

A Peer Reviewed Open Access International Journal

I. INTRODUCTION

Performance Improvement of an Automobile Radiator Using CFD Analysis

John Babu Male

MTech Student Kakinada Institute Of Technology & Science, Divili, Andhra Pradesh, India.

Mr. S. Rajasekhar

Associate Professor Kakinada Institute Of Technology & Science, Divili, Andhra Pradesh, India.

Mr. A.V. Sridhar

Associate Professor Kakinada Institute Of Technology & Science, Divili, Andhra Pradesh, India.

ABSTRACT:

Radiators are used to transfer thermal energy from one medium to another for the purpose of cooling. Radiators are used for cooling internal combustion engines, mainly in automobiles but also in pistonengine aircraft, railway locomotives, motorcycles, stationary generating plant. The radiator transfers the heat from the fluid inside to the air outside, thereby cooling the fluid, which in turn cools the engine.

Research is being carried out for several decades now, in improving the performance of the heat exchangers, having high degree of surface compactness and higher heat transfer abilities in automotive industry. These compact heat exchangers have fins, louvers and tubes.

In this project we are designing a radiator without louver fins and with louver fins. The original radiator has no louver fins, we are modifying that by giving louver fins. 3D model is done in Pro/Engineer.

In this project, the computational analysis tool ANSYS is used to perform a CFD analysis on radiator. The radiator considered in this thesis is from the journal paper. The initial parameters are Inlet air velocity, Air Inlet temperature. Heat transfer analysis will also be done to analyze the heat transfer rate by changing the parameters. The material taken is Aluminum alloy 6061 for thermal analysis. The results to be validated are Velocity, Outlet air temperature, Heat carried by air, Heat transfer rate and Pressure drop. Modeling is done in Pro/Engineer / catia and analysis is done in Ansys. Radiators are heat exchangers used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in automobiles, buildings, and electronics. The radiator is always a source of heat to its environment, although this may be for either the purpose of heating this environment, or for cooling the fluid or coolant supplied to it, as for engine cooling. Despite the name, radiators generally transfer the bulk of their heat via convection, not by thermal radiation, though the term "convector" is used more narrowly; see radiation and convection, below.

The Roman hypocaust, a type of radiator for building space heating, was described in 15 AD. The heating radiator was invented by Franz San Galli, a Polishborn Russian businessman living in St. Petersburg, between 1855 and 1857.

WORKING OF AUTOMOBILE RADIATORS

Almost all automobiles in the market today have a type of heat exchanger called a radiator. The radiator is part of the cooling system of the engine as shown in Figure below. As you can see in the figure, the radiator is just one of the many components of the complex cooling system.

Most modern cars use aluminum radiators. These radiators are made by brazing thin aluminum fins to flattened aluminum tubes. The coolant flows from the inlet to the outlet through many tubes mounted in a parallel arrangement. The fins conduct the heat from the tubes and transfer it to the air flowing through the radiator.

A Peer Reviewed Open Access International Journal

The tubes sometimes have a type of fin inserted into them called a tabulator, which increases the turbulence of the fluid flowing through the tubes. If the fluid flowed very smoothly through the tubes, only the fluid actually touching the tubes would be cooled directly. The amount of heat transferred to the tubes from the fluid running through them depends on the difference in temperature between the tube and the fluid touching it. So if the fluid that is in contact with the tube cools down quickly, less heat will be transferred. By creating turbulence inside the tube, all of the fluid mixes together, keeping the temperature of the fluid touching the tubes up so that more heat can be extracted, and all of the fluid inside the tube is used effectively.

Radiators usually have a tank on each side, and inside the tank is a transmission cooler. In the picture above, you can see the inlet and outlet where the oil from the transmission enters the cooler. The transmission cooler is like a radiator within a radiator, except instead of exchanging heat with the air, the oil exchanges heat with the coolant in the radiator.

CFD ANALYSIS OF RADIATOR

ORIGINAL MODEL – WITHOUT LOUVERED FINS

Save Pro-E Model as .iges format.

 $\rightarrow \rightarrow$ Ansys \rightarrow Workbench \rightarrow Select analysis system \rightarrow Fluid Flow (Fluent) \rightarrow double click

 \rightarrow Select geometry \rightarrow right click \rightarrow import geometry \rightarrow select browse \rightarrow open part \rightarrow ok

 \rightarrow select mesh on work bench \rightarrow right click \rightarrow edit Select mesh on left side part tree \rightarrow right click \rightarrow generate mesh \rightarrow

SPECIFYING BOUNDARIES FOR INLET AND OUTLET

Select edge \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow inlet

Select edge \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow outlet

A Peer Reviewed Open Access International Journal

File \rightarrow export \rightarrow fluent \rightarrow input file(mesh) \rightarrow enter required name \rightarrow save.

 \rightarrow ansys \rightarrow fluid dynamics \rightarrow fluent \rightarrow select 2D or 3D \rightarrow select working directory \rightarrow ok

 $\rightarrow \rightarrow$ file \rightarrow read \rightarrow mesh \rightarrow select file \rightarrow ok.

General \rightarrow Pressure based

Model \rightarrow energy equation \rightarrow on

 $Model \rightarrow Viscous \rightarrow Edit$

Materials \rightarrow new \rightarrow create or edit \rightarrow specify Fluid material \rightarrow Air

Name	Material Type	Order Materials by
air	fluid	O Name
Chemical Formula	Fluent Fluid Materials	Chemical Formula
	air	Hiter-Defined Database
	Inone	T
Properties		
Density (kg/m3)	constant	
	1.225	
Cp (Specific Heat) (j/kg-k)	constant	
	1006.43	
Thermal Conductivity (w/m-k)	constant	
	0.0242	
Viscosity (kg/m-s)	constant	
	1.7894e-05	
Viscosity (kg/m-s)	0.0242 constant v Edt 1.7894e-05	

Boundary conditions \rightarrow Inlet \rightarrow Edit

A Peer Reviewed Open Access International Journal

one Name		
inlet		
Momentum Thermal Radiation Species	DPM Multiphase UI	DS
Velocity Specification Method	Magnitude, Normal to Boun	ndary 👻
Reference Frame	Absolute	•
Velocity Magnitude (m/s)	9.71	constant 🔹
Supersonic/Initial Gauge Pressure (pascal)	0	constant 🔹

Velocity Inlet	×
Zone Name	
inlet	
Momentum Thermal Radiation Species DPM Multiphase UDS	
Temperature (k) 353 constant	
OK Cancel Help	

Solution \rightarrow Solution Initialization \rightarrow Hybrid Initialization \rightarrow done

Run calculations \rightarrow No of iterations = 100 \rightarrow calculate \rightarrow calculation complete

Pressure

Apr 06, 2014 ANSYS FLUENT 12.1 (2d, pbns, ske)

"Flux Report"

Total Heat Transfer Rate			(w)
	air_inlet	-185.60265	-
	air_outlet	185.3676	
	wall-part_1	0	
	Net	-0.23504639	
	Mass Flow Ra	nte (kg/s))
	air_inlet	0.038023997	-
	air_outlet	-0.037975796	
	interior-part_1	-0.7562912	7
	wall-part_1	0	

Volume No: 2 (2015), Issue No: 12 (December) www.ijmetmr.com

December 2015

A Peer Reviewed Open Access International Journal

WITH LOUVERED FINS

Save Pro-E Model as .iges format.

 $\rightarrow \rightarrow$ Ansys \rightarrow Workbench \rightarrow Select analysis system \rightarrow Fluid Flow (Fluent) \rightarrow double click

 \rightarrow Select geometry \rightarrow right click \rightarrow import geometry \rightarrow select browse \rightarrow open part \rightarrow ok

 \rightarrow select mesh on work bench \rightarrow right click \rightarrow edit

Select mesh on left side part tree \rightarrow right click \rightarrow generate mesh \rightarrow

SPECIFYING BOUNDARIES FOR INLET AND OUTLET

Select edge \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow inlet

Select edge \rightarrow right click \rightarrow create named section \rightarrow enter name \rightarrow outlet

File \rightarrow export \rightarrow fluent \rightarrow input file(mesh) \rightarrow enter required name \rightarrow save.

 $\rightarrow \rightarrow$ ansys \rightarrow fluid dynamics \rightarrow fluent \rightarrow select 2D or 3D \rightarrow select working directory \rightarrow ok

 $\rightarrow \rightarrow$ file \rightarrow read \rightarrow mesh \rightarrow select file \rightarrow ok.

General \rightarrow Pressure based

Model \rightarrow energy equation \rightarrow on

$Model \rightarrow Viscous \rightarrow Edit$

Viscous Model	
Model Inviscid Laminar Spalart-Allmaras (1 eqn) K-epsilon (2 eqn) Transition StA (4 eqn) Transition StA-loomega (3 eqn) Transition StG (4 eqn) Scale-Adaptive Simulation (SAS) k-epsilon Model Standard RNG Realizable Near-Wall Treatment Standard Wall Functions Scalable Wall Functions Finhanced Wa	Model Constants Cmu 0.09 C1-Epsilon I.44 C2-Epsilon I.92 TKE Prandtl Number I User-Defined Functions Turbulent Viscosity none Prandtl Number Inone IDR Prandtl Number Energy Prandtl Number none Image: Image: Imag
ОК	Cancel Help

Materials \rightarrow new \rightarrow create or edit \rightarrow specify Fluid material \rightarrow Air

lame	Material Type		Order Materials by
air	fluid		 Name
Chemical Formula	Fluent Fluid Materials		Chemical Formula
	air		Fluent Database
	Mixture		User -Defined Database.
	none		*
roperties			
Density (kg/m3)	constant 👻 Ed	it	
	1.225		
Cp (Specific Heat) (j/kg-k)	constant 👻 Ed	it	
	1006.43		
Thermal Conductivity (w/m-k)	constant 💌 Ed	it =	
	0.0242		
Viscosity (kg/m-s)	constant 👻 Ed	it	
	1.7894e-05		

Boundary conditions \rightarrow Inlet \rightarrow Edit

A Peer Reviewed Open Access International Journal

Velocity Inlet		×
Zone Name inlet		
Momentum Thermal Radiation Species	B DPM Multiphase U	DS
Velocity Specification Method	Magnitude, Normal to Bour	ndary 👻
Reference Frame	Absolute	•
Velocity Magnitude (m/s)	9.71	constant 🗸
Supersonic/Initial Gauge Pressure (pascal)	0	constant 💌
ОК	Cancel Help	

Velocity Inle	t			×
Zone Name				
inlet				
Momentum T	hermal Radiation Spec	ties DPM Multiphase	UDS	
Temperature (k	() 353	constant	•	
	L			
	-	OK Cancel Help	1	

Solution \rightarrow Solution Initialization \rightarrow Hybrid Initialization \rightarrow done

Run calculations \rightarrow No of iterations = 100 \rightarrow calculate \rightarrow calculation complete

 $\rightarrow \rightarrow$ Results \rightarrow graphics and animations \rightarrow contours \rightarrow setup

PRESSURE

VELOCITY MAGNITUDE

TEMPERTAURE

Contours of Static Temperature (k)

Apr 06, 2014 ANSYS FLUENT 12.1 (2d, pbns, ske)

Volume No: 2 (2015), Issue No: 12 (December) www.ijmetmr.com

December 2015

A Peer Reviewed Open Access International Journal

Total Heat Transfer Rate

(w)

air_inlet air_outlet wall-part_1	-185.79402 179.12578 0
Net	-6.6682434

THERMAL ANALYSIS

WITHOUT LOUVER FINS

Set Units - /units,si,mm,kg,sec,k

File- change Directory-select working folder

File-Change job name-Enter job name

Select element-Solid-20node 90

Material Properties – Aluminum Alloy 6061

Density - 0.0000027 Kg/mm³

Thermal Conductivity - 180W/mK

Specific Heat – 896 J/Kg K

Imported Model

Meshed model

Apply Thermal-Temperature- on Area=353K

 $\begin{array}{l} \mbox{Convections} - \mbox{ on Area-Film Co-efficient} - 0.0000131 \\ \mbox{W/mm}^2 \mbox{ K} \end{array}$

Bulk Temperature - 303 K

Results

Temperature

A Peer Reviewed Open Access International Journal

Thermal gradient

Heat flux

WITH LOUVER FINS

Set Units - /units,si,mm,kg,sec,k

File- change Directory-select working folder

File-Change job name-Enter job name

Select element-Solid-20node 90

Material Properties

Youngs Modulus =

Imported

Meshed model

Loads

Apply Thermal-Temperature- on Area=353K

Convections – on Area-Film Co-efficient – 0.0000131 $W/mm^2 K$

Bulk Temperature – 303 K

A Peer Reviewed Open Access International Journal

Temperature

Thermal gradient

Heat flux

RESULTS TABLE

CFD ANALYSIS

	With louvers	Without
		louvers
Pressure (Pa)	2.13e+02	1.08e+02
Velocity (m/s)	3.46e+01	1.21e+01
Temperature (K)	2.93e+02	2.93e+02
Mass Flow Rate (Kg/S)	0.00136	0.235
Total Heat Transfer rate (W)	6.668	4.8

Thermal Results

	With louvers	Without
		louvers
Temperature (K)	353	353
Thermal	0 16347	0.00/167
Gradient (K/mm)	0.10347	0.004107
Heat Flux	2 9/2	0 7/0081
(W/mm^2)	2.942	0.749901

CONCLUSION

In this project we are designing a radiator without louver fins and with louver fins. The original radiator has no louver fins, we have modified the design by specifying louver fins. 3D model is done in Pro/Engineer.

In this project, the computational analysis tool ANSYS is used to perform a CFD analysis on radiator. The radiator considered in this thesis is from the journal paper. The initial parameters are Inlet air velocity, Air Inlet temperature.

By observing the analysis results, the velocity, pressure and heat transfer rate is more for the radiator with louver fins that of the original model.

A Peer Reviewed Open Access International Journal

Heat transfer analysis is done to analyze the heat transfer rate to determine the thermal flux. The material taken is Aluminum alloy 6061 for thermal analysis.

By observing the thermal analysis results, thermal flux is more for the radiator with louver fins that of the original model, so heat transfer rate is more.

So we can conclude that modifying the radiator model with louver fins yields better results.

REFRENCES

[1] R. Saidur, K.Y. Leong and H.A. Mohammad, A Review on Applications and Challenges of Nanofluids. Renewable and Sustainable Energy Reviews, 15, 3 (2011), 1646–1668.

[2] Pelaez, R.B., Ortega, J.C., Cejudo-Lopez, J.M., A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin and tube heat exchanger, Applied Thermal Engineering, 30 (2010), pp.1608-1615.

[3] Sahin, H.M., Dal, A.R., Baysal, E., 3-D Numerical study on correlation between variable inclined fin angles and thermal behavior in plate fin-tube heat exchanger, Applied Thermal Engineering, 27 (2007), pp.1806-1816.

[4] Wen, M.Y. Ho, C.Y., Heat transfer enhancement in fin and tube heat exchanger with improved fin design, Applied Thermal Engineering, 29(2009), pp.1050-1057.

[5] Yan, W.M., Sheen, P.J., Heat transfer and friction characteristics of fin and tube heat exchangers, International Journal of Heat and Mass Transfer, 43 (2000), pp.1651-1659.

[6] Wolf, I., Frankovic, B., Vilicic, I., A numerical and experimental analysis of neat transfer in a wavy fin and tube heat exchanger, Energy and the Environment (2006) pp.91-101.

AUTHOR DETAILS

1. STUDENT

JOHN BABU MALE received the BTech degree in mechanical engineering from DR SAMUEL GEORGE INSTITUTE OF ENGINEERING AND TECHNOLOGY, JNTUK, MARKAPUR, Andhra Pradesh, India, in 2010 year, and pursuing MTech in Thermal Engineering from Kakinada institute of technology & science, Divili, Andhra Pradesh, India.

2. <u>GUIDE 1</u>

Mr. S. Rajasekhar, Associate professor, Kakinada institute of technology & science, Divili, Andhra Pradesh, India.

3. <u>GUIDE 2</u>

Mr. A.V. Sridhar, Associate professor, Kakinada institute of technology & science, Divili, Andhra Pradesh, India.