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Abstract: 

Recent observations have revealed that a frequent 

item set mining algorithm be supposed to mine the 

congested ones as the end gives a condensed and a 

complete evolution set and better efficiency. Anyway, 

the latest closed item set mining algorithms 

mechanism with candidate protection combined by 

means of test paradigm which is expensive  in 

runtime as well as  space procedure when  sustain 

threshold is less or the item sets gets extended. Here, 

we show, PEPP, which is a capable algorithm used 

for mining closed sequences without candidate. It 

apparatus a novel succession closure checking 

format that based on Sequence Graph protruding by 

an approach labeled “Parallel Edge projection and 

pruning” in short can refer as PEPP. A complete 

surveillance having dense and dense real-life data 

sets prove that PEPP achieve greater evaluate to 

older algorithms as it obtain low memory and is 

faster than any algorithms those cited in prose 

frequently. 

 

Introduction 

Sequential item set mining, is an important task, 

having many applications with market, customer and 

web log examination, item set find in protein 

succession. Capable mining techniques are being 

observed extensively, including the general sequential 

item set mining [1, 2, 3, 4, 5, 6], constraint-based in 

order item set mining [7, 8, 9], frequent occurrence 

mining [10], cyclic association rule mining [11], 

sequential relation mining [12], partial episodic pattern 

mining [13], and long in order item set mining [14]. 

Recently it’s quite convincing that for mining frequent 

item sets, one should mine all the closed ones as the 

end leads to compact and complete result set having 

high efficiency [15, 16, 17, 18], unlike mining 

frequent item sets, there are less methods for mining 

closed sequential item sets. This is because of intensity 

of the problem and CloSpan is the only variety of 

algorithm [17], similar to the frequent closed item set 

mining algorithms, it trail a candidate maintenance-

and-test paradigm, as it maintains a set of readily 

supply blocked sequence candidates used to prune 

search space and verify whether a recently found 

frequent sequence is to be closed or not. Unluckily, a 

closed item set mining algorithm below this paradigm 

has bad scalability in the quantity of frequent blocked 

item sets as many frequent closed item sets (or just 

candidates) consume memory and leading to high 

search break for the closure checking of recent item 

sets, which happens when the holdup threshold is less 

or the item sets gets extended. 

 

Finding a technique to extract frequent closed 

sequences lacking the help of candidate preservation 

seems to be complex. Here, we show a solution 

leading to an algorithm, PEPP, which can mine 

efficiently all the sets of frequent closed sequences 

through a sequence graph protruding approach. In 

PEPP, we need not eye down on any historical 

frequent closed sequence for a new pattern’s closure 

checking, leading to the proposal of Sequence graph 

Graph pruning technique and other kinds of 

optimization techniques. 

 

The observations display the performance of the PEPP 

to find closed frequent itemsets using Sequence Graph: 
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The comparative study claims some interesting 

performance improvements over BIDE and other 

frequently cited algorithms. 

 

In section II most frequently cited work and their 

limits explained. In section III the Dataset adoption 

and formulation explained. In section IV, introduction 

to PEPP and its utilization for Sequence Graph 

protruding explained. In section V, the algorithms used 

in PEPP described. In section V1, results gained from 

a comparative study briefed and fallowed by 

conclusion of the study. 

 

Related Work 

The sequential item set mining difficulty was initiated 

by Agrawal and Srikant , and the same urbanized a 

filtered algorithm, GSP [2], basing on the Apriori 

assets [19]. Since then, lots of sequential item set 

mining algorithms are being developed for efficiency. 

Some are, SPADE [4], PrefixSpan [5], and SPAM [6]. 

SPADE is on principle of vertical id-list configure and 

it uses a lattice-theoretic method to fester the search 

space into many tiny places, on the other hand 

PrefixSpan implements a parallel format dataset 

representation and mines the sequential item sets with 

the pattern-growth paradigm: grow a prefix item set to 

attain longer sequential item sets on building and 

scanning its database. The SPADE and the PrefixSPan 

highly perform GSP. SPAM is a recent algorithm used 

for mining lengthy sequential item sets and 

implements a vertical bitmap representation. Its 

observations reveal, SPAM is better efficient in 

mining long item sets compared to SPADE and 

PrefixSpan but, it still takes more space than SPADE 

and PrefixSpan. Since the frequent closed item set 

mining [15], many capable frequent closed item set 

mining algorithms are introduced, like A-Close [15], 

CLOSET [20], CHARM [16], and CLOSET+ [18]. 

Many such algorithms are to maintain the ready mined 

frequent closed item sets to attain item set closure 

checking. To decrease the memory usage and seek out 

space for item set closure examination, two algorithms, 

TFP [21] and CLOSET+2, implement a compact 2-

level hash indexed result-tree structure to keep the 

readily mined frequent closed item set candidates. 

Some pruning methods and item set closure verifying 

methods, initiated the can be extended for optimizing 

the mining of closed sequential item sets also. CloSpan 

is a new algorithm used for mining frequent closed 

sequences [17]. It goes by the candidate maintenance-

and-test method: initially create a set of closed 

sequence candidates stored in a hash indexed result-

tree structure and do post-pruning on it. It requires 

some pruning techniques such as Common Prefix and 

Backward Sub-Item set pruning to prune the search 

space as CloSpan requires maintaining the set of 

closed sequence candidates, it consumes much 

memory leading to heavy search space for item set 

closure checking when there are more frequent closed 

sequences. Because of which, it does not scale well the 

number of frequent closed sequences. BIDE [26] is 

another closed pattern mining algorithm and ranked 

high in performance when compared to other 

algorithms discussed. Bide projects the sequences after 

projection it prunes the patterns that are subsets of 

current patterns if and only if subset and superset 

contains same support required. But this model is 

opting to projection and pruning in sequential manner. 

This sequential approach sometimes turns to expensive 

when sequence length is considerably high. In our 

earlier literature[27] we discussed some other 

interesting works published in recent literature. 

 

Here, we bring Sequence Graph protruding that based 

on Graph projection and pruning, an asymmetric 

parallel algorithm for finding the set of frequent closed 

succession. The giving of this paper is: (A) an 

improved sequence graph based idea is generated for 

mining closed sequences without candidate 

maintenance, termed as Parallel Edge Projection and 

pruning (PEPP) based Sequence Graph Protruding for 

closed itemset mining. The Graph Projection is a 

forward approach grows till Graph with required 

support is possible during that time the Graphs will be 

pruned. During this pruning process vertices of the 

Graph that differs in support with next Graph 

projected will be considered as closed itemset, also the 

sequence of vertices that connected by Graphs with 
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similar support and no projection possible also be 

considered as closed itemset (B) in the Graph 

Projection and pruning pedestal Sequence Graph 

Protruding for closed itemset mining, we create a 

algorithms for Forward Graph projection and back 

Graph pruning(C) the performance clearly signifies 

that proposed model has a very high capacity: it can be 

faster than an order of magnitude of CloSpan  but uses 

order(s) of magnitude less memory in several cases. It 

has a good scalability to the database size. When 

compared to BIDE the model is proven as equivalent 

and efficient in an incremental way that proportional 

to increment in pattern length and data density. 

 

Dataset adoption and formulation 

Item Sets I:  A position of diverse basics by which the 

sequences produce. 

1

n

k

k

I i




 

Note: ‘I’ is set of diverse essentials 

 

Sequence set ‘S’: A position of sequences, where both 

sequence contains basics each element ‘e’ belongs to 

‘I’ and accurate for a function p(e). Sequence set can 

prepare as 

1

| ( ( ), )
m

i i i

i

s e p e e I


   

 
Symbolize a sequence‘s’ of items those belong to set 

of dissimilar items ‘I’. 

‘m’: total controlled items. 

P(ei): a contract, where ei usage is true for that 

operation. 
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t
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j
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S: characterize set of sequences  

‘t’: signify total number of sequences and its 

assessment is volatile 

sj: is a sequence that belong to S 

Subsequence:  a sequence ps  of progression set ‘S’ is 

measured as subsequence of an additional sequence qs

of Sequence Set ‘S’ if all items in progression Sp is 

belongs to sq as an controlled list. This can be prepare 

as  

If  
1
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   p qs S and s S 
 

Total sustain ‘ts’ : happening count  of a sequence as 

an controlled list in all sequences in sequence set ‘S’ 

can assume as total support ‘ts’ of that progression. 

Total sustain ‘ts’ of a sequence can establish by 

subsequent formulation. 

( ) | :  (     1. | |) |ts t t p Sf s s s for each p DB  
 

SDB  Is position of sequences 

( )ts tf s : Represents the total sustain ‘ts’ of progression 

st is the number of super sequences of st 

 

Practiced support ‘qs’: The consequential coefficient of 

total sustains divides by size of progression database 

assume as qualified hold up ‘qs’. Qualified hold up 

can be initiates by using fallowing formulation. 

( )
( )

| |

ts t
qs t

S

f s
f s

DB


 

 

Sub-sequence and Super-sequence: A progression is 

sub progression for its next predictable sequence if 

equally sequences enclose same total sustain. 

 

Super-sequence: A progression is a fabulous sequence 

for a succession from which that predictable, if both 

enclose same total support. 

 

Sub-sequence and super-sequence can be create as 

If ( )ts tf s   rs   where ‘rs’ is necessary support 

threshold specified by user  

And        :t ps s for any pvalue  where 

( ) ( )ts t ts pf s f s
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Parallel Edge Projection and Pruning Based 

Sequence Graph protrude 

Preprocess 

As a first stage of the offer we achieve dataset 

preprocessing and itemsets Database initialization. We 

find itemsets with single element; in parallel prunes 

itemsets with single element those contains total 

support less than essential support. 

 

Forward Graph Projection: 

In this segment, we choose all itemsets from given 

itemset database as input in equivalent. Then we 

establish projecting Graphs starting each preferred 

itemset to all achievable elements. The foremost 

iteration includes the pruning progression in parallel, 

from second iteration onwards this pruning is not 

necessary, which we maintain as capable process 

compared to other parallel techniques like BIDE. In 

first iteration, we assignment an itemset ps that 

spawned from preferred itemset is  from SDB and an 

aspect ie considered from ‘I’. If the ( )ts pf s  is greater 

or identical to rs , then an Graph will be distinct 

between is  and ie . If ( ) ( )ts i ts pf s f s then we prune 

is from SDB . This pruning progression required and 

inadequate to first iteration only. 

 

Beginning second iteration past project the itemset pS

that spawned since 'pS to each aspect ie of ‘I’. An 

Graph can be distinct among 'pS and ie if ( )ts pf s  is 

greater or identical to rs . In this description 'pS is a 

estimated itemset in preceding iteration and adequate 

as a sequence. Then concern the fallowing validation 

to locate closed sequence. 

 

If any of '( ) ( )ts p ts pf s f s  that Graph will be reduce 

and all replace graphs except   ps will be measured as 

closed sequence and moves it into SDB
 
and eliminate 

all disjoint graphs from recollection. 

 

If '( ) ( )ts p ts pf s f s  and there after no projection 

spawned then ps will be measured as closed sequence 

and moves it into SDB  and eliminate '    p ps and s  from 

recollection. 

 

The exceeding process continues dig the elements 

obtainable in memory those are linked during direct or 

transitive Graphs and prognostic itemsets i.e., till 

graph happen to empty 

 

Algorithms used in PEPP: 

This section describes algorithms for initializing 

sequence database with single elements sequences,   

spawning itemset projections and pruning Graphs from 

Sequence Graph SG. 

 

Fig 1: Generate initial SDB
 with single element 

itemsets 

 
 

Algorithm 1: Generate initial SDB
 with single 

element itemsets 

Input: Set of Elements ‘I’. 

Begin: 

L1: For each element  ie  of ‘I’  

Begin: 

Find ( )ts if e  

If ( )ts if e rs  then 

Move ie  as sequence with single element to SDB  

End: L1. 

End. 
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Fig 2: spawning projected Itemsets and protruding 

sequence graph 

 
 

First iteration 

 
 

Rest of all Iterations 

Algorithm 2: spawning projected Itemsets and 

protruding sequence graph  

Input: SDB
 and ‘I’; 

L1: For each sequence is
 in SDB

 

Begin: 

L2: For each element ie
 of ‘I’  

Begin: 

C1: If 
edgeWeight( , )i is e rs

 

Begin: 

Create projected itemset ps from 
( , )i is e

 

If ( ) ( )ts i ts pf s f s then prune is
 from SDB

 

End: C1. 

End: L2. 

End: L1. 

L3: For each projected Itemset ps in memory 

Begin: 

'p ps s  

L4: For each ie
of ‘I’ 

Begin: 

Project ps from '( , )p is e  

C2: If ( )ts pf s rs  

Begin 

Spawn SG by adding Graph between '    p is and e  

End: C2 

End: L4 

C3: If 'ps not spawned and no new projections added 

for 'ps   

Begin: 

Remove all duplicate Graphs for each Graph weight 

from 'ps  and keep Graphs unique by not deleting most 

recent Graphs for each Graph weight. 

Select elements from each disjoint graph as closed 

sequence and add it to SDB
 and remove disjoint 

graphs from SG. 

End C3 

End: L3 

If SG  go to L3 

 

Comparative Study 

In this segment, we will current our methodical 

experimental results in regulate to testify the following 

claims:  (1)The PEPP is accurately designed frequent 

closed progression mining algorithm like BIDE, can 

considerably outperform compared to other algorithms 

like CloSpan and spade.(2) PEPP consumes much less 

memory and can be faster than CloSpan and similar to 

BIDE. 3). the feature parallel projection and Graph 

pruning of the PEPP, improves the performance and 

minimize the memory utilization cost. In the context of 

dense data the comparative study observed that PEPP 
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significantly performed better when compared with 

existing models, in particular with BIDE. 

 

The implementation of the BIDE and PEPP algorithms 

was done using JAVA 1.6 20th build. Both the 

algorithms tested on a computer with core2duo 

processor and 2GB RAM and Windows XP installed. 

Java thread concept was used to achieve the parallel 

model. 

 

Dataset Characteristics: 

We discover a very opaque dataset, Pi, from which a 

huge number of common closed sequences can be 

mined yet with a very high sustain threshold like 90%. 

This dataset is furthermore a bio-dataset which 

contains 190 protein sequences and 21 dissimilar items. 

This dataset has yet been used to evaluate the 

reliability of efficient inheritance [22]. Dataset 

sequence length status can be found in fig 5. 

 

Since the Bide already proven as better closed pattern 

mining model when compared to other frequently cited 

models like spade, prefixSpan and cloSpan, our 

comparative study in particular for memory utilization 

and run time, consider the performance comparison 

between BIDE and PEPP. 

 
Fig 3: A evaluation report for Runtime 

 
Fig: 4: A evaluation report for memory usage 

 
Fig 5: Sequence length and number of sequences at 

dissimilar thresholds in Pi dataset 

 

We used extremely dense dataset, Pi, to compare 

PEPP with BIDE. Since In this dataset, we canister 

observe that still with a very elevated support like 90%, 

there can be a huge number of diminutive frequent 

congested sequences with a span less than 10. Fig. 3 

shows that with a support higher than 90%, these two 

algorithms have very similar performance, but once 

the support is 88% or less, we can observe the 

outperform of PEPP over BIDE. For example, at 

support 88%, PEPP performance can be observable, 

which is faster than BIDE. From Fig. 4 we can observe 

the considerable difference in memory utilization 

between PEPP and BIDE, where PEPP always uses 

considerable less memory than BIDE. At support 88% 

and less, the less utilization of the memory by PEPP 

compared to BIDE is in high. 

 

Conclusion 

Plenty researchers have developed that closed pattern 

mining offers the similar significant power as which of 

all frequent pattern mining even leads to additional 

compact consequences set and substantially better 

performance. Our research demonstrated that this is 

normally true when the quantity of frequent patterns is 

excessively huge, in that case the amount of frequent 

closed patterns is additionally likely very significant. 

However, most of the formerly designed closed pattern 

mining algorithms depend on the traditional set of 

frequent closed patterns to assess if a recently found 

frequent pattern is restricted or if it can invalidate 
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certain definitely mined closed candidates. Simply 

because the set of already excavated frequent closed 

patterns holds growing through the mining process, 

not really will it intake more memory, but also 

contribute to inefficiency because of the growing 

query space for pattern closure monitoring. In this 

paper, we suggested PEPP, a novel algorithm for 

mining frequent closed sequences making use of 

sequence Graph. It prevents the curse of the prospect 

maintenance-and-test paradigm, manages the memory 

space conveniently by pruning Graphs perfectly and 

checks the method closure in a additional efficient way 

although consuming much reduced memory in 

distinction to the formerly developed closed pattern 

mining algorithms. It will not need to preserve the set 

of historic closed patterns, thus it machines very well 

in the amount of frequent closed patterns. PEPP 

chooses a Sequence Graph and can produce the 

frequent closed patterns in an on the web fashion. A 

comprehensive set of studies on several genuine 

datasets with assorted distribution functions have 

revealed the performance of the algorithm design: 

PEPP utilizes less memory while can be efficient than 

the CloSpan and BIDE algorithms. It also has additive 

scalability in terms of the number of sequences in the 

database. Numerous studies have demonstrated that 

constraints are recommended for many sequential 

pattern mining purposes. In the upcoming, we plan to 

utilize the inference strategy on projected itemsets to 

develop the rule coherency. 
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