

 Page 1172

Cloud Information Accountability and Data Authenticity in

Distributed Auditing Mechanism

B.Abhilash Reddy

B.Tech 4th Year,

Department of ECE

Sreenidhi Institute of Science & Technology,

Hyderabad.

P.Haripriya

B.Tech 4th Year,

Department of ECE

Sreenidhi Institute of Science & Technology,

Hyderabad.

Abstract:

Cloud computing enables highly scalable services to

be simply frenzied over the Internet on an as-needed

basis. A major aspect of the cloud services is that

users’ data are usually processed remotely in strange

machines that users do not own or operate. While

enjoying the expediency brought by this new budding

technology, users’ fears of losing control of their own

data (mainly, financial and health data) can become

a significant barrier to the wide adoption of cloud

services. To concentrate on this problem, in this

paper, we suggest a novel highly decentralized

information accountability framework to keep track

of the authentic usage of the users’ data in the cloud.

In particular, we suggest an object-centered

approach that enables enclosing our logging

mechanism together with users’ data and policies.

We force the JAR programmable abilities to both

create a dynamic and itinerant object, and to ensure

that any access to users’ data will trigger

authentication and programmed logging local to the

JARs. To reinforce user’s control, we also give

distributed auditing mechanisms. We supply

extensive experimental studies that demonstrate the

efficiency and effectiveness of the proposed

approaches.

Index Terms—Cloud computing, accountability, data

sharing.

INTRODUCTION

Cloud computing presents a new way to supplement

the current consumption and delivery model for IT

services based on the Internet, by providing for

vigorously scalable and often virtualized resources as a

service over the Internet. To date, there are a number

of prominent commercial and individual cloud

computing services, counting Amazon, Google,

Microsoft, Yahoo, and Sales force [19]. Details of the

services provided are abstracted from the users who no

longer need to be experts of technology infrastructure.

Furthermore, users may not know the machines which

actually process and host their data. While enjoying

the expediency brought by this new technology, users

also start perturbing about losing control of their own

data. The data processed on clouds are frequently

outsourced, leading to a number of issues connected to

accountability, counting the handling of personally

identifiable information. Such qualms are becoming a

significant hurdle to the wide adoption of cloud

services [30].To allay users’ concerns, it is essential to

provide an effective mechanism for users to monitor

the usage of their data in the cloud. For instance, users

need to be able to ensure that their data are handled

according to the service level agreements made at the

time they sign on for services in the cloud.

Conservative access control approaches developed for

closed domains such as databases and operating

systems, or approaches by means of a centralized

 Page 1173

server in distributed environments, are not appropriate,

due to the following features characterizing cloud

environments.

First, data handling can be outsourced by the direct

cloud service provider (CSP) to other entities in the

cloud and theses entities can also delegate the errands

to others, and so on. Second, entities are permitted to

join and leave the cloud in a flexible manner.

Accordingly, data handling in the cloud goes through a

complex and dynamic hierarchical service chain which

does not exist in conventional environments. To

conquer the above problems, we propose a new

approach, namely Cloud Information Accountability

(CIA) framework, based on the concept of information

accountability [44]. Unlike privacy protection

technologies which are built on the hide-it-or-lose-it

perspective, information accountability spotlights on

keeping the data usage transparent and trackable. Our

proposed CIA framework gives end-to-end

accountability in a highly distributed manner. One of

the main innovative features of the CIA framework

lies in its ability of maintaining lightweight and

powerful accountability that combines aspects of

access control, usage control and substantiation. By

means of the CIA, data holders can track not only

whether or not the service-level agreements are being

honored, but also implement access and usage control

rules as needed. Connected with the accountability

feature, we also develop two discrete modes for

auditing: push mode and pull mode. The push mode

refers to logs being sporadically sent to the data owner

or stakeholder while the pull mode refers to an

alternative approach whereby the user(or another

authorized party) can retrieve the logs as needed.

The design of the CIA framework presents

considerable challenges, including uniquely

identifying CSPs, guaranteeing the reliability of the

log, acclimatizing to a highly decentralized

infrastructure, etc. Our fundamental approach toward

addressing these issues is to leverage and extend the

programmable capability of JAR (Java ARchives) files

to automatically log the usage of the users’ data by any

entity in the cloud. Users will send their data alongside

with any policies such as access control policies and

logging policies that they want to impose, enclosed in

JAR files, to cloud service contributors. Any access to

the data will trigger an automated and authenticated

logging mechanism local to the JARs. We pass on to

this type of enforcement as “strong binding” since the

policies and the logging mechanism travel with the

data. This strong binding subsists even when copies of

the JARs are produced; thus, the user will have control

over his data at any location. Such decentralized

logging mechanism convenes the dynamic nature of

the cloud but also imposes challenges on ensuring the

integrity of the logging. To manage with this issue, we

provide the JARs with a central point of contact which

forms a link between them and the user. It reports the

error correction information sent by the JARs, which

allows it to observe the loss of any logs from any of

the JARs. Furthermore, if a JAR is not able to contact

its central point, any access to its enclosed data will be

denied.

RELATED WORK

In this segment, we first review related works

addressing the privacy and security concerns in the

cloud. Then, we briefly confer works which adopt

analogous techniques as our approach but serve for

different reasons.

Cloud Privacy and Security

Cloud computing has elevated a range of significant

privacy and security issues [19], [25], [30]. Such

concerns are due to the fact that, in the cloud, users’

data and requests reside—at least for a definite amount

of time—on the cloud cluster which is owned and

preserved by a third party. Apprehensions arise since

in the cloud it is not always obvious to individuals why

their personal information is demanded or how it will

be used or accepted on to other parties. To date, small

work has been done in this space, in particular with

reverence to accountability. Pearson et al. have

projected accountability mechanisms to address

privacy apprehensions of end users [30] and then

enlarge a privacy manager [31]. Their basic thought is

 Page 1174

that the user’s classified data are sent to the cloud in an

encrypted form, and the processing is done on the

encrypted data. The output of the processing is

deobfuscated by the isolation manager to divulge the

correct result. Though, the privacy manager gives only

limited features in that it does not guarantee protection

once the data are being revealed. In [7], the authors

present a layered architecture for addressing the end-

to-end trust supervision and accountability problem in

amalgamated systems. The authors’ focus is very

dissimilar from ours, in that they mostly leverage trust

associations for accountability, along with

authentication and inconsistency detection. Additional,

their solution requires third-party services to complete

the monitoring and focuses on inferior level observing

of system resources.

Researchers have examined accountability mostly as a

demonstrable property through cryptographic

mechanisms, mainly in the perspective of electronic

commerce [10], [21]. A delegate work in this area is

specified by [9]. The authors propose the usage of

strategies attached to the information and present a

logic for accountability data in distributed settings.

Likewise, Jagadeesan et al. recently proposed a logic

for conniving accountability-based distributed systems

[20]. In [10], Crispo and Ruffo projected an interesting

approach associated to accountability in case of

delegation. Delegation is harmonizing to our work, in

that we do not aspire at calculating the information

workflow in the clouds. In a synopsis, all these works

stay at a theoretical level and do not comprise any

algorithm for tasks like obligatory logging.

To the finest of our knowledge, the only work advising

a distributed approach to accountability is from Lee

and colleagues [22]. The instigators have projected an

agent-based system explicit to grid computing.

Distributed jobs, along with the resource utilization at

local machines are trailed by static software

representatives. The idea of accountability policies in

[22] is connected to ours, but it is mostly focused on

resource utilization and on tracking of sub jobs

practiced at multiple calculating nodes, rather than

access control.

Other Related Techniques

With reverence to Java-based techniques for security,

our methods are associated to self-defending objects

(SDO) [17]. Self-defending objects are an expansion

of the object-oriented programming model, where

software objects that offer receptive functions or hold

sensitive data are accountable for shielding those

functions/data. Likewise, we also extend the

perceptions of object-oriented programming. The key

dissimilarities in our implementations is that the

creators still rely on a centralized database to sustain

the access records, while the substances being

protected are detained as separate files. In preceding

work, we provided a Java-based approach to stop

privacy seepage from indexing [39], which could be

incorporated with the CIA framework projected in this

work since they build on connected architectures.

In provisions of authentication techniques, Appel and

Felten [13] projected the Proof-Carrying authentication

(PCA) framework. The PCA comprises a high order

logic language that permits quantification over

predicates, and hubs on access control for web

services. While associated to ours to the scope that it

helps upholding safe, high-performance, mobile code,

the PCA’s goal is highly dissimilar from our research,

as it focuses on authenticating code, rather than

scrutinizing content. Another work is by Mont et al.

who projected an approach for strongly pairing content

with access control, by Identity-Based Encryption

(IBE) [26]. We also force IBE methods but in a very

different way. We do not rely on IBE to bind the

content with the rules. Instead, we use it to give strong

assurances for the encrypted content and the log files,

such as protection against preferred plaintext and

cipher text attacks.

CLOUD INFORMATION ACCOUNTABILITY

In this part, we present an impression of the Cloud

Information Accountability framework and discuss

 Page 1175

how the CIA framework assembles the design

requirements conversed in the earlier section.

The Cloud Information Accountability framework

projected in this work demeanors automated logging

and disseminated auditing of pertinent access executed

by any entity, carried out at any point of time at any

cloud service contributor. It has two major gears:

logger and log harmonizer.

Major Components

There are two main components of the CIA, the first

being the logger, and the second being the log

harmonizer. The logger is the part which is strongly

joined with the user’s data, so that it is downloaded

when the data are accessed, and is copied when the

information are copied. It grips a particular instance or

copy of the user’s data and is accountable for logging

access to that example or copy. The log harmonizer

forms the central component which permits the user

access to the log records.

The logger is strongly joined with user’s data (either

single or multiple data objects). Its main tasks include

mechanically logging access to data items that it holds,

encrypting the log record by the public key of the

content owner, and sporadically sending them to the

log harmonizer. It may also be configured to guarantee

that access and usage control policies connected with

the data are privileged. For example, a data owner can

identify that user X is only permitted to view but not to

change the data. The logger will manage the data

access even after it is downloaded by user X.

The logger necessitates only minimal support from the

server (e.g., a legitimate Java virtual machine

installed) in order to be installed. The tight pairing

between data and logger, results in a highly

disseminated logging system, therefore meeting our

first design requirement. Moreover, since the logger

does not require to be installed on any system or entail

any special support from the server, it is not very

invasive in its actions, thus fulfilling our fifth

requirement. Lastly, the logger is also accountable for

generating the error alteration information for each log

record and sends the same to the log harmonizer. The

error alteration information shared with the encryption

and verification mechanism gives a robust and

consistent recovery mechanism, therefore meeting the

third obligation.

The log harmonizer is liable for inspecting.

Being the trusted component, the log harmonizer

produces the master key. It clutches on to the

decryption key for the IBE key pair, as it is

accountable for decrypting the logs. On the other hand,

the decryption can be accepted out on the client end if

the path between the log harmonizer and the client is

not hoped. In this case, the harmonizer sends the key

to the client in a secure key swap.

It ropes two auditing strategies: push and pull. Under

the push approach, the log file is pushed back to the

data owner sometimes in an automated manner. The

pull mode is an on-demand approach, whereby the log

file is attained by the data owner as frequently as

request. These two modes allow us to satisfy the

aforesaid fourth design obligation. In case there

survive multiple loggers for the same set of data

objects, the log harmonizer will merge log proceedings

from them prior to sending back to the data owner. The

log harmonizer is also accountable for handling log

file corruption. As well, the log harmonizer can itself

complete logging in addition to auditing. Sorting out

the logging and auditing functions recovers the

performance. The logger and the log harmonizer are

both executed as lightweight and transferable JAR

files. The JAR file implementation gives automatic

logging functions, which convenes the second design

obligation.

Data Flow

The overall CIA framework, merging data, users,

logger and harmonizer is drafted in Fig. 1. At the

starting, each user generates a pair of public and

private keys based on Identity-Based Encryption [4]

(step 1 in Fig. 1). This IBE method is a Weil-pairing-

based IBE method, which defends us against one of

 Page 1176

the most common attacks to our architecture. Using the

produced key, the user will generate a logger

component which is a JAR file, to store its data

objects.

The JAR file incorporate a set of simple access control

rules identify whether and how the cloud servers, and

probably other data stakeholders (users, companies)

are endorsed to access the content itself. Then, he

sends the JAR file to the cloud service contributor that

he subscribes to. To validate the CSP to the JAR (steps

3-5 in Fig. 1), we use Open SSL supported certificates,

wherein a trusted certificate influence certifies the

CSP. In the incident that the access is requested by a

user, we use SAML-based authentication [8], where in

a trusted identity contributor issues certificates

confirming the user’s uniqueness based on his

username.

Fig. 1. Overview of the cloud information

accountability framework.

Once the verification succeeds, the service contributor

(or the user) will be allowed to admission the data

enclosed in the JAR. Depending on the pattern settings

distinct at the time of formation, the JAR will provide

custom control associated with logging, or will give

only logging functionality. As for the logging, every

time there is an access to the data, the JAR will

automatically generate a log record, encrypt it using

the public key distributed by the data owner, and hoard

it along with the data (step 6 in Fig. 1). The encryption

of the log file stops unconstitutional changes to the file

by assailants. The data owner could opt to salvage the

same key pair for all JARs or generate different key

pairs for separate JARs. Using separate keys can

augment the security without introducing any overhead

excluding in the initialization phase. Besides, some

error alteration information will be sent to the log

harmonizer to handle probable log file sleaze (step 7 in

Fig. 1). To ensure dependability of the logs, each

confirmation is signed by the body accessing the

content. Further, individual records are messed

together to create a chain structure, able to rapidly

detect probable errors or misplaced records. The

encrypted log files can later be decrypted and their

integrity confirmed. They can be contacted by the data

owner or other endorsed stakeholders at any time for

auditing ideology with the aid of the log harmonizer

(step 8 in Fig. 1).

END-TO-END AUDITING MECHANISM

In this section, we illustrate our distributed auditing

mechanism counting the algorithms for data owners to

query the logs regarding their data.

Push and Pull Mode

To allow customers to be timely and accurately

educated about their data convention, our dispersed

logging mechanism is harmonized by an innovative

auditing method. We support two harmonizing

auditing modes: 1) push mode; 2) pull mode.

Push mode. In this mode, the logs are sporadically

pushed to the data owner (or auditor) by the

harmonizer. The push action will be generated by

either type of the subsequent two events: one is that

the time elapses for a definite period according to the

chronological timer inserted as part of the JAR file; the

other is that the JAR file surpassed the size

predetermined by the content owner at the time of

formation. Subsequent to the logs are sent to the data

owner, the log files will be discarded, so as to free the

space for potential access logs. Together with the log

files, the error correcting information for those logs is

also discarded.

This push mode is the fundamental mode which can be

accepted by both the Pure Log and the Access Log,

 Page 1177

despite of whether there is a demand from the data

owner for the log files. This mode serves two

necessary functions in the logging architecture: 1) it

guarantees that the size of the log files does not

detonate and 2) it enables timely detection and

alteration of any loss or damage to the log files.

In relation to the latter function, we observe that the

auditor, upon getting the log file, will confirm its

cryptographic pledges, by checking the records’

reliability and authenticity. By construction of the

records, the auditor will be capable to quickly notice

forgery of entries, using the checksum supplementary

to each and every record.

Pull mode.

This mode permits auditors to recover the logs anytime

when they want to check the recent access to their own

information. The pull communication consists simply

of an FTP pull command, which can be concerns from

the command line. For naive users, a wizard contains a

batch file can be simply built. The appeal will be sent

to the harmonizer, and the customer will be informed

of the data’s positions and obtain an incorporated copy

of the authentic and conserved log file.

The communication with the harmonizer commences

with a simple handshake. If no reply is established, the

log file proceedings an error. The data owner is then

prepared through e-mails, if the JAR is configured to

send error announcements. Once the handclasp is

completed, the message with the harmonizer proceeds,

using a TCP/IP protocol. If any of the aforesaid events

(i.e., there is request of the log file, or the size or time

surpasses the threshold) has happened, the JAR simply

abandons the log files and resets all the variables, to

create space for new proceedings.

PERFORMANCE STUDY

In this section, we first commence the settings of the

test situation and then present the performance revise

of our system.

Experimental Settings

We tested our CIA skeleton by setting up a little cloud,

using the Emulab testbed [42]. In exacting, the test

environment consists of numerous Open SSL-enabled

servers:

One head node which is the certificate authority, and

several calculating nodes. All of the servers is mounted

with Eucalyptus [41]. Eucalyptus is an open source

cloud execution for Linux-based schemes. It is slackly

based on Amazon EC2, so bringing the dominant

functionalities of Amazon EC2 into the release source

province. We used Linux-based servers running

Fedora 10 OS. Every server has a 64-bit Intel Quad

Core Xeon E5530 processor,4 GB RAM, and a 500

GB Hard Drive. All of the servers is prepared to run

the Open JDK runtime situation with IcedTea6 1.8.2.

Experimental Results

In the trials we first observe the time taken to create a

log file and then calculate the overhead in the

classification. With admiration to time, the overhead

can occur at three points: during the verification,

during encryption of a log record, and during the

amalgamation of the logs. Moreover, with admiration

to storage overhead, we observe that our construction

is very lightweight, in that the only data to be amassed

are given by the actual files and the related logs.

Further, JAR act as a compressor of the records that it

handles. In particular, several files can be handled by

the equivalent logger constituent. To this extent, we

examine whether a single logger constituent, used to

grip more than one file, consequences in storage

overhead.

Log Creation Time

In the first round of experiments, we are involved in

finding out the time taken to generate a log file when

there are entities endlessly contacting the data, causing

incessant logging. Results are shown in Fig. 3. It is not

surprising to see that the time to generate a log file

increases linearly with the size of the log file.

Particularly, the time to create a 100 Kb file is about

114.5 ms as the time to create a 1 MB file averages at

731 ms. With this trial as the baseline, one can choose

 Page 1178

the amount of time to be precise between dumps,

keeping other variables similar to space restraints or

network traffic in mind.

Authentication Time

The next point that the overhead can happen is during

the verification of a CSP. If the time taken for this

verification is too elongated, it may become a

bottleneck for accessing the enclosed data. To estimate

this, the head node subjected Open SSL certificates for

the calculating nodes and we calculated the total time

for the Open SSL authentication to be finished and the

credential revocation to be checked. Considering one

access at the time, we locate that the verification time

averages around 920 ms which shows that not too

much overhead is added during this phase. As of

present, the verification takes place every time the CSP

needs to access the information. The performance can

be further enhanced by caching the certificates.

Fig 3. Time to merge log files.

The time for validating an end user is about the same

when we deem only the actions requisite by the JAR,

viz. obtaining a SAML certificate and then assessing

it. This is because both the Open SSL and the SAML

certificates are griped in a similar manner by the JAR.

When we deem the user measures (i.e., submitting his

username to the JAR), it averages at 1.2 minutes.

Time Taken to Perform Logging

This set of experiments revises the consequence of log

file size on the logging performance. We calculate the

average time taken to grant an access plus the time to

write the consequent log record. The time for yielding

any access to the data items in a JAR file comprises

the time to appraise and enforce the appropriate

policies and to locate the requested data items. In the

experiment, we let multiple servers endlessly access

the equal data JAR file for a minute and recorded the

number of log records produced. Every access is just a

view request and therefore the time for executing the

action is negligible. Accordingly, the average time to

log an exploit is about 10 seconds, which comprises

the time taken by a user to double click the JAR or by

a server to run the script to unlock the JAR. We also

calculated the log encryption time which is about 300

ms (per record) and is seemingly unconnected from the

log size.

Log Merging Time

To ensure if the log harmonizer can be a bottleneck,

we calculate the amount of time necessary to merge

log files. In this experiment, we guaranteed that each

of the log files had10 to 25 percent of the records in

frequent with one other. The exact number of records

in general was random for every repetition of the

research. The time was averaged over 10 repetitions.

We tested the time to combine up to 70 log files of 100

KB, 300 KB, 500 KB, 700 KB, 900 KB, and 1 MB

each. The results are shown in Fig. 4. We can

scrutinize that the time augments almost linearly to the

number of files and size of files, with the slightest time

being taken for amalgamation two100 KB log files at

59 ms, as the time to combine 70 1 MB files was 2.35

minutes.

Size of the Data JAR Files

Finally, we examine whether a single logger, used to

handle more than one file, consequences in storage

overhead. We calculate the size of the loggers (JARs)

by varying the number as well as size of data items

detained by them. We tested the increase in size of the

logger holding 10 content files (i.e., images) of the

equivalent size as the file size increases. Instinctively,

in case of larger size of data items held by a logger, the

overall logger also augments in size. The size of logger

produces from 3,500 to 4,035 KB when the size of

content items varies from 200 KB to 1 MB. Generally,

due to the density provided by JAR files, the size of

 Page 1179

the logger is ordered by the size of the largest files it

contains. Notice that we deliberately did not comprise

large log files (less than 5 KB), so as to focus on the

overhead supplementary by having numerous content

files in a single JAR.

Overhead Added by JVM Integrity Checking

We examine the overhead added by together the JRE

installation/repair process, and by the time taken for

calculation of hash codes.The time taken for JRE

installation/repair averages approximately 6,500 ms.

This time was measured by captivating the system

time stamp at the start and end of the

installation/repair.To compute the time slide added by

the hash codes, we simply calculate the time taken for

each hash computation. This time is originate to

average around 9 ms. The number of hash commands

diverges based on the size of the code in the code does

not alter with the content, the number of hash

commands remain stable.

CONCLUSION

We proposed pioneering approaches for mechanically

logging any access to the data in the cloud jointly with

an auditing mechanism. Our approach permits the data

owner to not only audit his content but also implement

strong back-end protection if needed. In addition, one

of the main features of our work is that it allows the

data proprietor to audit even those copies of its data

that were made without his knowledge. In the future,

we plan to refine our approach to confirm the honesty

of the JRE and the confirmation of JARs [23]. For

instance, we will investigate whether it is probable to

leverage the notion of a secure JVM [18] being

developed by IBM. This study is intended at providing

software tamper confrontation to Java applications. In

the long term, we plan to intend a widespread and

more generic object-oriented approach to support

autonomous protection of traveling content. We would

like to hold up a variety of security policies, like

indexing policies for text files, custom control for

executables, and general accountability and

provenance controls.

REFERENCES

[1] P. Ammann and S. Jajodia, “Distributed

Timestamp Generation in Planar Lattice Networks,”

ACM Trans. Computer Systems, vol. 11, pp. 205-225,

Aug. 1993.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z.Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. ACM Conf.

Computer and Comm. Security, pp. 598-609, 2007.

[3] E. Barka and A. Lakas, “Integrating Usage Control

with SIP-Based Communications,” J. Computer

Systems, Networks, and Comm., vol. 2008, pp. 1-8,

2008.

[4] D. Boneh and M.K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” Proc. Int’l

Cryptology Conf. Advances in Cryptology, pp. 213-

229, 2001.

[5] R. Bose and J. Frew, “Lineage Retrieval for

Scientific Data Processing: A Survey,” ACM

Computing Surveys, vol. 37, pp. 1-28, Mar. 2005.

[6] P. Buneman, A. Chapman, and J. Cheney,

“Provenance Management in Curated Databases,”

Proc. ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD ’06), pp. 539-550, 2006.

[7] B. Chun and A.C. Bavier, “Decentralized Trust

Management and Accountability in Federated

Systems,” Proc. Ann. Hawaii Int’l Conf. System

Sciences (HICSS), 2004.

[8] OASIS Security Services Technical Committee,

“Security Assertion Markup Language (saml) 2.0,”

http://www.oasis-open.org/committees/tc

home.php?wg abbrev=security, 2012.

[9] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and

I. Staicu, “ALogic for Auditing Accountability in

Decentralized Systems,” Proc. IFIP TC1 WG1.7

 Page 1180

Workshop Formal Aspects in Security and Trust, pp.

187-201, 2005.

[10] B. Crispo and G. Ruffo, “Reasoning about

Accountability within Delegation,” Proc. Third Int’l

Conf. Information and Comm. Security (ICICS), pp.

251-260, 2001.

[11] Y. Chen et al., “Oblivious Hashing: A Stealthy

Software Integrity Verification Primitive,” Proc. Int’l

Workshop Information Hiding, F. Petitcolas, ed., pp.

400-414, 2003.

[12] S. Etalle and W.H. Winsborough, “A Posteriori

Compliance Control,” SACMAT ’07: Proc. 12th ACM

Symp. Access Control Models and Technologies, pp.

11-20, 2007.

[13] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open

Framework for Foundational Proof-Carrying Code,”

Proc. ACM SIGPLAN Int’l Workshop Types in

Languages Design and Implementation, pp. 67-

78,2007.

[14] Flickr, http://www.flickr.com/, 2012.

[15] R. Hasan, R. Sion, and M. Winslett, “The Case of

the Fake Picasso: Preventing History Forgery with

Secure Provenance,” Proc. Seventh Conf. File and

Storage Technologies, pp. 1-14, 2009.

[16] J. Hightower and G. Borriello, “Location Systems

for Ubiquitous Computing,” Computer, vol. 34, no. 8,

pp. 57-66, Aug. 2001.

[17] J.W. Holford, W.J. Caelli, and A.W. Rhodes,

“Using Self-Defending Objects to Develop Security

Aware Applications in Java,” Proc. 27th Australasian

Conf. Computer Science, vol. 26,pp. 341-349, 2004.

[18] Trusted Java Virtual Machine IBM,

http://www.almaden.ibm.com/cs/projects/jvm/, 2012.

[19] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud

Computing and Information Policy: Computing in a

Policy Cloud?,” J. Information Technology and

Politics, vol. 5, no. 3, pp. 269-283, 2009.

[20] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,

“Towards a Theory of Accountability and Audit,”

Proc. 14th European Conf. Research in Computer

Security (ESORICS), pp. 152-167, 2009.

[21] R. Kailar, “Accountability in Electronic

Commerce Protocols,” IEEE Trans. Software Eng.,

vol. 22, no. 5, pp. 313-328, May 1996.

[22] W. Lee, A. Cinzia Squicciarini, and E. Bertino,

“The Design and Evaluation of Accountable Grid

Computing System,” Proc. 29thIEEE Int’l Conf.

Distributed Computing Systems (ICDCS ’09),pp. 145-

154, 2009.

