

 Page 2061

VLSI Implementation of Fast Addition Subtraction and

Multiplication (Unsigned) Using Quaternary Signed Digit Number

System

A. Leela Bhardwaj Reddy

Pg Scholar, Dept Of ECE,

PBR Visvodaya Institute Of Technology & Science

Kavali, Nellore, AP, India.

V. Narayana Reddy

Associate Professor, Dept Of ECE,

PBR Visvodaya Institute Of Technology & Science

Kavali, Nellore, AP, India.

Abstract:

The high performance Arithmetic units are essential

since the speed of the digital processor depends

heavily on the speed of the Arithmetic units used is

the system. Digital arithmetic operations are very

important in the design of digital processors and

application-specific systems. Arithmetic circuits form

an important class of circuits in digital systems.

Adders which are a part of Arithmetic unit are most

commonly used in various electronic applications e.g.

Digital signal processing in which adders are used to

perform various algorithms like FIR, IIR etc. In past,

the major challenge for VLSI designer is to reduce

area of chip by using efficient optimization

techniques. Then the next phase is to increase the

speed of operation to achieve fast calculations like, in

today’s microprocessors millions of instructions are

performed per second. Speed of operation is one of

the major constraints in designing DSP processors.

The proposed design of QSD Arithmetic unit involves

significantly less area and time complexity for higher

word sizes due to fewer requirements of bits and low

storage density.

With the binary number system, the computation

speed is limited by formation and propagation of

carry especially as the number of bits increases.

Using a quaternary Signed Digit number system one

may perform carry free addition, borrow free

subtraction and multiplication. In QSD, each digit

can be represented by a number from -3 to 3. Carry

free addition and other operations on a large number

of digits such as 64, 128, or more can be implemented

with constant delay and less complexity.

1.INTRODUCTION

1.1 Introduction

These high performance Arithmetic units are essential

since the speed of the digital processor depends

heavily on the speed of the Arithmetic units used is the

system. Digital arithmetic operations are very

important in the design of digital processors and

application-specific systems [1]. Arithmetic circuits

form an important class of circuits in digital systems.

Adders are most commonly used in various electronic

applications e.g. Digital signal processing in which

adders are used to perform various algorithms like

FIR, IIR etc [2]. In past, the major challenge for VLSI

designer is to reduce area of chip by using efficient

optimization techniques. Then the next phase is to

increase the speed of operation to achieve fast

calculations like, in today’s microprocessors millions

of instructions are performed per second. Speed of

operation is one of the major constraints in designing

DSP processors [11]. Some central processing units

are comprised of two components, an arithmetic unit

and a logic unit. Other processors may have an

arithmetic unit for calculating fixed-point operations

and another AU for calculating floating-point

computations. Some PCs have a separate chip known

as the numeric coprocessor. This coprocessor contains

a floating-point unit for processing floating-point

operands. The coprocessor increases the operating

speed of the computer because of the coprocessor

ability to perform computation faster and more

efficiently. The redundancy associated with signed-

digit numbers offers the possibility of carry free

addition. The redundancy provided in signed-digit

representation allows for fast addition and subtraction

because the sum or difference digit is a function of

only the digits in two adjacent digit positions of the

operands for a radix greater than 2, and 3 adjacent digit

positions for a radix of 2. Thus, the add time for two

 Page 2062

redundant signed-digit numbers is a constant

independent of the word length of the operands, which

is the key to high speed computation. The advantage of

carry free addition offered by QSD numbers is

exploited in designing a fast adder circuit. Additionally

adder designed with QSD number system has a regular

layout which is suitable for VLSI implementation

which is the great advantage over the BSD adder. An

Algorithm for design of QSD adder is proposed.

Binary signed-digit numbers are known to allow

limited carry propagation with a somewhat more

complex addition process requiring very large circuit

for implementation [4] [10]. A special higher radix-

based (quaternary) representation of binary signed-

digit numbers not only allows carry-free addition and

borrow-free subtraction but also offers other important

advantages such as simplicity in logic and higher

storage density [14].

1.2 Literature Survey

Based on the concept of Quaternary Signed Digit

Number System, Quaternary is the base-4 numeral

system. It uses the digits 0, 1, 2 and 3 to represent any

real number.

Normally most of the numbers deal in decimal number

system. First question which will come to our mind is

what is number system? Well, a number system is a

system which determines the rules and symbols for

numbers on how all are going to use them.

1.3 Number System
The symbols for decimal number system are Arabic

but they were taken from India, presumably. A number

system consists of symbols for representing numbers

and a dot for representing fractional numbers. Minus

sign is used to represent negative numbers. A number

system ranges from −∞ to +∞. It is best represented by

a straight line given below. As you see the stretch of

number axis, it makes me wonder what infinity is.

Infinity in itself is not a number to be honest in the

sense that it is more of a concept. Infinity is such a

large number that cannot be written or achieved by

anything of physical world. Infinity is immeasurable.

Each point on this axis represents a number. It may be

integer or fractional number. I hope you know what an

integer is. An integer is a whole number like -1, -2, 0,

5, 7 etc. Real numbers have fractional parts like 1.234.

I cannot go much into these basics. The important

fact to note is that between any two points there exists

infinite numbers. In other words between any two

numbers there exists infinite numbers. For example,

between 1.2 and 1.3 there are 1.21, 1.22, 1.23..., and

1.29. Moreover between 1.21 and 1.22 there are 1.211,

1.212, 1.213 and so on. Now let us come back to

number system discussion. It enables us to represent a

point on this axis. The numbers I have written are

supposedly in decimal number system. Base of

decimal number system is 10. Why because it consists

of 10 distinct symbols 0 through 9. Similarly we can

have any other number system. Popular number

systems in computers are binary, octal and

hexadecimal not to mention decimal.

1.4 Motivation

The major challenges in VLSI design are reducing the

area of chip and increasing speed of the circuit.

Reducing area can be achieved by optimization

techniques and number of instructions executed per

second increases as speed increases. The performance

of a digital system depends upon performance of

adders.

Adders are also act as basic building blocks for all

arithmetic circuits for example DSP processors. Binary

adders are easy to implement because of logic levels

involved in it ‘0’ and ‘1’, but they have their own

limitations in the area of circuit complexity and chip

area which ultimately increases propagation delay of

the circuit. Is it time to move beyond zeroes and ones?

This is the title of Bernard Cole article’s published in

2003 on the official site of the Embedded

Development Community [25].

The conclusion is “I think that the economics of

semiconductor manufacturing now is forcing us to

move beyond zero and one. Shouldn't we also take

another look at multi-valued logic?” This very thought

brought many researches to work upon multi-valued

logic to bring a new era of technology. This multi-

valued logic is focused in this paper recognizing it as a

fundamental advancement in circuit technology. Many

authors have directed their efforts to the

implementation of Multi-Valued logic looking for

benefit from all advantages it possess over the binary

logic. It is possible for ternary logic to achieve

simplicity and energy efficiency in digital design since

the logic reduces the complexity of interconnects and

chip area, in turn, reducing the chip delay [13].

 Page 2063

 Fig 1.1 Levels of Switching Algebra

Expanding the existing logic levels are shown in

Fig.1.1, higher processing rates could be achieved in

various applications like memory management,

communication throughput and domain specific

computation. An evident advantage of a quaternary

representation over binary is economy of digits.

Quaternary representation admits sign convention

also.The drawback of binary adders can be reduced by

increasing the range of the numbers used. Signed

number system can be used for this purpose. Signed

digit numbers allows redundancy of numbers which

allow possibility of carry-free addition, but the signed

digit number system allow limited carry propagation

with some complex addition process which requires

large for its implementation. To overcome all these

limitations Multi Valued Logic number system is used.

It has advantages in many areas as high density along

with increasing the speed of operation. One such

number system is QSD (Quaternary Signed Digit)

number system.

1.4 Objective

The objective is to design carry free adder using QSD

number system to achieve fast addition with the help

of Verilog, which integrates novel design of high

speed QSD adder and multiplier for higher input bit

sequences. The programming objective of the VLSI

Implementation of fast addition using QSD number

system into the following categories

 QSD Adder Unit

 QSD Multiplication Unit

 Ripple carry Adder Unit

 Synthesis Reports

 Physical designing

1.5 Thesis Organization

Chapter 2 Deals with the Overview of the Quaternary

Signed Digit Number System, it’s comparison with

Binary Signed Digit Number System, and advantages

of QSD number system. Chapter 3 also deals with the

basic Rules and steps to be followed for carry free

QSD addition, subtraction and multiplication. Chapter

4 deals with the Overview of the Ripple Carry Adder,

Full adder and half adder.Chapter 5 deals with the

work done throughout the project, description of

verilog language and VCS Synopsys. Chapter 6 deals

with the block diagrams, simulation results, synthesis

reports of QSD adder, multiplier, and ripple carry

adder, physical design reports of QSD adder.Chapter 7

summarizes the work and gives conclusion.

2.QUATERNARY SIGNED DIGIT NUMBER

SYSTEM

2.1 Introduction of QSD

Quaternary is the base-4 numeral system. It uses

the digits 0, 1, 2 and 3 to represent any real number. It

shares with all fixed-radix numeral systems many

properties, such as the ability to represent any real

number with a canonical representation (almost

unique) and the characteristics of the representations

of rational numbers and irrational numbers.

See decimal and binary for a discussion of these

properties.

Relation to binary
As with the octal and hexadecimal numeral systems,

quaternary has a special relation to the binary numeral

system. Each radix 4, 8 and 16 is a power of 2, so the

conversion to and from binary is implemented by

matching each digit with 2, 3 or 4 binary digits, or bits.

For example, in base 4,

30214 = 11 00 10 01 002.

Although octal and hexadecimal are widely used

in computing and computer programming in the

discussion and analysis of binary arithmetic and logic,

quaternary does not enjoy the same status.By analogy

with bit, a quaternary digit is sometimes called

a crumb.

How do Base 4 work

Bases have to do with how you write numbers in a

number system, and how the place values work in that

system. Let's start with the system you already know.

We usually work in base 10. In base 10, the place

 Page 2064

values are ones, tens, hundreds, thousands and so on.

So when we see a number like 437, it really means

'four hundreds, 3 tens and 7 ones.' We understand that

to be worth ‘four hundred and thirty seven'. The place

values are determined by raising the base to powers.

In base 10, ones is 10^0, tens is 10^1, hundreds is

10^2, thousands is 10^3 and so on.When we start to

count in base 10, we can write as, 1, 2, 3, 4, 5, 6, 7, 8,

9. Each of those stands for how many ones we have.

The number 8 means 8 ones, or 8 * 1. But when we go

past 9 to the number 10, we don't have a single digit

that stands for '10 ones.' So instead, we use a two-digit

number, 10, which stands for '1 ten and 0 ones.' Once

we get to 99, we have reached '9 tens and 9

ones.'Going past that, we move to a three-digit

number, 100, which means '1 hundred, 0 tens and 0

ones.'It's kind of hard to think about this, because your

brain just does it without thinking about it, but that's

what's really going on.So what happens in base 4? The

place values are again given by raising 4 to powers.

 4^0 = 1

 4^1 = 4

 4^2 = 16

 4^3 = 64

So, the number 23 in base 4 is NOT worth twenty-

three. It's only twenty three in base 10, where it means

'2 tens and 3 ones.' In base 4, 23 (which is read as

'two-three') means '2 fours and 3 ones.' So it has a

value of 2*4 + 3*1 or 8 + 3 or 11. Now think about

how we count in base 4. We start with 1, 2, 3. But

there is no digit '4' to use--the number 4 is written '1

four and 0 ones,' so it's 10. I know this may be

confusing, but here are the numbers from 1 to 10 in

base 4:

 Base 4 Meaning

Base 10

 ------ ---------------------

--------- -------

 1 (1 one) = 1*1

1

 2 (2 ones) = 2*1

2

 3 (3 ones) = 3*1

3

 10 (1 four and 0 ones) = 1*4

+ 0 4

 11 (1 four and 1 ones) = 1*4

+ 1 5

 12 (1 four and 2 ones) = 1*4

+ 2 6

 13 (1 four and 3 ones) = 1*4

+ 3 7

 20 (2 fours and 0 ones) = 2*4

+ 0 8

 21 (2 fours and 1 one) = 2*4

+ 1 9

 22 (2 fours and 2 ones) = 2*4

+ 2 10

Binary logic is restricted to only two logical states;

Multi-Valued Logic (MVL) replaces these with finite

and infinite numbers of values [1]. Multi-valued logic

is a higher radix (R>2) logic system. Non-binary data

requires less physical storage space than binary data

[2-4]. Depending upon the radix number R, the

number system are named as ternary (R = 3),

quaternary (R = 4) etc. Ternary logic is based on

ternary number system. Quaternary logic is based on

Quaternary number system. Quaternary is the base 4

redundant number system. The degree of redundancy

usually increases with the increase of the radix [24].

The signed digit number system allows us to

implement parallel arithmetic by using redundancy.

QSD numbers are the Signed Digit numbers with the

digit set as: {-3, -2, -1, 0, 1, 2, 3} respectively.

2.2 QSD Number Representation

In general, a signed-digit decimal number D can be

represented in terms of an n digit quaternary signed

digit number as

Where xi can be any value from the set { -3, -2, -1, 0,

1, 2, 3 }for producing an appropriate decimal

representation. A QSD number can be represented in

Binary in 2’b (2 bit) notation for unsigned QSD

number. For digital implementation, QSD numbers are

represented using 3-bit 2’s complement notation. A

QSD negative number is the QSD complement of the

QSD positive number [3]. For example, using the

primes to denote complementation, we have

 3 ' = -3, 3' =3, 2 ' = -2, 2’ = 2 , 1'= -1, 1'

=1.

 Page 2065

2.3 Examples of QSD numbers

A few examples of QSD numbers Represented in

Decimal Numbers are mentioned below for better

understanding the conversion of QSD Numbers

1. Decimal (107)10 = 1 × 43 + 2 × 42 + 3 × 41 +

3 × 40

 =

(1233)4QSD

2. Negative – (107) 10 = 1 × 43 + 2 × 42 + 3 × 41 + 3 ×

40

 = (1 2 3

3)4QSD

3. Decimal (98)10 = 1 × 43 + 2 × 42 + 0 × 41 +

2 × 40

 =

(1202)4QSD

4. Negative – (98) 10 = 1 × 43 + 2 × 42 + 0 × 41 + 2 ×

40

 = (1 2 0

2)4QSD

2.4 Comparison of QSD with BSD

It offers the advantage of reduced circuit complexity

both in terms of transistor count and interconnections.

QSD number uses 25% less space than BSD to store

number.

QSD numbers save 25% storage compared to BSD

To represent a numeric value N│log4N│ number of

QSD digits and 3│log4N│ binary bits are required

while for the same log 2N BSD digits and 2│ log2N│

binary bits are required in BSD representation. Ratio

of number of bits in QSD to BSD representation for an

arbitrary number N is,

3│log4N│

2│log2N│

This roughly equals to ¾. Therefore, QSD saves ¼ of

the storage used by BSD. The computation speed and

circuit complexity increases as the number of

computation steps decreases. The computation speed

mainly depends on the number of bits required to

represent a number, since the less the number of bit’s

the easy is the computation. In general the number of

bits required by a QSD number system is less when

compared to BSD number system, which in turn

results in better speeds and performance.

2.5 Advantages of QSD Number System

The main advantage of Quaternary logic is that it

reduces the number of required computation steps for

developing digital design. Furthermore memory,

control unit, and processor can be carried out faster if

the Quaternary logic is easily employed and memory

utilization also less than binary.

These advantages have been shown to be useful for the

design of Quaternary computers, for digital filtering.

Quaternary representation of admits sign convention

also.

 Quaternary logic is mainly applied in new transforms

for encoding and more efficient for Compression, error

correction, and state assignment, representation of

discrete information and in automatic telephony.

 Quaternary logic also offers greater utilization of

transmission channels because of the higher

information content carried by every line. It gives

exact and more efficient error detection and correction

codes and possesses potentially higher density of

information storage.

We can achieve a carry free arithmetic operation by

using higher radix number system such as QSD

(Quaternary Signed Digit). Signed digit number

system has redundancy associated with it. The

redundancy provided in signed digit number system

offers the possibility of carry free arithmetic operations

which in terms allows for faster processing. In signed

digit representation of the system the add time for two

redundant signed digit numbers is a constant indepen

dent of the word length of the operands which is the

key to high speed computation. Binary signed digit

numbers allows limited carry propagation with a more

complex addition process which requires very large

circuit for implementation [1][4].

A higher radix based representation of binary signed

digit numbers such as quaternary allows carry free

arithmetic operations as well as it offers the important

advantage of logic simplicity and storage density[5].

Quaternary logic is a promising alternative for the

complex binary circuit as it will reduce the circuit area

and circuit cost and power efficiency at the same time

 Page 2066

3.QSD ADDITION, SUBTRACTION AND MUL

TIPLICATION

3.1 Basics for QSD addition
In QSD number system carry propagation chain are

eliminated which reduce the computation time

substantially, thus enhancing the speed of the machine.

As range of QSD number is from -3 to 3, the addition

result of two QSD numbers varies from -6 to +6. Table

I depicts the output for all possible combinations of

two numbers. The decimal numbers in the range of -3

to +3 are represented by one digit QSD number. As the

decimal number exceeds from this range, more than

one digit of QSD number is required. For the addition

result, which is in the range of -6 to +6, two QSD

digits are needed. In the two digits QSD result the LSB

digit represents the sum bit and the MSB digit

represents the carry bit. To prevent this carry bit to

propagate from lower digit position to higher digit

position QSD number representation is used. QSD

numbers allow redundancy in the number

representations. The same decimal number can be

represented in more than one QSD representations. So

such QSD represented number which prevents further

rippling of carry is chosen.

3.2 Steps for Carry free addition
To perform carry free addition, the addition of two

QSD numbers can be done in two steps [4]:

Step 1: First step generates an intermediate carry and

intermediate sum from the input QSD digits i.e.,

addend and augend.

Step 2: Second step combines intermediate sum of

current digit with the intermediate carry of the lower

significant digit.

So the addition of two QSD numbers is done in two

stages. First stage of adder generates intermediate

carry and intermediate sum from the input digits.

Second stage of adder adds the intermediate sum of

current digit with the intermediate carry of lower

significant digit.

3.3 Rules for carry free addition

To remove the further rippling of carry there are two

rules to perform QSD addition in two steps:

Rule 1: First rule states that the magnitude of the

intermediate sum must be less than or equal to 2 i.e., it

should be in the range of -2 to +2.

Rule 2: Second rule states that the magnitude of the

intermediate carry must be less than or equal to 1 i.e.,

it should be in the range of -1 to +1.

By considering the Rules for carry free addition, the

representation of QSD Number is shown in below

table 1.According to these two rules the intermediate

sum and intermediate carry from the first step QSD

adder can have the range of -6 to +6. But by exploiting

the redundancy feature of QSD numbers, such QSD

represented number which satisfies the above

mentioned two rules.

When the second step QSD adder adds the

intermediate sum of current digit, which is in the range

of -2 to +2, with the intermediate carry of lower

significant digit, which is in the range of -1 to +1, the

addition result cannot be greater than 3, i.e., it will be

in the range of -3 to +3.

The addition result in this range can be represented by

a single digit QSD number; hence no further carry is

required. In the step 1 QSD adder, the range of output

is from -6 to +6 which can be represented in the

intermediate carry and sum in QSD format as shown in

table 3.1.

It can see in the first column of Table 3.1 that some

numbers have multiple representations, but only those

that meet the above defined two rules are chosen. The

chosen intermediate carry and intermediate sum are

listed in the last. To prevent this carry bit to propagate

from lower digit position to higher digit position QSD

number representation is used. QSD numbers allow

redundancy in the number representations. The same

decimal number can be represented in more than one

QSD representations. So such QSD represented

number which prevents further rippling of carry is

chosen. In the step 1 QSD adder, the range of output is

from -6 to +6 which can be represented in the

intermediate carry and sum in QSD format as shown in

table 3.1. It can see in the first column of Table 3.1

that some numbers have multiple representations, but

only those that meet the above defined two rules are

chosen. The chosen intermediate carry and

intermediate sum are listed in the last. If the

representation is restricted such that the intermediate

carry is limited to a maximum of 1, and the

intermediate sum is restricted to be less than 2, then

the final addition will become carry free. Both inputs

and outputs can be encoded in 3-bit 2’s complement

binary number. The mapping between the inputs,

 Page 2067

add end and augend, and the outputs, intermediate

carry and sum are shown in binary format in Table 3.2.

This addition process can be well understood by

following examples:

Table 3.1 QSD Number Representation for Carry free

Addition

Example: To perform QSD Addition of two numbers

A = 113 and B = 107 (both numbers are +’ve, and

performing addition like 113+107). First convert the

decimal number to their equivalent QSD

representation:

(113)10 = 1 × 43 + 3 × 42 + 0 × 41 + 1× 40= (1 3 0 1) QSD

(107)10 = 1 × 43 + 2 × 42 + 3 × 41 + 0× 40= (1 2 2 3) QSD

Now the addition of two QSD numbers can be done as

follows:

A = 113 1 3 0 1

B = 107 1 2 2 3

Decimal sum 2 5 2 4

IC 0 1 0 1

IS 2 1 2 0

sum 3 1 3 0

carry 0

The sum output is (3 1 3 0) QSD which is equivalent to

(220)10 and carry output is 0. From these examples it is

clear that the QSD addition design process also will

carry two stages for subtraction. The QSD representat

ions according to these rules are shown in Table 3.1

for the range of -6 to +6. As the range of intermediate

carry is from -1 to +1, it can be represented in 2 bit

binary number but we take the 3 bit representation for

the bit compatibility with the intermediate sum. At the

input side, the addend Ai is represented by 3 variable

input as A2, A1, A0 and the augend Bi is represented by

3 variable input as B2, B1, B0. At the output side, the

intermediate carry IC is represented by IC2, IC1, IC0

and the intermediate sum IS is represented by IS2, IS1,

IS0.The six variable expressions for intermediate carry

and intermediate sum in terms of inputs (A2, A1, A0,

B2, B1 and B0) can be derived from Table 3.2. So we

get the six output expressions for, IC2, IC1, IC0, IS2, IS1

and IS0.Using 6 variables K-map, the logic equations

can be derived for the intermediate carry and

intermediate sum. Using these equations block

diagram can be designed.

 Fig 3.1 RTL schematic view of QSD adder

3.4 QSD Subtraction

The Subtraction is similar to Addition that is carried

out with a negative number i.e., the two’s complement

of the given number. The mapping between the inputs,

addend and augend, and the outputs, the intermediate

 Page 2068

borrow and subtraction results are shown in binary

format in Table 3.3.

In QSD number system carry propagation chain are

eliminated which reduce the computation time

substantially, thus enhancing the speed of the machine.

As range of QSD number is from -3 to 3, the

subtraction result of two QSD numbers also varies

from -6 to +6. Table 3.3 depicts the output for all

possible combinations of two numbers.

This subtraction process can be well understood by

following examples

Example: To perform QSD Subtraction of two

numbers A = 127 and B = 128 (both numbers are +’ve,

and performing subtraction like 127-128). First convert

the decimal number to their equivalent QSD

representation:

Table 3.2 QSD Addition along with equivalent binary

representations

(127)10 = 1 × 43 + 3 × 42 + 3 × 41 + 3× 40 = (1 3 3 3)

QSD

(128)10 = 1 × 43 + 2 × 42 + 3 × 41 + 0× 40 = (2 0 0 0)

QSD

 Hence, (-128)10 = (2 0 0 0) QSD

Now the addition of two QSD numbers can be

done as follows:

 A = 127 1 3 3 3

 B = -128 2 0 0 0

 Decimal sum -1 3 3 3

 IC 0 1 1 1

 IS -1 -1 -1 -1

 sum 0 0 0 -1

 carry 0

The sum output is (0 0 0 1) QSD which is equivalent to

(-1)10 and carry output is 0. From these examples it is

clear that the QSD subtractor design process also will

carry two stages for subtraction.

Table 3.3 QSD Subtraction with equivalent binary

representation

The decimal numbers in the range of -3 to +3 are

represented by one digit QSD number. As the decimal

number exceeds from this range, more than one digit

of QSD number is required. For the subtraction result,

 Page 2069

which is in the range of -6 to +6, two QSD digits are

needed. In the two digits QSD result the LSB digit

represents the difference bit and the MSB digit

represents the carry bit. To prevent this borrow bit to

propagate from lower digit position to higher digit

position QSD number representation is used.

3.5 QSD Multiplication

Multiplication is the third basic mathematical

operation of arithmetic, the others being addition,

subtraction and division. The multiplication of two

whole numbers is equivalent to the addition of one of

them with itself as many times as the value of the other

one. The multiplication of integers (including negative

numbers), rational numbers (fractions) and real

numbers is defined by a systematic generalization of

this basic definition. Multiplication can also be

visualized as counting objects arranged in a rectangle

(for whole numbers) or as finding the area of a

rectangle whose sides have given lengths. The area of

a rectangle does not depend on which side is measured

first, which illustrates the commutative property.The

QSD representation of a single digit multiplication

output, shown in Table 3.4, contains a carry-out of

magnitude 2 when the output is either -9 or 9. This

prohibits the use of the second step QSD adder alone

as a gatherer. In fact, we can use the complete QSD

adder from the previous section as the gatherer.

Furthermore, the intermediate carry and sum circuit

can be optimized by not considering the input of

magnitude 3.

This multiplication process can be well understood by

following examples:

Table 3.4: QSD representation of a single-digit

multiplication output

Example: To perform QSD Multiplication of

two unsigned numbers A = 5 and B = 14 (both

numbers are +’ve, and performing multiplication

like 5*14). First convert the decimal number to

their equivalent QSD representation:

(5)10 = 1 × 41 + 1× 40 = (1 1) QSD

(14)10 = 3 × 41 + 2× 40 = (3 2) QSD

 Now the multiplication of two QSD

numbers can be done as follows:

 A = 5 1

1

 B = 14 3 2

 Decimal multiplication

2 2

 3

3

 Partial product 3

5 2

 0 1

1 0

 0

-1 1 2

 Product

1 0 1 2

 Carry 0

The output is (1 0 1 2) QSD which is equivalent to

(70)10 and carry output is 0. From these examples it

is clear that the QSD product design process also

will carry two stages for multiplication.

The QSD Multiplication is similar to that of normal

Multiplication, but the digits here are the

Quaternary Signed Digit Numbers. The single bit

QSD Multiplication in Quaternary results in two bit

QSD result, whereas the multiplication result lies

between -9 to +9. The QSD Multiplication is shown

in Table 3.5 with corresponding binary notations.

 Page 2070

 Table 3.5 QSD Multiplication with equivalent

binary representations

As range of QSD number is from -3 to 3, the

multiplication result of two QSD numbers also varies

from -9 to +9. Table 3.5 depicts the output for all

possible combinations of two numbers. The decimal

numbers in the range of -3 to +3 are represented by

one digit QSD number. As the decimal number

exceeds from this range, more than one digit of QSD

number is required. For the multiplication result,

which is in the range of -9 to +9, two QSD digits are

needed. In the two digits QSD result the LSB digit

represents the m (0) bit and the MSB digit represents

the m (1) bit. To prevent this other bit to propagate

from lower digit position to higher digit position QSD

number representation is used. The QSD

Multiplication is shown in Table 3.5 with

corresponding binary representations.

4. RIPPLE CARRY ADDER

4.1 Introduction:

Multiple full adder circuits can be cascaded in parallel

to add an N-bit number. For an N- bit parallel adder,

there must be N number of full adder circuits. A ripple

carry adder is a logic circuit in which the carry-out of

each full adder is the carry in of the succeeding next

most significant full adder. Each carry bit gets rippled

into the next stage.It is possible to create a logical

circuit using multiple full adders to add N-bit numbers.

Each full adder inputs a Cin, which is the Cout of the

previous adder. This kind of adder is called a ripple-

carry adder, since each carry bit "ripples" to the next

full adder. Note that the first (and only the first) full

adder may be replaced by a half adder (under the

assumption that Cin = 0).

4.2 Ripple Carry Adder:

The layout of a ripple-carry adder is simple, which

allows for fast design time; however, the ripple-carry

adder is relatively slow, since each full adder must

wait for the carry bit to be calculated from the previous

full adder. The gate delay can easily be calculated by

inspection of the full adder circuit. Each full adder

requires three levels of logic.In a ripple carry adder the

sum and carry out bits of any half adder stage is not

valid until the carry in of that stage occurs.

Propagation delays inside the logic circuitry are the

reason behind this. Propagation delay is time elapsed

between the application of an input and occurrence of

the corresponding output. Consider a NOT gate, When

the input is “0” the output will be “1” and vice versa.

The time taken for the NOT gate’s output to become

“0” after the application of logic “1” to the NOT gate’s

input is the propagation delay here. Similarly the carry

propagation delay is the time elapsed between the

application of the carry in signal and the occurrence of

the carry out (Cout) signal. Circuit diagram of a 4-bit

ripple carry adder is shown below fig 4.1.

Fig 4.1: 4-bit ripple carry adder

Sum out S0 and carry out Cout of the Full Adder 1 is

valid only after the propagation delay of Full Adder 1.

In the same way, Sum out S3 of the Full Adder 4 is

valid only after the joint propagation delays of Full

Adder 1 to Full Adder 4. In simple words, the final

result of the ripple carry adder is valid only after the

joint propagation delays of all full adder circuits inside

it.

RESULTS

6.1 QSD Adder

6.1.1 Block Diagram

Input operands at 5000 ns

dec_1 [8:0] : a = 113.

dec_2 [8:0] : b = 107.

qsd_1 [11:0] :12-bit input operand a

[12:0] = 12’o1301

https://en.wikipedia.org/wiki/Gate_delay

 Page 2071

 qsd_2 [11:0] :12-bit input operand b

[12:0] = 12’o1223

Output operands at 5000 ns
 sum [11:0] : 12-bit output

operand s[11:0] = 12’b011001011000.

 carr_out [2:0] : 12-bit output

operand c [2:0] = 3’b000.

Input operands at 20000 ns

dec_1 [8:0] : a = -98.

dec_2 [8:0] : b = -103.

qsd_1 [11:0] :12-bit input operand a

[12:0] = 12’o7606

qsd_2 [11:0] :12-bit input operand b

[12:0] = 12’o7675

Output operands at 20000 ns

 sum [11:0] : 12-bit output

operand s[11:0] = 12’b101000110111.

carr_out [2:0] : 12-bit output

operand c[2:0] = 3’b000.

Input operands at 35000 ns

dec_1 [8:0] : a = 127.

dec_2 [8:0] : b = -128.

qsd_1 [11:0] :12-bit input operand a

[12:0] = 12’o1333

qsd_2 [11:0] :12-bit input operand b

[12:0] = 12’o6000

Output operands at 35000 ns

sum [11:0] : 12-bit output

operand s[11:0] = 12’b000000000111.

carr_out [2:0] : 12-bit output

operand c [2:0] = 3’b000.

 Fig: 6.1 Schematic view of QSD Adder

6.1.2 Simulation Results

Fig 6.2 Simulation results of QSD Adder

6.2 QSD Unsigned Multiplier

6.2.1 Block Diagram

Fig: 6.3 Schematic view of QSD Unsigned Multiplier

6.2.2 Simulation results

Fig 6.4 Simulation results of QSD Unsigned Multiplier

 Page 2072

1. Input operands at 10000 ns

dec_1 [3:0] : a = 0.

dec_2 [3:0] : b = 1.

mul_1 [5:0] :6-bit input operand a [5:0]

= 6’b000000

mul_2 [5:0] :6-bit input operand b [5:0]

= 6’b000001

 Output operands at 10000 ns

 Prod [14:0] :15-bit output operand p

[14:0] = 15’000000000000000

2. Input operands at 40000 ns

dec_1 [3:0] : a = 14.

dec_2 [3:0] : b = 5.

mul_1 [5:0] :6-bit input operand a [5:0]

= 6’b011010

mul_2 [5:0] :6-bit input operand b [5:0]

= 6’b001001

Output operands at 40000 ns

Prod [14:0] :15-bit output operand p

[14:0] = 15’000001000001010

3. Input operands at 70000 ns

dec_1 [3:0] : a = 1.

dec_2 [3:0] : b = 9.

mul_1 [5:0] :6-bit input operand a [5:0]

= 6’b000001

mul_2 [5:0] :6-bit input operand b [5:0]

= 6’b010001

Output operands at 70000 ns

Prod [14:0] :15-bit output operand p

[14:0] = 15’000000000010001

6.3 Ripple Carry Adder

6.3.1 Block Diagram

 Fig 6.5 Schematic view of Ripple Carry Adder

6.3.2 Simulation Results

 Fig 6.6 Simulation results of Ripple

Carry Adder

1. Input operands at 25 ns

a [11:0] : a = 113.

b [11:0] : b = 107.

Output operands at 25 ns

sum [11:0] :12-bit output operand sum

= 220

2. Input operands at 100 ns

a [11:0] : a = 50.

b [11:0] : b = 50.

 Output operands at 100 ns

sum [11:0] :12-bit output operand sum

= 100

7. CONCLUSION & FUTURE SCOPE

The implementation of QSD addition, subtraction and

multiplication are designed, verified and compared

with the Ripple carry adder. The modules are written

in Verilog. These designs are simulated and

synthesized using 32nm technology in VCS Synopsys

tool. The test confirms the superior performance of the

QSD adder implementation over other adders beyond

64-bits due to the carry-free addition scheme. The

complexity of the QSD adder is linearly proportional

to the number of bits which are of the same order as

the simplest adder, the ripple carry adder.We can

conclude that 32nm is having low power dissipation in

the design of fast calculations using QSD number

system. In future still lower power dissipation can be

achieved without modifying and degrading the circuit

functionality. Consequently this QSD adder can be

used as a building block for all arithmetic operations.

It can be applied for construction of a high

performance multiprocessor. These high performance

adders are essential in digital processors. These

circuits consume less energy and power, and shows

better performance. The delays of the proposed

 Page 2073

designs using QSD number system are less. The

proposed QSD adder is better than other binary adders

in terms of number of gates and higher number of bits

addition within constant time. Efficient design for

adder block to perform addition or multiplication will

increase operation speed. QSD number uses less space

than BSD to store number higher number of gates can

be tolerated for further improvement of QSD adder.

REFERENCES

[1] Sachin Dubey, Reena rani “VLSI Implementation

of Fast Addition using Quaternary Signed Digit

Number System” IEEE International Conference on

Emerging Trends in Comp…ICECCN 2013.

[2] Neha W.Umredkar, M.A.Gaikwad, Ph.D. “Review

of Quaternary Adders in Voltage Mode Multi-

Valued Logic” International Journal of Computer

Applications (0975 – 8887) “Recent Trends in

Engineering Technology-2013”.

[3] Reena Rani, Neelam Sharma, L.K.Singh, “FPGA

Implementation of Fast Adders using Quaternary

Signed Digit Number System” IEEE proceedings of

International Conference on Emerging Trends in

Electronic and Photonic Devices & Systems

(ELECTRO-2009), pp 132-135, 2009.

[4] Reena Rani, Neelam Sharma, L.K.Singh, “Fast

Computing using Signed Digit Number System”

IEEE proceedings of International Conference on

Control, Automation, Communication and Energy

Conservation - 2009, 4th-6th June 2009.

[5] P.K. Dakhole, D.G. Wakde, “Multi Digit

Quaternary adder on Programmable Device:

Design and verification”, International Conference on

Electronic Design, pp. 1-4, Dec 2008.

[6] F. Kharbash and G. M. Chaudhry, “Reliable Binary

Signed Digit Number Adder Design”, IEEE

Computer Society Annual Symposium on VLSI, pp

479-484, 2007.

[7] John Moskal, Erdal Oruklu and Jafar Saniie,

“Design and Synthesis of a Carry-

 Free Signed-Digit Decimal Adder”, IEEE

International symposium on Circuits and Systems, pp

1089-1092, 2007.

[8] Reilly, E.D. (2003). Milestones in computer

science and information technology. Greenwood Press.

p. 183. ISBN 1-57356-521-0.

[9] A.A.S Awwal, Syed M. Munir, A.T.M. Shafiqul

Khalid, Howard E. Michel and O. N. Garcia,

“Multivalued Optical Parallel Computation Using An

Optical Programmable Logic Array”, Informatics,

vol. 24, No. 4, pp. 467-473, 2000.

[10] O. Ishizuka, A. Ohta, K. Tannno, Z. Tang, D.

Handoko, “VLSI design of a quaternary multiplier

with direct generation of partial products,”

Proceedings of the 27th International Symposium

on Multiple-Valued Logic, pp. 169-174, 1997.

[11] A.A.S. Awwal and J.U. Ahmed, “fast carry free

adder design using QSD number system

,”proceedings of the IEEE 1993 national aerospace and

electronic conference, vol 2,pp 1085-1090,1993.

[12] Eurich, J.P. and Roth, G. (1990): "EDIF grows

up". IEEE Spectrum, Vol. 27, Issue 11, pp. 68 - 72

[13] Behrooz perhami “generalized signed digit

number systems, a unifying frame work for

redundant number representation “.IEEE transactions

on computers, vol 39, no.1, pp.89-98, January

1990.

 [14] Behrooz Parhami, “Carry-Free Addition of

Recoded Binary Signed- Digit Numbers”, IEEE

Transactions on Computers, Vol. 37, No. 11, pp. 1470-

1476, November 1988.

[15] Barbacci, M., Grout S., Lindstrom, G., Maloney,

M.P. "Ada as a hardware description language: an

initial report," Carnegie-Mellon Univ., Dept. of

Computer Science, 1984.

[16] Kai Hwang, “Computer Arithmetic Principles,

Architecture and Design”, ISBN 0-471-03496-7,

John Wiley & Sons, 1979.

[17] Barbacci, M. "The Symbolic Manipulation of

Computer Descriptions: ISPL Compiler and

Simulator," Carnegie-Mellon Univ., Dept. of

Computer Science, 1976.

[18] Barbacci, M. "A comparison of register transfer

languages for describing computers and digital

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/1-57356-521-0

 Page 2074

systems," Carnegie-Mellon Univ., Dept. of Computer

Science, March 1973.

[19] Bell, C. G.; Newell, A. (1971). Computer

Structures: Readings and Examples. McGraw-Hill.

ISBN 0-07-004357-4.

[20] A. Avizinis “signed digit number representation

for fast parallel arithmetic”, IRE Transactions on

Elec. Comp...Vol EC-10,pp 389- 400,sept-1961.

ABOUT AUTHORS

1.A. LEELA BHARDWAJ REDDY He received the

B.TECH degree in ELECTRONICS

AND COMMUNICATION ENGINEERING from

JNT University, ANANTAPUR, and pursuing

M.TECH degree in VLSI DESIGN from PBR

VISVODAYA INSTITUTE OF TECHNOLOGY &

SCIENCE, KAVALI, NELLORE, S.P.S.R.NELLORE

[DT], ANDHRA PRADESH, INDIA, and Affiliated to

JNT University, ANANTAPUR. He can be reachable

at anam.bittu@gmail.com.

2. Mr.V NARAYANAA REDDY He received the

B.TECH degree in AMIE from IEI and M.TECH

degree in DIGITAL SYSTEMS AND COMPUTER

ELECTRONICS (DSCE) from JNT University-

ANANTAPUR. He is working as ASSOCIATE

PROFESSOR in DEPT OF ECE, PBR VISVODAYA

INSTITUTE OF TECHONOLOGY & SCIENCE

(VITS),KAVALI, NELLORE, AP, INDIA. He can be

reachable at vnr.nlr.kvl@gmail.com.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-07-004357-4
http://gmail.com/
http://gmail.com/

