Self-Driven Synchronous Rectifier for DC Motor Driver with Parasitic Capacitor Based ZVS

Burli Lakshmana Rao
M.Tech Student
Department of Electrical & Electronics Engineering, Thandra Paparaya Institute of Science & Technology, Bobbili; Vizianagaram (Dt); A.P, India.

B.Venkata Ramana
Assistant Professor & HoD
Department of Electrical & Electronics Engineering, Thandra Paparaya Institute of Science & Technology, Bobbili; Vizianagaram (Dt); A.P, India.

Abstract
The single-phase self-driven synchronous rectification (SDSR) technique to multiphase ac-dc systems. Power MOSFETs with either voltage- or current-sensing self-driven gate drives are used to replace the diodes in the rectifier circuits. The generalized methodology allows multiphase SDSRs to be designed to replace the multiphase diode rectifiers. Unlike the traditional SR that is designed for high-frequency power converters, the SDSR proposed here can be a direct replacement of the power diode bridges for both low- and high-frequency operations. The SDSR utilizes its output dc voltage to supply power to its control circuit. No start-up control is needed because the body diodes of the power MOSFETs provide the diode rectifier for the initial start-up stage. The generalized method is demonstrated in 2-kW one-phase and three-phase SDSRs for inductive, capacitive, and resistive loads. Power loss reduction in the range of 50%-69% has been achieved for the resistive load. In this project, a soft-switching buck power-factor-correction (PFC) converter for a high-efficiency AC-DC light-emitting diode (LED) driver is proposed. By replacing a freewheeling diode with a self-driven synchronous rectifier (SR), efficiency improvement is achieved due to the reduced conduction loss on the SR. In addition, there is no switching loss on switching devices because zero-voltage-switching (ZVS) operations of both switches are easily performed. Since the SR is self-driven without an additional control circuit, the proposed converter has competitive price. In order to verify efficiency improvement of the proposed converter, it is compared with a conventional critical-conduction-mode (CRM) buck PFC converter. The efficiency of the proposed converter is measured maximum 95.61% at 170 [Vac] and improved maximum 0.23% at 240 [Vac]. For verifying soft-switching and efficiency improvement of the proposed converter, design consideration by using MATLAB/Simulink.

Index Terms—Buck-boost converter, LED driver, power factor correction (PFC), synchronous rectifier, zero-voltage-switching (ZVS).

I. INTRODUCTION
Electric Lighting is an essential part of our lives, and is a major component in energy consumption. The types of lighting devices commonly adopted for electric lighting is the incandescent lamps, the gas-discharge lamps and solid state lighting devices. There are various dimming techniques introduced for different types of lighting devices. For incandescent lamps, dimming is typically performed by controlling the firing angle of a thyristor.

For Gas discharge lamps, dimming technique revolve around the control of voltage level, duty cycle and frequency. For solid-state lighting devices, the dimming technique is to vary the dc level of the forward current [1].

The high efficiency LED system needs the high-efficiency power supply to feed the LED [2]. LEDs are very attractive lighting sources due to their excellent characteristics. Many types of power switching converter used to adapt primary energy sources to the

Volume No: 2 (2015), Issue No: 12 (December)
www.ijmetmr.com
requirements [3]. HB LEDs have been widely accepted because of superior longevity, low-maintenance requirements and improve luminance. For an LED load, a small variation in driving voltage leads to large variation in the LED current. LED current with large ripple will lead to seriously affect the reliability and longevity [4].

On the other hand, a buck PFC converter and a buck-boost PFC converter have high efficiency owing to the simple structure and low output voltage in a LED driver [5]–[6]. These converters are usually operated in the discontinuous conduction mode (DCM) and critical conduction mode (CRM). Among them, CRM control is highly preferred because its turn-on switching loss and the diode reverse-recovery loss are almost eliminated. In addition, the input filter design is easier than the DCM operation [7]–[10]. Nevertheless, conduction loss of the diode still exists, and it decreases the power conversion efficiency. For this reason, a synchronous rectifier (SR) is proposed to be used instead of a diode. The synchronous rectification controller proposed in uses an auxiliary winding of the transformer for detecting voltage and current. In a Smart Rectifier control IC and a dual-mode SR controller were used for driving the SR.

II. ANALYSIS OF PROPOSED CONVERTER
The circuit diagram of the proposed AC-DC converter is shown in Fig. 1. The EMI input filter includes a filter inductor \(L_f \) and a filter capacitor \(C_f \). The main structure of the proposed AC-DC converter is similar to that of a conventional buck-boost converter, which consists of an input capacitor \(C_{in} \), an output capacitor \(C_o \), a buck-boost inductor \(L_b \), and a main switch \(S_m \). The only difference being that the output diode is replaced with SR \(S_a \). Diodes \(D_{in} \) and \(D_{a} \) are the intrinsic body diodes of \(S_m \) and \(S_a \) respectively. Capacitors \(C_{sm} \) and \(C_{sa} \) denote the parasitic output capacitances of \(S_m \) and \(S_a \) respectively. For the analysis of the proposed AC-DC converter in a steady state, several assumptions are made during one switching period \(T_s \). All the semiconductor devices are ideal components except for the output capacitances \(C_{sm} \) and \(C_{sa} \) of \(S_m \) and \(S_a \), respectively.

![Fig. 1. Proposed AC-DC converter with a self-driven synchronous rectifier.](image)

The capacitance of the output capacitor, \(C_o \), is large enough to consider the output voltage \(V_o \) as a constant. The rectified line voltage \(V_{in} \) is considered as a constant value \(V_{in} \) during a switching period because
the switching frequency f_{sw} is much higher than the line frequency f_L. The theoretical waveforms of the proposed converter in a switching period T_s are shown in Fig. 2. The buck-boost inductor current i_{lb} varies from its maximum value $I_{L(max)}$ to its minimum value $I_{L(min)}$.

Fig. 3. Operating modes of proposed converter.

The operation of the proposed converter in a switching period is divided into six modes as shown in Fig. 3. Before t_0, the main switch S_m is turned off, and the synchronous switch S_a conducts. The inductor current i_{lb} decreases linearly and reaches its minimum value $I_{L(min)}$ at t_0.

Mode 1 [t_0-t_1]: When switch S_a is turned off, this mode begins. The parasitic output capacitor C_{sa} begins charging and C_{sm} begins discharging. By assuming that the capacitances of the parasitic output capacitors, C_{sm} and C_{sa}, are very small and the time interval between t_0 and t_1 is very short, the inductor i_{lb} current is regarded as a constant value $I_{L(min)}$. Voltages V_{sm} and V_{sa} vary linearly. The transition time interval T_{t1} is expressed as follows:

$$ T_{t1} = \left(C_{Sm} + C_{Sm} \right) \frac{V_{in} + V_o}{I_{L(min)}} \quad (1) $$

Mode 2 [t_1-t_2]: At t_1, capacitor C_{sm} is fully discharged, and voltage V_{sm} reaches zero when D_{sm} is turned on. ZVS operation of S_m is performed because the switch voltage V_{sm} is zero even before the gate pulse of S_m is applied. Furthermore, gate pulse $V_{gs,m}$ is applied to the gate to turn switches S_m on. As the inductor voltage V_{Lb} is V_{in}, the inductor current i_{Lb} increases linearly as follows:

$$ i_{Lb}(t) = -I_{L(min)} + \frac{V_{in}}{L_b} (t - t_1) \quad (2) $$

Mode 3 [t_2, t_3]: This mode begins when the inductor current i_{Lb} changes direction from negative to positive. Voltage V_{Lb} is equal to V_{in}, and current i_{Lb} increases linearly with the slope V_{in}/V_b. At the end of this mode, i_{Lb} current reaches its maximum value $I_{L(max)}$.

$$ I_{L(max)} = -I_{L(min)} + \frac{V_{in}}{L_b} T_{on} \quad (3) $$

Where T_{on} is the time interval between t_1 and t_3. Time T_{t1} is very short; therefore, it is not considered.

Mode 4 [t_3, t_4]: When switch S_m is turned off, this mode begins. The parasitic output capacitor C_{sm} begins charging and C_{sa} begins discharging. By assuming that the capacitances of the parasitic output capacitors, C_{sm} and C_{sa}, are very small and the time interval between t_3 and t_4 is very short, the inductor i_{lb} current is regarded as a constant value $I_{L(min)}$. Voltages V_{sm} and V_{sa} vary linearly. The transition time interval T_{t4} is expressed as follows:

$$ T_{t4} = \left(C_{Sm} + C_{Sm} \right) \frac{V_{in} + V_o}{I_{L(min)}} \quad (4) $$
charging, and C_{sa} begins discharging. By assuming that the capacitances of the parasitic output capacitors, C_{sm} and C_{sa}, are very small and the time interval between t_3 and t_4 is very short, the inductor current I_{lb} is regarded as a constant value $I_{L(max)}$. Voltages V_{sm} and V_{sa} vary linearly. The transition time interval T_{t2} is expressed as follows:

$$T_{t2} = \left(C_{Sm} + C_{Sa} \right) \frac{V_{in}}{I_{L(max)}} + V_o.$$

Mode 5 [t4,t5]: At t4, capacitor C_{sa} is fully discharged, and voltage V_{sa} reaches zero when D_{sa} is turned on. ZVS operation of S_a is performed because the switch voltage V_{sa} is zero even before the gate pulse of S_a is applied. Furthermore, gate pulse $V_{gs,a}$ is applied to the gate to turn switches S_a on. As the inductor voltage V_{lb} is $-V_o$, the inductor current I_{lb} decreases linearly as follows

$$i_{lb}(t) = I_{L(min)} - \frac{V_o}{L_b} (t - t_4).$$

Mode 6 [t5,t6]: This mode begins when the inductor current I_{lb} changes direction from positive to negative. Voltage V_{lb} is equal to $-V_o$, and current i_{lb} decreases linearly with the slope of V_o/L_b. At the end of this mode, current i_{lb} reaches its minimum value $I_{L(min)}$, and voltage $V_{be(sat)}$ is turned on. Time T_{t2} is very short; therefore, it is not considered.

$$I_{L(min)} = I_{L(max)} - \frac{V_o}{L_b} T_{off},$$

III. ANALYSIS OF SELF-DRIVEN SR CIRCUIT

The circuit diagram of the proposed self-driven SR driver is shown in Fig.4. The SR driver is composed of three resistors: R_1, R_2 and R_3; diodes: D_1 and D_2; capacitors: C_1 and C_2; a transistor Q_1; and a MIC4427 MOSFET driver. The auxiliary control power is bootstrapped from the main control power $+V_{cc}$. Diode D_2 is used as a bootstrap diode. Diode D_1 is employed to detect the polarity of the switch voltage V_{sa}. Resistors and R_2 and R_3 transistor Q_1 are used to obtain high and low signals according to the polarity of V_{sa}. Furthermore, the collector emitter voltage V_{ce} is applied to MIC4427 for driving the SR. The basic operation of the proposed SR driver is as follows. When voltage V_{sa} is negative, diode D_1 conducts and the base-emitter voltage V_{be} becomes lower than $V_{be(sat)}$. Thus, the turn-on gate pulse from MIC4427 is applied to S_a. For the analysis of the proposed SR driver in a steady state, several assumptions are made during one switching period T_s. Capacitor C_2 is large enough to consider the control power V_{aux} as a constant. Diode D_1 is an ideal component. Transistor Q_1, acts as a switching device, not as a signal amplifier. In addition, the base-emitter input capacitor and collect-emitter output capacitor are not considered. Switch S_a is an ideal component, except for the drain-source on-resistance $R_{DS(on)}$. The theoretical waveforms of the proposed SR driver in a switching period T_s are shown in Fig.5. All the operating modes of the proposed SR driver are shown in Fig.6. Before t_0, switch S_a is turned on, and diode D_1 conducts. The base-emitter voltage V_{be} increases

![Fig.5. Theoretical waveforms of proposed SR driver.](image-url)
linearly and reaches its base-emitter saturation voltage $V_{b\text{e}(\text{sat})}$ at t_0.

Mode A [t_0, t_a]: When voltage $V_{b\text{e}}$ becomes $V_{b\text{e}(\text{sat})}$, transistor Q_1 is saturated, and this mode begins. The corrector emitter voltage $V_{c\text{e}}$ is equal to its saturation voltage $V_{c\text{e}(\text{sat})}$ because Q_1 is in the saturation region, and switch S_a is turned off.

Mode B [t_a, t_b]: At t_a, the main switch S_m is turned off, and the inductor current flows through the body diode D_{sa}. In Fig. 6, the operating modes of the proposed SR driver are shown.

This mode, the switch voltage V_{sa} is clamped as the forward voltage drop of the body diode $V_{FD(sa)}$. In addition, diode D_1 is turned on with the forward voltage drop $V_{F(D1)}$. The base emitter voltage $V_{b\text{e}}$ and voltage V_{R1} are also constant as the minimum voltage $V_{b\text{e}(\min)}$ and the maximum voltage $V_{R1(\max)}$, respectively, because V_{sa} and V_{D1} are constant.

$$V_{b\text{e}(\min)} = V_{F(D1)} + V_{R1(\max)} - V_{F(DSa)} \tag{7}$$

$$V_{R1(\max)} = R_1 \frac{V_{aux} - V_{b\text{e}(\min)}}{R_2} \tag{8}$$

Transistor Q_1 enters the breakdown region, because voltage $V_{b\text{e}}$ is lower than $V_{b\text{e}(\text{sat})}$, and the corrector-emitter voltage $V_{c\text{e}}$ increases nonlinearly with the time constant of the RC circuit, which consists of V_{aux}, R_3, and C_1.

$$v_{c\text{e}}(t) = V_{aux} \left(1 - e^{-\frac{t}{R_3C_1}}\right) \tag{9}$$

Mode C [t_b, t_c]: When the collect-emitter voltage $V_{c\text{e}}$ is higher than V_{IH}, which is the logic 1 input voltage of the MOSFET driver, gate pulse $V_{g\text{sa}}$ is applied to switch S_a. In this mode, switch S_a is expressed as a parallel circuit of $R_{DS(on)}$ and D_{sa}. The base-emitter voltage $v_{b\text{e}}(t)$ is expressed as follows:

$$v_{b\text{e}}(t) = V_{F(D1)} + V_{R1} + v_{Sa}(t) \tag{10}$$

Furthermore, currents i_{R2} and i_{Sa} are obtained as:

$$i_{R2}(t) = \frac{V_{aux} - v_{b\text{e}}(t - t_b)}{R_2} \tag{11}$$

$$i_{Sa}(t) = -I_{L(max)} + \frac{V_{c\text{e}}}{R_b} (t - t_b) \tag{12}$$

Mode D [t_c, t_d]: At t_c, switch current changes direction from negative to positive. Switch conducts because the base emitter voltage is still lower than V_{IH}, and its current increases linearly until t_d is equal to t_c. Switch conducts owing to the difference in the forward voltage drop and the base-emitter saturation voltage, and it is the key feature in the ZVS operation of the main switch. When the difference in and is equal to the sum of and, this mode ends, and switch is turned off. A small resistance is added to compensate for the difference in and because the drain-source on-resistance is constant according to the MOSFET, and it is related to the system efficiency. In this mode, voltage and current are similar to those mentioned in (10), (11), and (12). At the end of this mode, voltage and current are expressed as follows:

$$V_{b\text{e}(\text{sat})} = V_{F(D1)} + R_1 \cdot i_{R2}(t_d) + R_{DS(on)} \cdot i_{Sa}(t_d) \tag{13}$$
Where is the time interval between and . By substituting (14) and (15) into (13), the time interval is expressed as

\[
\Delta t_1 = \left(\frac{R_1 + R_2 V_{\text{aux}}}{R_2} - V_{T(d)} - \frac{R_1}{R_2} V_{\text{aux}} \right) L_b \cdot V_o \cdot R_{DS(on)}.
\]

Therefore, the time interval, which is related to the ZVS operation, is easily controlled by adjusting resistance . In the proposed converter, the ZVS conditions for and are expressed as

\[
T_{\text{dead-time}} < T_{ZVS-Sm},
\]

\[
T_{\text{dead-time}} < T_{ZVS-Sa},
\]

Where is the dead time of switches and for a proper ZVS operation, and are the times when each switch is reverse-biased and the reverse current flows through the intrinsic body diode of each switch. The gate pulse should be applied to each switch after voltage or has decreased to zero and before the current flowing though the intrinsic body diode changes its direction. Thus, the dead time should be considered. The ZVS operation of is always satisfactory because is sufficiently longer than. By assuming that the time interval between and

IV. DC MOTORS

Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting energy. Motors take electrical energy and produce mechanical energy. Electric motors are used to power hundreds of devices we use in everyday life. Motors come in various sizes. Huge motors that can take loads of 1000’s of Horsepower are typically used in the industry. Some examples of large motor applications include elevators, electric trains, hoists, and heavy metal rolling mills. Examples of small motor applications include motors used in automobiles, robots, hand power tools and food blenders. Micro-machines are electric machines with parts the size of red blood cells, and find many applications in medicine.

Electric motors are broadly classified into two different categories: DC (Direct Current) and AC (Alternating Current). Within these categories are numerous types, each offering unique abilities that suit them well for specific applications. In most cases, regardless of type, electric motors consist of a stator (stationary field) and a rotor (the rotating field or armature) and operate through the interaction of magnetic flux and electric current to produce rotational speed and torque. DC motors are distinguished by their ability to operate from direct current. There are different kinds of D.C. motors, but they all work on the same principles. In this chapter, we will study their basic principle of operation and their characteristics. It’s important to understand motor characteristics so we can choose the right one for our application requirement.

V. MATLAB/SIMULATION RESULTS

![Fig. 7. Theoretical Waveforms of Rectified Input Line Voltage, Input Current, and Inductor Current in a Line Period.](image)

![Fig. 8. Matlab/Simulation Model of Proposed AC-DC Converter with a Self-Driven Synchronous Rectifier.](image)
Fig. 9. Simulation Waveforms At Vin = 100, Input Voltage (Vin) And Current (Iin).

Fig. 10. Switch Voltage (Vgs_m) And Current (Igs_m).

Fig. 11. Switch Voltage (Vgs_a) and Current (Igs_a).

Fig. 12. Output Voltage.

Fig. 13. Simulation Waveforms at Vin = 240, Input Voltage (Vin) and Current (Iin).

Fig. 14. Switch Voltage (Vgs_m) and Current (Igs_m).

Fig. 15. Switch Voltage (Vgs_a) and Current (Igs_a).

Fig. 16. Output Voltage.
Fig. 17. Matlab/Simulation Model of Proposed AC-DC Converter with a self-driven Synchronous Rectifier with DC Motor.

Fig. 18. Simulation Wave Forms of Current, Speed and Torque.

VI. CONCLUSION
In this paper, a ZVS AC-DC LED driver using a self-driven SR has been proposed. In the proposed converter, ZVS operation of both and is performed. In addition, by using a self-driven SR driver, the conduction loss of the output rectifier is significantly reduced, and high efficiency is achieved. Moreover, the power factor is also improved by means of the time interval. The Proposed AC-DC Converter with a self-driven Synchronous Rectifier with DC Motor. DC motor application based on this paper we can perform the speed-torque characteristics.

REFERENCES

