

 Page 1118

Parallel Edge Projection and Pruning (PEPP) Based Sequence

Graph Protrude Approach for Closed Item Set Mining

CH.Shanthi

M.Tech In Software Engineering

Department of CSE

Aurora Technological And Research Institute

Hyderabad, Telangana.

N.Nirmala Jyothi

Senior Assistant Professor

Department of CSE

Aurora Technological And Research Institute

Hyderabad, Telangana.

Abstract:

Recent observations have revealed that a frequent

item set mining algorithm be supposed to mine the

congested ones as the end gives a condensed and a

complete evolution set and better efficiency. Anyway,

the latest closed item set mining algorithms

mechanism with candidate protection combined by

means of test paradigm which is expensive in

runtime as well as space procedure when sustain

threshold is less or the item sets gets extended. Here,

we show, PEPP, which is a capable algorithm used

for mining closed sequences without candidate. It

apparatus a novel succession closure checking

format that based on Sequence Graph protruding by

an approach labeled “Parallel Edge projection and

pruning” in short can refer as PEPP. A complete

surveillance having dense and dense real-life data

sets prove that PEPP achieve greater evaluate to

older algorithms as it obtain low memory and is

faster than any algorithms those cited in prose

frequently.

Introduction

Sequential item set mining, is an important task,

having many applications with market, customer and

web log examination, item set find in protein

succession. Capable mining techniques are being

observed extensively, including the general sequential

item set mining [1, 2, 3, 4, 5, 6], constraint-based in

order item set mining [7, 8, 9], frequent occurrence

mining [10], cyclic association rule mining [11],

sequential relation mining [12], partial episodic pattern

mining [13], and long in order item set mining [14].

Recently it’s quite convincing that for mining frequent

item sets, one should mine all the closed ones as the

end leads to compact and complete result set having

high efficiency [15, 16, 17, 18], unlike mining

frequent item sets, there are less methods for mining

closed sequential item sets. This is because of intensity

of the problem and CloSpan is the only variety of

algorithm [17], similar to the frequent closed item set

mining algorithms, it trail a candidate maintenance-

and-test paradigm, as it maintains a set of readily

supply blocked sequence candidates used to prune

search space and verify whether a recently found

frequent sequence is to be closed or not. Unluckily, a

closed item set mining algorithm below this paradigm

has bad scalability in the quantity of frequent blocked

item sets as many frequent closed item sets (or just

candidates) consume memory and leading to high

search break for the closure checking of recent item

sets, which happens when the holdup threshold is less

or the item sets gets extended.

Finding a technique to extract frequent closed

sequences lacking the help of candidate preservation

seems to be complex. Here, we show a solution

leading to an algorithm, PEPP, which can mine

efficiently all the sets of frequent closed sequences

through a sequence graph protruding approach. In

PEPP, we need not eye down on any historical

frequent closed sequence for a new pattern’s closure

checking, leading to the proposal of Sequence graph

Graph pruning technique and other kinds of

optimization techniques.

The observations display the performance of the PEPP

to find closed frequent itemsets using Sequence Graph:

 Page 1119

The comparative study claims some interesting

performance improvements over BIDE and other

frequently cited algorithms.

In section II most frequently cited work and their

limits explained. In section III the Dataset adoption

and formulation explained. In section IV, introduction

to PEPP and its utilization for Sequence Graph

protruding explained. In section V, the algorithms used

in PEPP described. In section V1, results gained from

a comparative study briefed and fallowed by

conclusion of the study.

Related Work

The sequential item set mining difficulty was initiated

by Agrawal and Srikant , and the same urbanized a

filtered algorithm, GSP [2], basing on the Apriori

assets [19]. Since then, lots of sequential item set

mining algorithms are being developed for efficiency.

Some are, SPADE [4], PrefixSpan [5], and SPAM [6].

SPADE is on principle of vertical id-list configure and

it uses a lattice-theoretic method to fester the search

space into many tiny places, on the other hand

PrefixSpan implements a parallel format dataset

representation and mines the sequential item sets with

the pattern-growth paradigm: grow a prefix item set to

attain longer sequential item sets on building and

scanning its database. The SPADE and the PrefixSPan

highly perform GSP. SPAM is a recent algorithm used

for mining lengthy sequential item sets and

implements a vertical bitmap representation. Its

observations reveal, SPAM is better efficient in

mining long item sets compared to SPADE and

PrefixSpan but, it still takes more space than SPADE

and PrefixSpan. Since the frequent closed item set

mining [15], many capable frequent closed item set

mining algorithms are introduced, like A-Close [15],

CLOSET [20], CHARM [16], and CLOSET+ [18].

Many such algorithms are to maintain the ready mined

frequent closed item sets to attain item set closure

checking. To decrease the memory usage and seek out

space for item set closure examination, two algorithms,

TFP [21] and CLOSET+2, implement a compact 2-

level hash indexed result-tree structure to keep the

readily mined frequent closed item set candidates.

Some pruning methods and item set closure verifying

methods, initiated the can be extended for optimizing

the mining of closed sequential item sets also. CloSpan

is a new algorithm used for mining frequent closed

sequences [17]. It goes by the candidate maintenance-

and-test method: initially create a set of closed

sequence candidates stored in a hash indexed result-

tree structure and do post-pruning on it. It requires

some pruning techniques such as Common Prefix and

Backward Sub-Item set pruning to prune the search

space as CloSpan requires maintaining the set of

closed sequence candidates, it consumes much

memory leading to heavy search space for item set

closure checking when there are more frequent closed

sequences. Because of which, it does not scale well the

number of frequent closed sequences. BIDE [26] is

another closed pattern mining algorithm and ranked

high in performance when compared to other

algorithms discussed. Bide projects the sequences after

projection it prunes the patterns that are subsets of

current patterns if and only if subset and superset

contains same support required. But this model is

opting to projection and pruning in sequential manner.

This sequential approach sometimes turns to expensive

when sequence length is considerably high. In our

earlier literature[27] we discussed some other

interesting works published in recent literature.

Here, we bring Sequence Graph protruding that based

on Graph projection and pruning, an asymmetric

parallel algorithm for finding the set of frequent closed

succession. The giving of this paper is: (A) an

improved sequence graph based idea is generated for

mining closed sequences without candidate

maintenance, termed as Parallel Edge Projection and

pruning (PEPP) based Sequence Graph Protruding for

closed itemset mining. The Graph Projection is a

forward approach grows till Graph with required

support is possible during that time the Graphs will be

pruned. During this pruning process vertices of the

Graph that differs in support with next Graph

projected will be considered as closed itemset, also the

sequence of vertices that connected by Graphs with

 Page 1120

similar support and no projection possible also be

considered as closed itemset (B) in the Graph

Projection and pruning pedestal Sequence Graph

Protruding for closed itemset mining, we create a

algorithms for Forward Graph projection and back

Graph pruning(C) the performance clearly signifies

that proposed model has a very high capacity: it can be

faster than an order of magnitude of CloSpan but uses

order(s) of magnitude less memory in several cases. It

has a good scalability to the database size. When

compared to BIDE the model is proven as equivalent

and efficient in an incremental way that proportional

to increment in pattern length and data density.

Dataset adoption and formulation

Item Sets I: A position of diverse basics by which the

sequences produce.

1

n

k

k

I i




Note: ‘I’ is set of diverse essentials

Sequence set ‘S’: A position of sequences, where both

sequence contains basics each element ‘e’ belongs to

‘I’ and accurate for a function p(e). Sequence set can

prepare as

1

| ((),)
m

i i i

i

s e p e e I


   

Symbolize a sequence‘s’ of items those belong to set

of dissimilar items ‘I’.

‘m’: total controlled items.

P(ei): a contract, where ei usage is true for that

operation.

1

t

j

j

S s




S: characterize set of sequences

‘t’: signify total number of sequences and its

assessment is volatile

sj: is a sequence that belong to S

Subsequence: a sequence ps of progression set ‘S’ is

measured as subsequence of an additional sequence qs

of Sequence Set ‘S’ if all items in progression Sp is

belongs to sq as an controlled list. This can be prepare

as

If
1

() ()
n

pi q p q

i

s s s s


  

Then
1 1

:n m

pi qj

i j

s s
 


where

 p qs S and s S 

Total sustain ‘ts’ : happening count of a sequence as

an controlled list in all sequences in sequence set ‘S’

can assume as total support ‘ts’ of that progression.

Total sustain ‘ts’ of a sequence can establish by

subsequent formulation.

() | : (1. | |) |ts t t p Sf s s s for each p DB  

SDB Is position of sequences

()ts tf s : Represents the total sustain ‘ts’ of progression

st is the number of super sequences of st

Practiced support ‘qs’: The consequential coefficient of

total sustains divides by size of progression database

assume as qualified hold up ‘qs’. Qualified hold up

can be initiates by using fallowing formulation.

()
()

| |

ts t
qs t

S

f s
f s

DB


Sub-sequence and Super-sequence: A progression is

sub progression for its next predictable sequence if

equally sequences enclose same total sustain.

Super-sequence: A progression is a fabulous sequence

for a succession from which that predictable, if both

enclose same total support.

Sub-sequence and super-sequence can be create as

If ()ts tf s  rs where ‘rs’ is necessary support

threshold specified by user

And :t ps s for any pvalue where

() ()ts t ts pf s f s

 Page 1121

Parallel Edge Projection and Pruning Based

Sequence Graph protrude

Preprocess

As a first stage of the offer we achieve dataset

preprocessing and itemsets Database initialization. We

find itemsets with single element; in parallel prunes

itemsets with single element those contains total

support less than essential support.

Forward Graph Projection:

In this segment, we choose all itemsets from given

itemset database as input in equivalent. Then we

establish projecting Graphs starting each preferred

itemset to all achievable elements. The foremost

iteration includes the pruning progression in parallel,

from second iteration onwards this pruning is not

necessary, which we maintain as capable process

compared to other parallel techniques like BIDE. In

first iteration, we assignment an itemset ps that

spawned from preferred itemset is from SDB and an

aspect ie considered from ‘I’. If the ()ts pf s is greater

or identical to rs , then an Graph will be distinct

between is and ie . If () ()ts i ts pf s f s then we prune

is from SDB . This pruning progression required and

inadequate to first iteration only.

Beginning second iteration past project the itemset pS

that spawned since 'pS to each aspect ie of ‘I’. An

Graph can be distinct among 'pS and ie if ()ts pf s is

greater or identical to rs . In this description 'pS is a

estimated itemset in preceding iteration and adequate

as a sequence. Then concern the fallowing validation

to locate closed sequence.

If any of '() ()ts p ts pf s f s that Graph will be reduce

and all replace graphs except ps will be measured as

closed sequence and moves it into SDB

and eliminate

all disjoint graphs from recollection.

If '() ()ts p ts pf s f s and there after no projection

spawned then ps will be measured as closed sequence

and moves it into SDB and eliminate ' p ps and s from

recollection.

The exceeding process continues dig the elements

obtainable in memory those are linked during direct or

transitive Graphs and prognostic itemsets i.e., till

graph happen to empty

Algorithms used in PEPP:

This section describes algorithms for initializing

sequence database with single elements sequences,

spawning itemset projections and pruning Graphs from

Sequence Graph SG.

Fig 1: Generate initial SDB
 with single element

itemsets

Algorithm 1: Generate initial SDB
 with single

element itemsets

Input: Set of Elements ‘I’.

Begin:

L1: For each element ie of ‘I’

Begin:

Find ()ts if e

If ()ts if e rs then

Move ie as sequence with single element to SDB

End: L1.

End.

 Page 1122

Fig 2: spawning projected Itemsets and protruding

sequence graph

First iteration

Rest of all Iterations

Algorithm 2: spawning projected Itemsets and

protruding sequence graph

Input: SDB
 and ‘I’;

L1: For each sequence is
 in SDB

Begin:

L2: For each element ie
 of ‘I’

Begin:

C1: If
edgeWeight(,)i is e rs

Begin:

Create projected itemset ps from
(,)i is e

If () ()ts i ts pf s f s then prune is
 from SDB

End: C1.

End: L2.

End: L1.

L3: For each projected Itemset ps in memory

Begin:

'p ps s

L4: For each ie
of ‘I’

Begin:

Project ps from '(,)p is e

C2: If ()ts pf s rs

Begin

Spawn SG by adding Graph between ' p is and e

End: C2

End: L4

C3: If 'ps not spawned and no new projections added

for 'ps

Begin:

Remove all duplicate Graphs for each Graph weight

from 'ps and keep Graphs unique by not deleting most

recent Graphs for each Graph weight.

Select elements from each disjoint graph as closed

sequence and add it to SDB
 and remove disjoint

graphs from SG.

End C3

End: L3

If SG  go to L3

Comparative Study

In this segment, we will current our methodical

experimental results in regulate to testify the following

claims: (1)The PEPP is accurately designed frequent

closed progression mining algorithm like BIDE, can

considerably outperform compared to other algorithms

like CloSpan and spade.(2) PEPP consumes much less

memory and can be faster than CloSpan and similar to

BIDE. 3). the feature parallel projection and Graph

pruning of the PEPP, improves the performance and

minimize the memory utilization cost. In the context of

dense data the comparative study observed that PEPP

 Page 1123

significantly performed better when compared with

existing models, in particular with BIDE.

The implementation of the BIDE and PEPP algorithms

was done using JAVA 1.6 20th build. Both the

algorithms tested on a computer with core2duo

processor and 2GB RAM and Windows XP installed.

Java thread concept was used to achieve the parallel

model.

Dataset Characteristics:

We discover a very opaque dataset, Pi, from which a

huge number of common closed sequences can be

mined yet with a very high sustain threshold like 90%.

This dataset is furthermore a bio-dataset which

contains 190 protein sequences and 21 dissimilar items.

This dataset has yet been used to evaluate the

reliability of efficient inheritance [22]. Dataset

sequence length status can be found in fig 5.

Since the Bide already proven as better closed pattern

mining model when compared to other frequently cited

models like spade, prefixSpan and cloSpan, our

comparative study in particular for memory utilization

and run time, consider the performance comparison

between BIDE and PEPP.

Fig 3: A evaluation report for Runtime

Fig: 4: A evaluation report for memory usage

Fig 5: Sequence length and number of sequences at

dissimilar thresholds in Pi dataset

We used extremely dense dataset, Pi, to compare

PEPP with BIDE. Since In this dataset, we canister

observe that still with a very elevated support like 90%,

there can be a huge number of diminutive frequent

congested sequences with a span less than 10. Fig. 3

shows that with a support higher than 90%, these two

algorithms have very similar performance, but once

the support is 88% or less, we can observe the

outperform of PEPP over BIDE. For example, at

support 88%, PEPP performance can be observable,

which is faster than BIDE. From Fig. 4 we can observe

the considerable difference in memory utilization

between PEPP and BIDE, where PEPP always uses

considerable less memory than BIDE. At support 88%

and less, the less utilization of the memory by PEPP

compared to BIDE is in high.

Conclusion

Plenty researchers have developed that closed pattern

mining offers the similar significant power as which of

all frequent pattern mining even leads to additional

compact consequences set and substantially better

performance. Our research demonstrated that this is

normally true when the quantity of frequent patterns is

excessively huge, in that case the amount of frequent

closed patterns is additionally likely very significant.

However, most of the formerly designed closed pattern

mining algorithms depend on the traditional set of

frequent closed patterns to assess if a recently found

frequent pattern is restricted or if it can invalidate

 Page 1124

certain definitely mined closed candidates. Simply

because the set of already excavated frequent closed

patterns holds growing through the mining process,

not really will it intake more memory, but also

contribute to inefficiency because of the growing

query space for pattern closure monitoring. In this

paper, we suggested PEPP, a novel algorithm for

mining frequent closed sequences making use of

sequence Graph. It prevents the curse of the prospect

maintenance-and-test paradigm, manages the memory

space conveniently by pruning Graphs perfectly and

checks the method closure in a additional efficient way

although consuming much reduced memory in

distinction to the formerly developed closed pattern

mining algorithms. It will not need to preserve the set

of historic closed patterns, thus it machines very well

in the amount of frequent closed patterns. PEPP

chooses a Sequence Graph and can produce the

frequent closed patterns in an on the web fashion. A

comprehensive set of studies on several genuine

datasets with assorted distribution functions have

revealed the performance of the algorithm design:

PEPP utilizes less memory while can be efficient than

the CloSpan and BIDE algorithms. It also has additive

scalability in terms of the number of sequences in the

database. Numerous studies have demonstrated that

constraints are recommended for many sequential

pattern mining purposes. In the upcoming, we plan to

utilize the inference strategy on projected itemsets to

develop the rule coherency.

References

[1]F. Masseglia, F. Cathala, and P. Poncelet, The psp

approach for mining sequential patterns. In PKDD’98,

Nantes, France, Sept. 1995.

[2]R. Srikant, and R. Agrawal, Mining sequential

patterns: Generalizations and performance

improvements. In EDBT’96, Avignon, France, Mar.

1996.

[3]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,

and M.C. Hsu, FreeSpan: Frequent pattern-projected

sequential pattern mining . In SIGKDD’00, Boston,

MA, Aug. 2000.

[4]M. Zaki, SPADE: An Efficient Algorithm for

Mining Frequent Sequences. Machine Learning,

42:31-60, Kluwer Academic Pulishers, 2001.

[5]J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal,

and M.C. Hsu, PrefixSpan: Mining sequential patterns

efficiently by prefix-projected pattern growth. In

ICDE’01, Heidelberg, Germany, April 2001.

[6]J. Ayres, J. Gehrke, T. Yiu, and J. Flannick,

Sequential PAttern Mining using a Bitmap

Representation. In SIGKDD’02, Edmonton, Canada,

July 2002.

[7]M. Garofalakis, R. Rastogi, and K. Shim, SPIRIT:

Sequential PAttern Mining with regular expression

constraints. In VLDB’99, San Francisco, CA, Sept.

1999.

[8]J. Pei, J. Han, and W. Wang, Constraint-based

sequential pattern mining in large databases. In

CIKM’02, McLean, VA, Nov. 2002.

[9]M. Seno, G. Karypis, SLPMiner: An algorithm for

finding frequent sequential patterns using

lengthdecreasing support constraint. In ICDM’02,,

Maebashi, Japan, Dec. 2002.

[10]H. Mannila, H. Toivonen, and A.I. Verkamo,

Discovering frequent episodes in sequences . In

SIGKDD’95, Montreal, Canada, Aug. 1995.

[11]B. Ozden, S. Ramaswamy, and A. Silberschatz,

Cyclic association rules. In ICDE’98, Olando, FL, Feb.

1998.

[12]C. Bettini, X. Wang, and S. Jajodia, Mining

temporal relationals with multiple granularities in time

sequences. Data Engineering Bulletin, 21(1):32-38,

1998.

 Page 1125

[13]J. Han, G. Dong, and Y. Yin, Efficient mining of

partial periodic patterns in time series database. In

ICDE’99, Sydney, Australia, Mar. 1999.

[14]J. Yang, P.S. Yu, W. Wang and J. Han, Mining

long sequential patterns in a noisy environment. In

SIGMOD’ 02, Madison, WI, June 2002.

[15]N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal,

Discoving frequent closed itemsets for association

rules. In ICDT’99, Jerusalem, Israel, Jan. 1999.

[16]M. Zaki, and C. Hsiao, CHARM: An efficient

algorithm for closed itemset mining. In SDM’02,

Arlington, VA, April 2002.

[17]X. Yan, J. Han, and R. Afshar, CloSpan: Mining

Closed Sequential Patterns in Large Databases. In

SDM’03, San Francisco, CA, May 2003.

[18]J. Wang, J. Han, and J. Pei, CLOSET+: Searching

for the Best Strategies for Mining Frequent Closed

Itemsets. In KDD’03, Washington, DC, Aug. 2003.

[19]R. Agrawal and R. Srikant. Fast algorithms for

mining association rules. In VLDB’94, Santiago, Chile,

Sept. 1994.

[20]J. Pei, J. Han, and R. Mao, CLOSET: An efficient

algorithm for mining frequent closed itemsets . In

DMKD’01 workshop, Dallas, TX, May 2001.

[21]J. Han, J. Wang, Y. Lu, and P. Tzvetkov, Mining

Top- K Frequent Closed Patterns without Minimum

Support. In ICDM’02, Maebashi, Japan, Dec. 2002.

[22]P. Aloy, E. Querol, F.X. Aviles and M.J.E.

Sternberg, Automated Structure-based Prediction of

Functional Sites in Proteins: Applications to Assessing

the Validity of Inheriting Protein Function From

Homology in Genome Annotation and to Protein

Docking. Journal of Molecular Biology, 311, 2002.

[23]R. Agrawal, and R. Srikant, Mining sequential

patterns. In ICDE’95, Taipei, Taiwan, Mar. 1995.

[24]I. Jonassen, J.F. Collins, and D.G. Higgins,

Finding flexible patterns in unaligned protein

sequences. Protein Science, 4(8), 1995.

[25]R. Kohavi, C. Brodley, B. Frasca, L.Mason, and Z.

Zheng, KDD-cup 2000 organizers’ report: Peeling the

Onion. SIGKDD Explorations, 2, 2000.

[26]Jianyong Wang, Jiawei Han: BIDE: Efficient

Mining of Frequent Closed Sequences. ICDE 2004:

79-90

[27]Kalli Srinivasa Nageswara Prasad and Prof. S

Ramakrishna. Article: Frequent Pattern Mining and

Current State of the Art. International Journal of

Computer Applications 26(7):33-39, July 2011.

Published by Foundation of Computer Science, New

York.

