

 Page 1684

Design and Estimation of delay, power and area for Parallel prefix

adders
Divya Tejaswi Pirati

 P.G. Scholar,

Department of Electronics & Communication

Engineering,

VRS &YRN College of Engineering & Technology,

Chirala. A.P

 Sunil Dayakar Gundala
Assistant Professor,

Department of Electronics & Communication

Engineering,

VRS &YRN College of Engineering & Technology,

Chirala. A.P

Abstract:

Abstract—Parallel Prefix Adders have been

established as the most efficient circuits for binary

addition. The binary adder is the critical element in

most digital circuit designs including digital signal

processors and microprocessor data path units. The

final carry is generated ahead to the generation of

the sum which leads extensive research focused on

reduction in circuit complexity and power consu

mption of the adder. In VLSI implementation,

parallel-prefix adders are known to have the best

performance. This paper investigates four types of

carry-tree adders (the Kogge-Stone, sparse Kogge-

Stone, spanning tree, Brent kung Adder) and

compare them to the simple Ripple Carry Adder and

Carry Skip Adder. These designs of varied bit-widths

are simulated using implemented on a Xilinx version

Spartan 3E FPGA. These fast carry-chain carry-tree

adders support the bit width up to 256. We report on

the area requirements and reduction in circuit

complexity for a variety of classical parallel prefix

adder structures.

Key words — parallel prefix adders; carry tree

adders; FPGA; logic analyzer; delay; power.

I.INTRODUCTION

In Digital Computer Design adder is an important

component and it is used in multiple blocks of its

architecture. In many Computers and in various classes

of processor specialization, adders are not only used in

Arithmetic Logic Units [6], but also used to calculate

addresses and table indices. There exist multiple

algorithms to carry on addition operation ranging from

simple Ripple Carry Adders to complex CLA.

The basic operations involved in any Digital Signal

Processing systems are Multiplication, Addition and

Accumulation. Addition is an indispensible operation

in any Digital, DSP or control system. Therefore fast

and accurate operation of digital system depends on

the performance of adders [6]. Hence improving the

performance of adder is the main area of research in

most digital circuits. Binary addition is a fundamental

operation in most digital circuits. There are a variety of

adders, each has certain performance. Each type of

adder is selected depending on where the adder is to be

used.

Adders are critically important elements in processor

chips and they are used in floating-point arithmetic

units, ALUs, memory addressing, program counter

updating, Booth Multipliers, ALU Designing,

multimedia and communication systems, Real-time

signal processing like audio signal processing,

video/image processing, or large capacity data

processing etc. The requirements of the adder are that

it is primarily fast and secondarily efficient in terms of

power consumption. In VLSI implementations,

parallel-prefix adders are known to have the best

performance. In this paper, designing and

implementing the tree-based adders on FPGAs are

described.

Tree-based adder structures are implemented on FPGA

and compared with the Ripple Carry Adder (RCA) and

the Carry Skip Adder (CSA). Some conclusions and

suggestions are made for improving FPGA designs to

enable better tree-based adder performance. Parallel

prefix (or tree prefix) adders provide a good theoretical

basis to make a wide range of design trade-offs in

terms of delay, area and power. Parallel Prefix Adders

(PPA) is designed by considering carry look adder as a

base. Similar to a CLA they employ the 3-stage

structure shown in Figure.1 CLA and a PPA differs in

second stage. In second stage carry signal of binary

addition is generated.

 Page 1685

Figure.1 Stages of Binary Addition

Three stage structure of the carry look ahead and

parallel prefix adder. In a PPA the prefix operator “o”

is introduced and the carry signal generation is treated

as a prefix problem.

II. RELATED WORK

We compared the design of the ripple carry adder with

the carry-look ahead, carry-skip, and carry-select

adders on the Xilinx 4000 series FPGAs. Only an

optimized form of the carry-skip adder performed

better than the ripple carry adder when the adder

operands were above 56 bits. A study of adders

implemented on the Xilinx Vertex II yielded similar

results. The previous authors considered several

parallel prefix adders implemented on a Xilinx Vertex

5 FPGA. It is found that the simple RCA adder is

superior to the parallel prefix designs because the RCA

can take advantage of the fast carry chain on the

FPGA. This study focuses on carry-tree adders

implemented on a Xilinx Spartan 3E FPGA. The

distinctive contributions of this paper are two-fold.

First, we consider tree-based adders and a hybrid form

which combines a tree structure with a ripple-carry

design. The Kogge-Stone adder is chosen as a

representative of the former type and the sparse Kogge

Stone and Brent Kung Adder is representative of the

latter category. Second, this paper considers the

practical issues involved in testing the adders and

provides actual measurement data to compare with

simulation results. The previous works cited above all

rely upon the synthesis reports from the FPGA place

and route software for their results.

A 16-bit Kogge-Stone adder is built from 16 generate

and propagate (GP) blocks, 37 black cells (BC) blocks,

16 (GC) blocks, 16 sum blocks. Kogge-Stone prefix

tree is one of the adders that use fewest logic levels.

Gray cells are inserted similar to black cells except that

the gray cells final output carry outs instead of

intermediate G/P group. The reason of starting with

Kogge-Stone prefix tree is that it is the easiest to build

in terms of using a program concept. The Figure.2

shown below is 16-bit (a power of 2) prefix tree and it

is not difficult to extend the structure to any width if

the basics are strictly followed. The sparse Kogge-

Stone adder consists of several smaller ripple carry

adders (RCAs) on its lower half, a carry tree on its

upper half. It terminates with RCAs. The number of

carries generated is less in a sparse Kogge Stone adder

compared to the regular Kogge-Stone adder. The

functionality of the GP block, black cell and the gray

cell remains exactly the same as in the regular Kogge-

Stone adder. The sparse Kogge-Stone adder, this

design terminates with a 4- bit RCA. As the FPGA

uses a fast carry-chain for the RCA, it is interesting to

compare the performance of this adder with the sparse

Kogge-Stone and regular Kogge-Stone adders. The

Figure.4 Shown below is the Block diagram of 16-Bit

Sparse Kogge-Stone Adder.

Fig.2. 16 bit sparse kogge-Stone adder

The 16 bit SKA uses black cells and gray cells as well

as full adder blocks too. This adder computes the

carries using the BC’s and GC’s and terminates with 4

bit RCA’s. Totally it uses 16 full adders. The 16 bit

SKA is shown in figure 2. In this adder, first the input

bits (a, b) are converted as propagate and generate (p,

g). Then propagate and generate terms are given to

BC’s and GC’s. The carries are propagated in advance

using these cells. Later these are given to full adder

blocks. Another PPA is known as STA is also tested

[6]. Like the SKA, this adder also terminates with a

 Page 1686

RCA. It also uses the BC’s and GC’s and full adder

blocks like SKA’s but the difference is the

interconnection between them [7].The 16 bit STA is

shown in the below figure 3.

Fig.3. 16 bit spanning tree adder

Fig.4. 16 bit kogge stone adder

Another carry tree known as BKA which also uses

BC’s and GC’s but less than the KSA. So it takes less

area to implement than KSA. The 16 bit BKA uses 14

BC’s and 11 GC’s but kogge stone uses 36 BC’s and

15 GC’s. So BKA has less architecture and occupies

less area than KSA. The 16 bit BKA is shown in the

below figure 5.

Fig.5. 16 bit Brent Kung adder

BKA occupies less area than the other 3 adders called

SKA, KSA, and STA. This adder uses limited number

of propagate and generate cells than the other 3 adders.

It takes less area to implement than the KSA and has

less wiring congestion. The operation of the 16 bit

brent kung adder is given below [3].This adder uses

less BC’s and GC’s than kogge stone adder and has the

better delay performance which is observed in Agilent

1692A logic analyzer.

III. SIMULATION RESULTS

Table.3 contains the results obtained. The adder

abbreviations used in the table and the following

discussions are: BK for the Brent-Kung adder, KS for

the Kogge-Stone adder, SK for Sparse Kogge Stone

Adder, RC for Ripple Carry Adder. In the table, area is

measured in Slice Look-Up Tables (LUT) units which

represent configurable logic units within the FPGA.

Interestingly the synthesis tool synthesized a simple

ripple carry adder regardless of the optimization

strategy. The adder was implemented by configuring

the slices within the FPGA as full adder components.

Hence the number of lookup tables matched the

operand bit-size in every case. Table.3 give the area

results with the software set for area. It is apparent

from these tables that the area optimization strategy

produces adders which are significantly smaller

compared to those produced with complexity

optimization.

 Page 1687

In Table we can observe that generally the adder areas

compare with the characteristics of their type. The BK

exhibits the smallest size while the KS is the largest

adder. This shows that in certain cases the tool

optimized circuits reverse the algorithmic superiority

of a design.

Table.3 Area Results Obtained With Area

Optimization

Figure.6 Comparison of path delays for Adders

These adders are implemented in verilog HDL in

Xilinx 13.2 ISE design suite and then verified using

Xilinx virtex 5 FPGA through chip scope analyzer [7],

[8] and [9]. And these were tested using Agilent

1692A logic analyzer.

Fig7: Look head adder result

Fig8: Brentkung adder Result

Fig9: koggestone Adder result

Figure10: spinning tree adder result

Figure11: sparse koggestone adder result

 Page 1688

IV CONCLUSION

Parallel-prefix adders are not as effective as the simple

ripple-carry adder at low to moderate bit widths. We

have indications that the carry-tree adders eventually

surpass the performance of the linear adder designs at

high bit-widths, expected to be in the 128 to 256 bit

range. This is important for large adders used in

precision arithmetic and cryptographic applications

where the addition of numbers on the order of a

thousand bits is not uncommon. Because the adder is

often the critical element which determines to a large

part the cycle time and power dissipation for many

digital signal processing and cryptographically

implementations, it would be worthwhile for future

FPGA designs to include an optimized carry path to

enable tree based adder designs to be optimized for

place and routing. The testability and possible fault

tolerant features of the Brent kung adder are topics for

future research.

REFERENCES

[1] David H.K.Hoe, Chris Martinez and Sri Jyothsna

Vundavalli”, Design and Characterization of Parallel

Prefix Adders using FPGAs”, 2011 IEEE 43rd

Southeastern Symposium in pp. 168-172, 2011.

[2] N. H. E. Weste and D. Harris, CMOS VLSI

Design, 4th edition, Pearson–Addison-Wesley, 2011.

[3] R. P. Brent and H. T. Kung, “A regular layout for

parallel adders,” IEEE Trans. Comput., vol. C-31, pp.

260-264, 1982.

[4]D.Harris,“A Taxonomy of Parallel Prefix Netw

orks,” in Proc. 37th Asilomar Conf Signals Systems

and Computers,pp.2213–7,2003.

[5] P. M. Kogge and H. S. Stone, “A Parallel Algo

rithm for the Efficient Solution of a General Class of

Recurrence Equations,” IEEE Trans. On Computers,

Vol.C-22,No8,August1973.

[6] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.

Zorian, “Easily Testable Cellular Carry Lookahead

Adders,” Journal of Electronic Testing: Theory and

Applications19,285-298,2003.

[7] T. Lynch and E. E. Swartzlander, “A Spanning

Tree Carry Lookahead Adder,” IEEE Trans. on

Computers, vol. 41, no. 8, pp. 931-939, Aug. 1992.

[8] Beaumont-Smith, A, Cheng-Chew Lim ,”Parallel

prefix adder design”, Computer Arithmetic, 2001.

Proceedings. 15th IEEE Symposium ,pp. 218 –

225,2001.M. Young, The Technical Writer's

Handbook. Mill Valley, CA: University Science, 1989

[9] K. Vitoroulis and A. J. Al-Khalili, “Performance of

Parallel Prefix Adders Implemented with FPGA

technology,” IEEE Northeast Workshop on Circuits

and Systems, pp. 498-501, Aug. 2007. 172.

[10] S. Xing and W. W. H. Yu, “FPGA Adders:

Performance Evaluation and Optimal Design,” IEEE

Design & Test of Computers, vol. 15, no. 1, pp. 24-29,

Jan. 1998.

