collaborative Computing: Networking, Applications
and Worksharing, CollaborateCom, Orlando, Florida,
USA, October 15-18, 2011, pp. 197–206.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia, “Above the clouds: A berkeley
view of cloud computing,” EECS Department, Univer-
sity of California, Berkeley, Tech. Rep., Feb 2009

 Volume No: 1(2014), Issue No: 12 (December) December 2014
 www.ijmetmr.com Page 433

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Monthly Peer Reviewed Open Access International e-Journal

