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Abstract: 

Cloud computing enables highly scalable services to 

be simply frenzied over the Internet on an as-needed 

basis. A major aspect of the cloud services is that 

users’ data are usually processed remotely in strange 

machines that users do not own or operate. While 

enjoying the expediency brought by this new budding 

technology, users’ fears of losing control of their own 

data (mainly, financial and health data) can become 

a significant barrier to the wide adoption of cloud 

services. To concentrate on this problem, in this 

paper, we suggest a novel highly decentralized 

information accountability framework to keep track 

of the authentic usage of the users’ data in the cloud. 

In particular, we suggest an object-centered 

approach that enables enclosing our logging 

mechanism together with users’ data and policies. 

We force the JAR programmable abilities to both 

create a dynamic and itinerant object, and to ensure 

that any access to users’ data will trigger 

authentication and programmed logging local to the 

JARs. To reinforce user’s control, we also give 

distributed auditing mechanisms. We supply 

extensive experimental studies that demonstrate the 

efficiency and effectiveness of the proposed 

approaches. 

 

Index Terms—Cloud computing, accountability, data 

sharing. 

INTRODUCTION 

Cloud computing presents a new way to supplement 

the current consumption and delivery model for IT 

services based on the Internet, by providing for 

vigorously scalable and often virtualized resources as a 

service over the Internet. To date, there are a number 

of prominent commercial and individual cloud 

computing services, counting Amazon, Google, 

Microsoft, Yahoo, and Sales force [19]. Details of the 

services provided are abstracted from the users who no 

longer need to be experts of technology infrastructure. 

Furthermore, users may not know the machines which 

actually process and host their data. While enjoying 

the expediency brought by this new technology, users 

also start perturbing about losing control of their own 

data. The data processed on clouds are frequently 

outsourced, leading to a number of issues connected to 

accountability, counting the handling of personally 

identifiable information. Such qualms are becoming a 

significant hurdle to the wide adoption of cloud 

services [30].To allay users’ concerns, it is essential to 

provide an effective mechanism for users to monitor 

the usage of their data in the cloud. For instance, users 

need to be able to ensure that their data are handled 

according to the service level agreements made at the 

time they sign on for services in the cloud. 

Conservative access control approaches developed for 

closed domains such as databases and operating 

systems, or approaches by means of a centralized 
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server in distributed environments, are not appropriate, 

due to the following features characterizing cloud 

environments. 

 

First, data handling can be outsourced by the direct 

cloud service provider (CSP) to other entities in the 

cloud and theses entities can also delegate the errands 

to others, and so on. Second, entities are permitted to 

join and leave the cloud in a flexible manner. 

Accordingly, data handling in the cloud goes through a 

complex and dynamic hierarchical service chain which 

does not exist in conventional environments. To 

conquer the above problems, we propose a new 

approach, namely Cloud Information Accountability 

(CIA) framework, based on the concept of information 

accountability [44]. Unlike privacy protection 

technologies which are built on the hide-it-or-lose-it 

perspective, information accountability spotlights on 

keeping the data usage transparent and trackable. Our 

proposed CIA framework gives end-to-end 

accountability in a highly distributed manner. One of 

the main innovative features of the CIA framework 

lies in its ability of maintaining lightweight and 

powerful accountability that combines aspects of 

access control, usage control and substantiation. By 

means of the CIA, data holders can track not only 

whether or not the service-level agreements are being 

honored, but also implement access and usage control 

rules as needed. Connected with the accountability 

feature, we also develop two discrete modes for 

auditing: push mode and pull mode. The push mode 

refers to logs being sporadically sent to the data owner 

or stakeholder while the pull mode refers to an 

alternative approach whereby the user(or another 

authorized party) can retrieve the logs as needed. 

 

The design of the CIA framework presents 

considerable challenges, including uniquely 

identifying CSPs, guaranteeing the reliability of the 

log, acclimatizing to a highly decentralized 

infrastructure, etc. Our fundamental approach toward 

addressing these issues is to leverage and extend the 

programmable capability of JAR (Java ARchives) files 

to automatically log the usage of the users’ data by any 

entity in the cloud. Users will send their data alongside 

with any policies such as access control policies and 

logging policies that they want to impose, enclosed in 

JAR files, to cloud service contributors. Any access to 

the data will trigger an automated and authenticated 

logging mechanism local to the JARs. We pass on to 

this type of enforcement as “strong binding” since the 

policies and the logging mechanism travel with the 

data. This strong binding subsists even when copies of 

the JARs are produced; thus, the user will have control 

over his data at any location. Such decentralized 

logging mechanism convenes the dynamic nature of 

the cloud but also imposes challenges on ensuring the 

integrity of the logging. To manage with this issue, we 

provide the JARs with a central point of contact which 

forms a link between them and the user. It reports the 

error correction information sent by the JARs, which 

allows it to observe the loss of any logs from any of 

the JARs. Furthermore, if a JAR is not able to contact 

its central point, any access to its enclosed data will be 

denied. 

 

RELATED WORK 

In this segment, we first review related works 

addressing the privacy and security concerns in the 

cloud. Then, we briefly confer works which adopt 

analogous techniques as our approach but serve for 

different reasons. 

 

Cloud Privacy and Security 

Cloud computing has elevated a range of significant 

privacy and security issues [19], [25], [30]. Such 

concerns are due to the fact that, in the cloud, users’ 

data and requests reside—at least for a definite amount 

of time—on the cloud cluster which is owned and 

preserved by a third party. Apprehensions arise since 

in the cloud it is not always obvious to individuals why 

their personal information is demanded or how it will 

be used or accepted on to other parties. To date, small 

work has been done in this space, in particular with 

reverence to accountability. Pearson et al. have 

projected accountability mechanisms to address 

privacy apprehensions of end users [30] and then 

enlarge a privacy manager [31]. Their basic thought is 
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that the user’s classified data are sent to the cloud in an 

encrypted form, and the processing is done on the 

encrypted data. The output of the processing is 

deobfuscated by the isolation manager to divulge the 

correct result. Though, the privacy manager gives only 

limited features in that it does not guarantee protection 

once the data are being revealed. In [7], the authors 

present a layered architecture for addressing the end-

to-end trust supervision and accountability problem in 

amalgamated systems. The authors’ focus is very 

dissimilar from ours, in that they mostly leverage trust 

associations for accountability, along with 

authentication and inconsistency detection. Additional, 

their solution requires third-party services to complete 

the monitoring and focuses on inferior level observing 

of system resources. 

 

Researchers have examined accountability mostly as a 

demonstrable property through cryptographic 

mechanisms, mainly in the perspective of electronic 

commerce [10], [21]. A delegate work in this area is 

specified by [9]. The authors propose the usage of 

strategies attached to the information and present a 

logic for accountability data in distributed settings. 

Likewise, Jagadeesan et al. recently proposed a logic 

for conniving accountability-based distributed systems 

[20]. In [10], Crispo and Ruffo projected an interesting 

approach associated to accountability in case of 

delegation. Delegation is harmonizing to our work, in 

that we do not aspire at calculating the information 

workflow in the clouds. In a synopsis, all these works 

stay at a theoretical level and do not comprise any 

algorithm for tasks like obligatory logging. 

 

To the finest of our knowledge, the only work advising 

a distributed approach to accountability is from Lee 

and colleagues [22]. The instigators have projected an 

agent-based system explicit to grid computing. 

Distributed jobs, along with the resource utilization at 

local machines are trailed by static software 

representatives. The idea of accountability policies in 

[22] is connected to ours, but it is mostly focused on 

resource utilization and on tracking of sub jobs 

practiced at multiple calculating nodes, rather than 

access control. 

 

Other Related Techniques 

With reverence to Java-based techniques for security, 

our methods are associated to self-defending objects 

(SDO) [17]. Self-defending objects are an expansion 

of the object-oriented programming model, where 

software objects that offer receptive functions or hold 

sensitive data are accountable for shielding those 

functions/data. Likewise, we also extend the 

perceptions of object-oriented programming. The key 

dissimilarities in our implementations is that the 

creators still rely on a centralized database to sustain 

the access records, while the substances being 

protected are detained as separate files. In preceding 

work, we provided a Java-based approach to stop 

privacy seepage from indexing [39], which could be 

incorporated with the CIA framework projected in this 

work since they build on connected architectures. 

 

In provisions of authentication techniques, Appel and 

Felten [13] projected the Proof-Carrying authentication 

(PCA) framework. The PCA comprises a high order 

logic language that permits quantification over 

predicates, and hubs on access control for web 

services. While associated to ours to the scope that it 

helps upholding safe, high-performance, mobile code, 

the PCA’s goal is highly dissimilar from our research, 

as it focuses on authenticating code, rather than 

scrutinizing content. Another work is by Mont et al. 

who projected an approach for strongly pairing content 

with access control, by Identity-Based Encryption 

(IBE) [26]. We also force IBE methods but in a very 

different way. We do not rely on IBE to bind the 

content with the rules. Instead, we use it to give strong 

assurances for the encrypted content and the log files, 

such as protection against preferred plaintext and 

cipher text attacks. 

 

CLOUD INFORMATION ACCOUNTABILITY 

In this part, we present an impression of the Cloud 

Information Accountability framework and discuss 



 
 

 Page 1175 
 

how the CIA framework assembles the design 

requirements conversed in the earlier section. 

 

The Cloud Information Accountability framework 

projected in this work demeanors automated logging 

and disseminated auditing of pertinent access executed 

by any entity, carried out at any point of time at any 

cloud service contributor. It has two major gears: 

logger and log harmonizer. 

 

Major Components 

There are two main components of the CIA, the first 

being the logger, and the second being the log 

harmonizer. The logger is the part which is strongly 

joined with the user’s data, so that it is downloaded 

when the data are accessed, and is copied when the 

information are copied. It grips a particular instance or 

copy of the user’s data and is accountable for logging 

access to that example or copy. The log harmonizer 

forms the central component which permits the user 

access to the log records. 

 

The logger is strongly joined with user’s data (either 

single or multiple data objects). Its main tasks include 

mechanically logging access to data items that it holds, 

encrypting the log record by the public key of the 

content owner, and sporadically sending them to the 

log harmonizer. It may also be configured to guarantee 

that access and usage control policies connected with 

the data are privileged. For example, a data owner can 

identify that user X is only permitted to view but not to 

change the data. The logger will manage the data 

access even after it is downloaded by user X. 

 

The logger necessitates only minimal support from the 

server (e.g., a legitimate Java virtual machine 

installed) in order to be installed. The tight pairing 

between data and logger, results in a highly 

disseminated logging system, therefore meeting our 

first design requirement. Moreover, since the logger 

does not require to be installed on any system or entail 

any special support from the server, it is not very 

invasive in its actions, thus fulfilling our fifth 

requirement. Lastly, the logger is also accountable for 

generating the error alteration information for each log 

record and sends the same to the log harmonizer. The 

error alteration information shared with the encryption 

and verification mechanism gives a robust and 

consistent recovery mechanism, therefore meeting the 

third obligation. 

 

The log harmonizer is liable for inspecting. 

Being the trusted component, the log harmonizer 

produces the master key. It clutches on to the 

decryption key for the IBE key pair, as it is 

accountable for decrypting the logs. On the other hand, 

the decryption can be accepted out on the client end if 

the path between the log harmonizer and the client is 

not hoped.  In this case, the harmonizer sends the key 

to the client in a secure key swap. 

 

It ropes two auditing strategies: push and pull. Under 

the push approach, the log file is pushed back to the 

data owner sometimes in an automated manner. The 

pull mode is an on-demand approach, whereby the log 

file is attained by the data owner as frequently as 

request. These two modes allow us to satisfy the 

aforesaid fourth design obligation. In case there 

survive multiple loggers for the same set of data 

objects, the log harmonizer will merge log proceedings 

from them prior to sending back to the data owner. The 

log harmonizer is also accountable for handling log 

file corruption. As well, the log harmonizer can itself 

complete logging in addition to auditing. Sorting out 

the logging and auditing functions recovers the 

performance. The logger and the log harmonizer are 

both executed as lightweight and transferable JAR 

files. The JAR file implementation gives automatic 

logging functions, which convenes the second design 

obligation. 

 

Data Flow 

The overall CIA framework, merging data, users, 

logger and harmonizer is drafted in Fig. 1. At the 

starting, each user generates a pair of public and 

private keys based on Identity-Based Encryption [4] 

(step 1 in Fig. 1). This IBE method is a Weil-pairing-

based IBE method, which defends us against one of 
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the most common attacks to our architecture. Using the 

produced key, the user will generate a logger 

component which is a JAR file, to store its data 

objects. 

 

The JAR file incorporate a set of simple access control 

rules identify whether and how the cloud servers, and 

probably other data stakeholders (users, companies) 

are endorsed to access the content itself. Then, he 

sends the JAR file to the cloud service contributor that 

he subscribes to. To validate the CSP to the JAR (steps 

3-5 in Fig. 1), we use Open SSL supported certificates, 

wherein a trusted certificate influence certifies the 

CSP. In the incident that the access is requested by a 

user, we use SAML-based authentication [8], where in 

a trusted identity contributor issues certificates 

confirming the user’s uniqueness based on his 

username. 

 
Fig. 1. Overview of the cloud information 

accountability framework. 

 

Once the verification succeeds, the service contributor 

(or the user) will be allowed to admission the data 

enclosed in the JAR. Depending on the pattern settings 

distinct at the time of formation, the JAR will provide 

custom control associated with logging, or will give 

only logging functionality. As for the logging, every 

time there is an access to the data, the JAR will 

automatically generate a log record, encrypt it using 

the public key distributed by the data owner, and hoard 

it along with the data (step 6 in Fig. 1). The encryption 

of the log file stops unconstitutional changes to the file 

by assailants. The data owner could opt to salvage the 

same key pair for all JARs or generate different key 

pairs for separate JARs. Using separate keys can 

augment the security without introducing any overhead 

excluding in the initialization phase. Besides, some 

error alteration information will be sent to the log 

harmonizer to handle probable log file sleaze (step 7 in 

Fig. 1). To ensure dependability of the logs, each 

confirmation is signed by the body accessing the 

content. Further, individual records are messed 

together to create a chain structure, able to rapidly 

detect probable errors or misplaced records. The 

encrypted log files can later be decrypted and their 

integrity confirmed. They can be contacted by the data 

owner or other endorsed stakeholders at any time for 

auditing ideology with the aid of the log harmonizer 

(step 8 in Fig. 1). 

 

END-TO-END AUDITING MECHANISM 

In this section, we illustrate our distributed auditing 

mechanism counting the algorithms for data owners to 

query the logs regarding their data. 

 

Push and Pull Mode 

To allow customers to be timely and accurately 

educated about their data convention, our dispersed 

logging mechanism is harmonized by an innovative 

auditing method. We support two harmonizing 

auditing modes: 1) push mode; 2) pull mode. 

 

Push mode. In this mode, the logs are sporadically 

pushed to the data owner (or auditor) by the 

harmonizer. The push action will be generated by 

either type of the subsequent two events: one is that 

the time elapses for a definite period according to the 

chronological timer inserted as part of the JAR file; the 

other is that the JAR file surpassed the size 

predetermined by the content owner at the time of 

formation. Subsequent to the logs are sent to the data 

owner, the log files will be discarded, so as to free the 

space for potential access logs. Together with the log 

files, the error correcting information for those logs is 

also discarded. 

 

This push mode is the fundamental mode which can be 

accepted by both the Pure Log and the Access Log, 
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despite of whether there is a demand from the data 

owner for the log files. This mode serves two 

necessary functions in the logging architecture: 1) it 

guarantees that the size of the log files does not 

detonate and 2) it enables timely detection and 

alteration of any loss or damage to the log files. 

 

In relation to the latter function, we observe that the 

auditor, upon getting the log file, will confirm its 

cryptographic pledges, by checking the records’ 

reliability and authenticity. By construction of the 

records, the auditor will be capable to quickly notice 

forgery of entries, using the checksum supplementary 

to each and every record. 

 

Pull mode. 

This mode permits auditors to recover the logs anytime 

when they want to check the recent access to their own 

information. The pull communication consists simply 

of an FTP pull command, which can be concerns from 

the command line. For naive users, a wizard contains a 

batch file can be simply built. The appeal will be sent 

to the harmonizer, and the customer will be informed 

of the data’s positions and obtain an incorporated copy 

of the authentic and conserved log file. 

 

The communication with the harmonizer commences 

with a simple handshake. If no reply is established, the 

log file proceedings an error. The data owner is then 

prepared through e-mails, if the JAR is configured to 

send error announcements. Once the handclasp is 

completed, the message with the harmonizer proceeds, 

using a TCP/IP protocol. If any of the aforesaid events 

(i.e., there is request of the log file, or the size or time 

surpasses the threshold) has happened, the JAR simply 

abandons the log files and resets all the variables, to 

create space for new proceedings. 

 

PERFORMANCE STUDY 

In this section, we first commence the settings of the 

test situation and then present the performance revise 

of our system. 

 

 

Experimental Settings 

We tested our CIA skeleton by setting up a little cloud, 

using the Emulab testbed [42]. In exacting, the test 

environment consists of numerous Open SSL-enabled 

servers: 

One head node which is the certificate authority, and 

several calculating nodes. All of the servers is mounted 

with Eucalyptus [41]. Eucalyptus is an open source 

cloud execution for Linux-based schemes. It is slackly 

based on Amazon EC2, so bringing the dominant 

functionalities of Amazon EC2 into the release source 

province. We used Linux-based servers running 

Fedora 10 OS. Every server has a 64-bit Intel Quad 

Core Xeon E5530 processor,4 GB RAM, and a 500 

GB Hard Drive. All of the servers is prepared to run 

the Open JDK runtime situation with IcedTea6 1.8.2. 

 

Experimental Results 

In the trials we first observe the time taken to create a 

log file and then calculate the overhead in the 

classification. With admiration to time, the overhead 

can occur at three points: during the verification, 

during encryption of a log record, and during the 

amalgamation of the logs. Moreover, with admiration 

to storage overhead, we observe that our construction 

is very lightweight, in that the only data to be amassed 

are given by the actual files and the related logs. 

Further, JAR act as a compressor of the records that it 

handles. In particular, several files can be handled by 

the equivalent logger constituent. To this extent, we 

examine whether a single logger constituent, used to 

grip more than one file, consequences in storage 

overhead. 

 

Log Creation Time 

In the first round of experiments, we are involved in 

finding out the time taken to generate a log file when 

there are entities endlessly contacting the data, causing 

incessant logging. Results are shown in Fig. 3. It is not 

surprising to see that the time to generate a log file 

increases linearly with the size of the log file. 

Particularly, the time to create a 100 Kb file is about 

114.5 ms as the time to create a 1 MB file averages at 

731 ms. With this trial as the baseline, one can choose 
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the amount of time to be precise between dumps, 

keeping other variables similar to space restraints or 

network traffic in mind. 

 

Authentication Time 

The next point that the overhead can happen is during 

the verification of a CSP. If the time taken for this 

verification is too elongated, it may become a 

bottleneck for accessing the enclosed data. To estimate 

this, the head node subjected Open SSL certificates for 

the calculating nodes and we calculated the total time 

for the Open SSL authentication to be finished and the 

credential revocation to be checked. Considering one 

access at the time, we locate that the verification time 

averages around 920 ms which shows that not too 

much overhead is added during this phase. As of 

present, the verification takes place every time the CSP 

needs to access the information. The performance can 

be further enhanced by caching the certificates. 

 
Fig 3. Time to merge log files. 

 

The time for validating an end user is about the same 

when we deem only the actions requisite by the JAR, 

viz. obtaining a SAML certificate and then assessing 

it. This is because both the Open SSL and the SAML 

certificates are griped in a similar manner by the JAR. 

When we deem the user measures (i.e., submitting his 

username to the JAR), it averages at 1.2 minutes. 

 

Time Taken to Perform Logging 

This set of experiments revises the consequence of log 

file size on the logging performance. We calculate the 

average time taken to grant an access plus the time to 

write the consequent log record. The time for yielding 

any access to the data items in a JAR file comprises 

the time to appraise and enforce the appropriate 

policies and to locate the requested data items. In the 

experiment, we let multiple servers endlessly access 

the equal data JAR file for a minute and recorded the 

number of log records produced. Every access is just a 

view request and therefore the time for executing the 

action is negligible. Accordingly, the average time to 

log an exploit is about 10 seconds, which comprises 

the time taken by a user to double click the JAR or by 

a server to run the script to unlock the JAR. We also 

calculated the log encryption time which is about 300 

ms (per record) and is seemingly unconnected from the 

log size. 

 

Log Merging Time 

To ensure if the log harmonizer can be a bottleneck, 

we calculate the amount of time necessary to merge 

log files. In this experiment, we guaranteed that each 

of the log files had10 to 25 percent of the records in 

frequent with one other. The exact number of records 

in general was random for every repetition of the 

research. The time was averaged over 10 repetitions. 

We tested the time to combine up to 70 log files of 100 

KB, 300 KB, 500 KB, 700 KB, 900 KB, and 1 MB 

each. The results are shown in Fig. 4. We can 

scrutinize that the time augments almost linearly to the 

number of files and size of files, with the slightest time 

being taken for amalgamation two100 KB log files at 

59 ms, as the time to combine 70 1 MB files was 2.35 

minutes. 

 

Size of the Data JAR Files 

Finally, we examine whether a single logger, used to 

handle more than one file, consequences in storage 

overhead. We calculate the size of the loggers (JARs) 

by varying the number as well as size of data items 

detained by them. We tested the increase in size of the 

logger holding 10 content files (i.e., images) of the 

equivalent size as the file size increases. Instinctively, 

in case of larger size of data items held by a logger, the 

overall logger also augments in size. The size of logger 

produces from 3,500 to 4,035 KB when the size of 

content items varies from 200 KB to 1 MB. Generally, 

due to the density provided by JAR files, the size of 
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the logger is ordered by the size of the largest files it 

contains. Notice that we deliberately did not comprise 

large log files (less than 5 KB), so as to focus on the 

overhead supplementary by having numerous content 

files in a single JAR. 

 

Overhead Added by JVM Integrity Checking 

We examine the overhead added by together the JRE 

installation/repair process, and by the time taken for 

calculation of hash codes.The time taken for JRE 

installation/repair averages approximately 6,500 ms. 

This time was measured by captivating the system 

time stamp at the start and end of the 

installation/repair.To compute the time slide added by 

the hash codes, we simply calculate the time taken for 

each hash computation. This time is originate to 

average around 9 ms. The number of hash commands 

diverges based on the size of the code in the code does 

not alter with the content, the number of hash 

commands remain stable. 

 

CONCLUSION 

We proposed pioneering approaches for mechanically 

logging any access to the data in the cloud jointly with 

an auditing mechanism. Our approach permits the data 

owner to not only audit his content but also implement 

strong back-end protection if needed. In addition, one 

of the main features of our work is that it allows the 

data proprietor to audit even those copies of its data 

that were made without his knowledge. In the future, 

we plan to refine our approach to confirm the honesty 

of the JRE and the confirmation of JARs [23]. For 

instance, we will investigate whether it is probable to 

leverage the notion of a secure JVM [18] being 

developed by IBM. This study is intended at providing 

software tamper confrontation to Java applications. In 

the long term, we plan to intend a widespread and 

more generic object-oriented approach to support 

autonomous protection of traveling content. We would 

like to hold up a variety of security policies, like 

indexing policies for text files, custom control for 

executables, and general accountability and 

provenance controls. 
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