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Abstract: 

Abstract—Parallel Prefix Adders have been 

established as the most efficient circuits for binary 

addition. The binary adder is the critical element in 

most digital circuit designs including digital signal 

processors and microprocessor data path units. The 

final carry is generated ahead to the generation of 

the sum which leads extensive research focused on 

reduction in circuit complexity and power consu 

mption of the adder. In VLSI implementation, 

parallel-prefix adders are known to have the best 

performance. This paper investigates four types of 

carry-tree adders (the Kogge-Stone, sparse Kogge-

Stone, spanning tree, Brent kung Adder) and 

compare them to the simple Ripple Carry Adder and 

Carry Skip Adder. These designs of varied bit-widths 

are simulated using implemented on a Xilinx version 

Spartan 3E FPGA. These fast carry-chain carry-tree 

adders support the bit width up to 256. We report on 

the area requirements and reduction in circuit 

complexity for a variety of classical parallel prefix 

adder structures. 
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I.INTRODUCTION 

In Digital Computer Design adder is an important 

component and it is used in multiple blocks of its 

architecture. In many Computers and in various classes 

of processor specialization, adders are not only used in 

Arithmetic Logic Units [6], but also used to calculate 

addresses and table indices. There exist multiple 

algorithms to carry on addition operation ranging from 

simple Ripple Carry Adders to complex CLA.  

 

The basic operations involved in any Digital Signal 

Processing systems are Multiplication, Addition and  

Accumulation. Addition is an indispensible operation  

in any Digital, DSP or control system. Therefore fast 

and accurate operation of digital system depends on 

the performance of adders [6]. Hence improving the 

performance of adder is the main area of research in 

most digital circuits. Binary addition is a fundamental 

operation in most digital circuits. There are a variety of 

adders, each has certain performance. Each type of 

adder is selected depending on where the adder is to be 

used.  

 

Adders are critically important elements in processor 

chips and they are used in floating-point arithmetic 

units, ALUs, memory addressing, program counter 

updating, Booth Multipliers, ALU Designing, 

multimedia and communication systems, Real-time 

signal processing like audio signal processing, 

video/image processing, or large capacity data 

processing etc. The requirements of the adder are that 

it is primarily fast and secondarily efficient in terms of 

power consumption. In VLSI implementations, 

parallel-prefix adders are known to have the best 

performance. In this paper, designing and 

implementing the tree-based adders on FPGAs are 

described.  

 

Tree-based adder structures are implemented on FPGA 

and compared with the Ripple Carry Adder (RCA) and 

the Carry Skip Adder (CSA). Some conclusions and 

suggestions are made for improving FPGA designs to 

enable better tree-based adder performance. Parallel 

prefix (or tree prefix) adders provide a good theoretical 

basis to make a wide range of design trade-offs in 

terms of delay, area and power. Parallel Prefix Adders  

(PPA) is designed by considering carry look adder as a 

base. Similar to a CLA they employ the 3-stage 

structure shown in Figure.1 CLA and a PPA differs in 

second stage. In second stage carry signal of binary 

addition is generated. 
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Figure.1 Stages of Binary Addition 

Three stage structure of the carry look ahead and 

parallel prefix adder. In a PPA the prefix operator “o” 

is introduced and the carry signal generation is treated 

as a prefix problem. 

II. RELATED WORK 

We compared the design of the ripple carry adder with 

the carry-look ahead, carry-skip, and carry-select 

adders on the Xilinx 4000 series FPGAs. Only an 

optimized form of the carry-skip adder performed 

better than the ripple carry adder when the adder 

operands were above 56 bits. A study of adders 

implemented on the Xilinx Vertex II yielded similar 

results. The previous authors considered several 

parallel prefix adders implemented on a Xilinx Vertex 

5 FPGA. It is found that the simple RCA adder is 

superior to the parallel prefix designs because the RCA 

can take advantage of the fast carry chain on the 

FPGA. This study focuses on carry-tree adders 

implemented on a Xilinx Spartan 3E FPGA. The 

distinctive contributions of this paper are two-fold. 

First, we consider tree-based adders and a hybrid form 

which combines a tree structure with a ripple-carry 

design. The Kogge-Stone adder is chosen as a 

representative of the former type and the sparse Kogge 

Stone and Brent Kung Adder is representative of the 

latter category. Second, this paper considers the 

practical issues involved in testing the adders and 

provides actual measurement data to compare with 

simulation results. The previous works cited above all 

rely upon the synthesis reports from the FPGA place 

and route software for their results. 

A 16-bit Kogge-Stone adder is built from 16 generate 

and propagate (GP) blocks, 37 black cells (BC) blocks, 

16 (GC) blocks, 16 sum blocks. Kogge-Stone prefix 

tree is one of the adders that use fewest logic levels. 

Gray cells are inserted similar to black cells except that  

the gray cells final output carry outs instead of 

intermediate G/P group. The reason of starting with 

Kogge-Stone prefix tree is that it is the easiest to build 

in terms of using a program concept. The Figure.2 

shown below is 16-bit (a power of 2) prefix tree and it 

is not difficult to extend the structure to any width if 

the basics are strictly followed. The sparse Kogge-

Stone adder consists of several smaller ripple carry 

adders (RCAs) on its lower half, a carry tree on its 

upper half. It terminates with RCAs. The number of 

carries generated is less in a sparse Kogge Stone adder 

compared to the regular Kogge-Stone adder. The 

functionality of the GP block, black cell and the gray 

cell remains exactly the same as in the regular Kogge-

Stone adder. The sparse Kogge-Stone adder, this 

design terminates with a 4- bit RCA. As the FPGA 

uses a fast carry-chain for the RCA, it is interesting to 

compare the performance of this adder with the sparse 

Kogge-Stone and regular Kogge-Stone adders. The 

Figure.4 Shown below is the Block diagram of 16-Bit 

Sparse Kogge-Stone Adder. 

 

Fig.2. 16 bit sparse kogge-Stone adder 

The 16 bit SKA uses black cells and gray cells as well 

as full adder blocks too. This adder computes the 

carries using the BC’s and GC’s and terminates with 4 

bit RCA’s. Totally it uses 16 full adders. The 16 bit 

SKA is shown in figure 2. In this adder, first the input 

bits (a, b) are converted as propagate and generate (p, 

g). Then propagate and generate terms are given to 

BC’s and GC’s. The carries are propagated in advance 

using these cells. Later these are given to full adder 

blocks. Another PPA is known as STA is also tested 

[6]. Like the SKA, this adder also terminates with a 
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RCA. It also uses the BC’s and GC’s and full adder 

blocks like SKA’s but the difference is the 

interconnection between them [7].The 16 bit STA is 

shown in the below figure 3. 

 

Fig.3. 16 bit spanning tree adder 

 

Fig.4. 16 bit kogge stone adder 

Another carry tree known as BKA which also uses 

BC’s and GC’s but less than the KSA. So it takes less 

area to implement than KSA. The 16 bit BKA uses 14 

BC’s and 11 GC’s but kogge stone uses 36 BC’s and 

15 GC’s. So BKA has less architecture and occupies 

less area than KSA. The 16 bit BKA is shown in the 

below figure 5. 

 

Fig.5. 16 bit Brent Kung adder 

BKA occupies less area than the other 3 adders called 

SKA, KSA, and STA. This adder uses limited number 

of propagate and generate cells than the other 3 adders. 

It takes less area to implement than the KSA and has 

less wiring congestion. The operation of the 16 bit 

brent kung adder is given below [3].This adder uses 

less BC’s and GC’s than kogge stone adder and has the 

better delay performance which is observed in Agilent 

1692A logic analyzer. 

III. SIMULATION RESULTS 

Table.3 contains the results obtained. The adder 

abbreviations used in the table and the following 

discussions are: BK for the Brent-Kung adder, KS for 

the Kogge-Stone adder, SK for Sparse Kogge Stone 

Adder, RC for Ripple Carry Adder. In the table, area is 

measured in Slice Look-Up Tables (LUT) units which 

represent configurable logic units within the FPGA. 

Interestingly the synthesis tool synthesized a simple 

ripple carry adder regardless of the optimization 

strategy. The adder was implemented by configuring 

the slices within the FPGA as full adder components. 

Hence the number of lookup tables matched the 

operand bit-size in every case. Table.3 give the area 

results with the software set for area. It is apparent 

from these tables that the area optimization strategy 

produces adders which are significantly smaller 

compared to those produced with complexity 

optimization.  
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In Table we can observe that generally the adder areas 

compare with the characteristics of their type. The BK 

exhibits the smallest size while the KS is the largest 

adder. This shows that in certain cases the tool 

optimized circuits reverse the algorithmic superiority 

of a design. 

Table.3 Area Results Obtained With Area 

Optimization 

 

 

Figure.6 Comparison of path delays for Adders 

These adders are implemented in verilog HDL in 

Xilinx 13.2 ISE design suite and then verified using 

Xilinx virtex 5 FPGA through chip scope analyzer [7], 

[8] and [9]. And these were tested using Agilent 

1692A logic analyzer. 

 

Fig7: Look head adder result 

 

Fig8: Brentkung adder Result 

 

Fig9: koggestone Adder result 

 

Figure10: spinning tree adder result 

 

Figure11: sparse koggestone adder result 
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IV CONCLUSION 

Parallel-prefix adders are not as effective as the simple 

ripple-carry adder at low to moderate bit widths. We 

have indications that the carry-tree adders eventually 

surpass the performance of the linear adder designs at 

high bit-widths, expected to be in the 128 to 256 bit 

range. This is important for large adders used in 

precision arithmetic and cryptographic applications 

where the addition of numbers on the order of a 

thousand bits is not uncommon. Because the adder is 

often the critical element which determines to a large 

part the cycle time and power dissipation for many 

digital signal processing and cryptographically 

implementations, it would be worthwhile for future 

FPGA designs to include an optimized carry path to 

enable tree based adder designs to be optimized for 

place and routing. The testability and possible fault 

tolerant features of the Brent kung adder are topics for 

future research. 
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