

 Page 2010

The design and efficient hardware implementations for the

Advanced Encryption Standard (AES) algorithm in order to attain

better FPGA efficiency.

K.Chaitanya Kumar

M.Tech(VLSI & ES)

DRK Institute of Science And Technology

Bowrampet, Hyderabad.

Mr.M.Sivannarayana

Professor

DRK Institute of Science And Technology

Bowrampet, Hyderabad.

Abstract:

The Advanced Encryption Standard (AES) was

endorsed by the National Institute of Standards and

Technology in 2001. It was designed to replace the

aging Data Encryption Standard (DES) and be useful

for a wide range of applications with varying

throughput, area, power dissipation and energy

consumption requirements .Though they are highly

flexible, FPGAs are often less efficient than

Application Specific Integrated Circuits (ASICs);

There have been many AES implementations that

focus on obtaining high throughput or low area

usage, but very little research done in the area of low

power or energy efficient based AES; in fact, it is

rare for estimates on power dissipation to be made at

all.

This thesis introduces new efficient hardware

implementations for the Advanced Encryption

Standard (AES) algorithm. Two main contributions

are presented in this thesis, the first one is a high

speed 128 bits AES encryptor, and the second one is a

new 32 bits AES design. In first contribution a 128

bits loop unrolled sub-pipelined AES encryptor is

presented. In this encryptor an efficient merging for

the encryption process sub-steps is implemented after

relocating them. The second contribution presents a

32 bits AES design. In this design, the S-BOX is

implemented with internal pipelining and it is shared

between the main round and the key expansion units.

Also, the key expansion unit is implemented to work

on the fly and in parallel with the main round unit.

These designs have achieved higher FPGA

(Throughput/Area) efficiency comparing to previous

AES designs.

Keywords— AES, Cryptography, Pipelined AES,

Security, Encryption, Decryption

I. INTRODUCTION

The large and growing number of internet and wireless

communication users has led to an increasing demand

of security measures and devices for protecting the

user data transmitted over the unsecured network so

that unauthorized persons cannot access it. The

increasing need for Secured data communication has

led to development of several cryptography

algorithms. Two types of cryptographic systems are

mainly used for security purpose, one is symmetric-

key crypto system and other is asymmetric-key crypto

system. Symmetric-key cryptography (DES, 3DES and

AES) uses same key for both encryption and

decryption. The asymmetric-key cryptography (RSA

and Elliptic curve cryptography) uses different keys

for encryption and decryption. Symmetric crypto

system has advantages over asymmetric crypto system.

Symmetric key Algorithms are in general much faster

to execute electronically than asymmetric key

algorithms. Smaller key length is the major

disadvantage of DES crypto system.

In November 2001, the National Institute of Standards

and Technology (NIST) of the United States choose

the Rijndael algorithm as the suitable Advanced

Encryption Standard (AES) to replace previous

algorithms like DES, 3DES algorithm. The AES

encryption is considered to be efficient in both

 Page 2011

hardware and software implementations. Compared to

software, hardware implementation is more secured

and reliable. Software implementation of AES

algorithm is slower process So the focal approach of

our design on hardware platform is to attain speed. So

this paper addresses efficient hardware implementation

of the AES (Advanced Encryption Standard) algorithm

and describes the design and performance evaluation

of Rijndael algorithm. A strong focus is placed on high

throughput implementations, which are required to

support security for current and future wide bandwidth

applications .This implementation will be useful in

wireless security like military communication, Cellular

networks, Web servers, Mobile networks, Smart cards

etc.

II. AES ALGORITHM

In cryptography, the Advanced Encryption Standard

(AES), also known as Rijndael, is a block cipher

adopted as an encryption standard by the US

government. The cipher was developed by two Belgian

cryptographers, Joan Daemen and Vincent Rijmen and

submitted to the AES selection process under the name

"Rijndael", a portmanteau comprised of the names of

the inventors. AES is a symmetric iterative private key

block cipher algorithm that can process data of

different length say 128, 192 or 256 bits with a private

key of same length. Each iteration in an algorithm is

called as a round and it has 10, 12 or 14 rounds for

processing data blocks of 128,192 or 256 bits

respectively. The key could be generated and

scheduled in each round to get the encrypted data.

Table 1 shows the number of rounds as a function of

key length.

TABLE I. Different AES specifications

There are four basic operations carried out in each

round of the AES algorithm, they are

i) Sub-byte

ii) Shift row

iii) Mixed column

iv) Add Round Key

The last round of the encryption alone is different in a

way that the mixed column operation will not be

carried out. A 128-bit data block is divided into 16

bytes and these 16 bytes are mapped as 4X4 matrix

and each entry are called as states. These states

undergo all mathematical operation carried out in each

rounds of the AES algorithm. Every State variable is to

considered in the element of GF(2). Although there are

different irreducible polynomials that could be used for

GF (28), this AES algorithm uses P(x) = x8 + x4 + x3

+ x +1 as its irreducible polynomials. Decryption can

be done by the inverse process of encryption operation.

The AES encryption and the equivalent decryption

structures are shown in Fig.1.

Fig.1 Encryption and Equivalent Decryption Structure

A. Sub bytes transformation

The Sub Bytes transformation is a non-linear byte

substitution that operates independently on each byte

of the State using a substitution table (S-box). This S-

box which is invertible is constructed by composing

two transformations:

1. Take the multiplicative inverse in the finite field GF

(28), the element {00} is mapped to itself.

2. Apply the affine transformation over GF (2)

 Page 2012

Similarly inverse sub bytes implemented by using

inverse affine transform followed by multiplicative

inverse.

B. Shift rows transformation

In the Shift Rows transformation, the bytes in the last

three rows of the State are cyclically shifted over

different numbers of bytes (offsets). The first row is

not shifted at all, the second row is shifted by one the

third row by two, and the fourth row by three bytes to

the left. In the InvShiftRows, the first row of the State

does not change, while the rest of the rows are

cyclically shifted to the right by the same offset as that

in the Shift Rows transformation.

Fig.2 Shift rows transformation

C. Mixcolumns transformation

The MixColumns transformation operates on the

State column-by-column, treating each column as a

four-term polynomial. The columns are considered as

polynomials over GF (28) and multiplied modulo x4

+ 1 with a fixed polynomial a(x), given by a(x) =

{03}x3 + {01}x2 + {01}x + {02}. In hardware, the

multiplication by the corresponding polynomial is

done by XOR operations. In matrix form, the

MixColumns transformation can be expressed as

Fig.3 Mixcolumns transformation

The InvMixColumns multiplies the polynomial

formed by each column of the State with a-1(x)

modulo x4+1, where

a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}.

In matrix form, the InvMixColumns transformation

can be expressed by

Fig.4 Inverse Mixcolumns transformation

D. Addround key

In the add round key step the 128 bit data is XORed

with the sub key of the current round using the key

expansion operation. The add round key is used in two

different places one during the start that is when round

r=0 and then during the other rounds that is when 1 ≤

round≤ Nr, where Nr is the maximum number of

rounds. The formula to perform the add round key is

S’(x) = S(x) ⊕ R(x)

S’(x) – state after adding round key

S(x) – state before adding round key

R(x) – round key

III. KEY EXPANSION

In the AES algorithm, the key expansion module is

used for generating round keys for every round. There

are two approaches to provide round keys. One is to

pre-compute and store all the round keys, and the other

one is to produce them on-the-fly. In this paper it has

been implemented with first approach. The key

expansion has three steps:

• Byte Substitution subword()

• Rotation rotword()

• XOR with RCON (round constant)

The input to key schedule is the cipher key K. Key

expansion generates a total of Nb*(Nr + 1) words.

The algorithm requires an initial set of Nb words,

and each of the Nr rounds requires Nb words of key

data. The resulting key schedule consists of a linear

array of 4-byte words, denoted [wi], with i in the

range 0 ≤ i < Nb (Nr+ 1).

 Page 2013

The subword() function takes a four byte input and

applies the byte substitution operation and produces

an output word. The rotword() takes a word [a0, a1,

a2, a3] as input and performs a cyclic permutation to

produce [a1, a2, a3, a0] as output word. The round

constant word array rcon[i] is calculated using the

below formula in finite field.

Rcon[i] = x(254+i) mod x8+ x4+ x3+x+1

The first Nk words of the expanded key are filled

with the cipher key. Every following word w[i] is

equal to the xor of previous word w[i-1] and the

word Nk positions earlier w[i-Nk]. For words in

positions that are a multiple of Nk, a transformation

is applied to w[i-1] prior to the XOR, followed by an

XOR with a round constant Rcon[i]. This

transformation consists of a cyclic shift of the bytes

in a word rotword () and byte substitution subword

(). But in key expansion of 256-bit cipher if Nk=8

and i-4 is a multiple of Nk then subword() function is

applied to w[i-1] prior to the xor.

IV. PIPELINING

Rijndeal is a block cipher with a basic looping

architecture whereby data is iteratively passed

through a round function. The architecture used in

this implementation is shown in figure 5.In this

architecture, Data to be encrypted/Decrypted and

key is passed to the 2:1 multiplexer In the starting the

start signal is high mux performs xor between data

and key, handover its output to further operation of

AES.

Fig. 5 Basic architecture of Design

In most of the application Speed is very important

factor, In order to speed up the AES algorithm we

can use pipelining architecture. If we do the

pipelining, Hardware gets doubled for each

pipelining stage. Here we can implement the

pipelining in each round of AES. For every

pipelining stage throughput will increase,

simultaneously power and area also increases.

Increase in Throughput at the cost of increased area

and power becomes a major drawback in nanometer

technology So we need to make a trade off while

selecting the number of pipelining stages in the

design. In this paper AES has been implemented

with the different stages of pipelining, Throughput,

Area and Power has been tabulated for all stages

.Based on throughput requirement, number of

pipelining stages can be restricted.

Fig. 6 pipelining architecture

In the above architecture, extra registers and

hardware is repeated depending upon the number of

pipelining stages so that, several blocks of data can

be processed at a time as shown in figure 6.

V. IMPLEMENTATION RESULTS

The AES algorithm is implemented using Verilog

 Page 2014

hardware descriptive language and simulated using a

Xilinx ISE 9.2 simulator. The algorithm is tested by

encrypting and decrypting a single 128 bit block.

Encryption simulation was successfully completed

by the use of key expansion and transformations of

shift Rows, sub bytes, mix columns, add round keys

without pipelining stages shown in fig 7.

Fig.7 Encryption result

Decryption simulation was successfully completed

by the use of key expansion and transformations of

inverse shift Rows, inverse sub bytes, inverse mix

columns, inverse add round keys shown in fig 8.

Fig.8 Decryption result

The Different pipelining stage implementation of

AES algorithm has been synthesized in RTL

compiler using TSMC’s 180nm standard cells and

corresponding variations in Throughput, Area, and

Power for both Encryption and Decryption is

tabulated .The synthesis results of an Encryption

block shown in the TABLE II.

TABLE II.Synthesis results of encryption Block

The Encryption block operating at an average

frequency of 195 MHz for all pipelining stages and

Decryption block operating at an average frequency

of 226 MHz .The frequency has been calculated by

synthesizing the design on virtex family. So, for

throughput calculation 100 MHz clock has been

considered as a reference. By looking at the TABLE

II we can make out increase in number of pipelining

stages leads to increase in area, power and

Throughput. The synthesis results for Decryption

block shown in the TABLE III.

TABLE III. Synthesis results of Decryption Block

VI. CONCLUSION

In this paper, we presented a hardware

implementation of pipeline AES architecture which

includes both encryption and decryption and also

gives an idea of restricting the number of pipelining

stages in the design. The design is modeled using

Verilog HDL and simulated with the help of Xilinx

ISE 9.2. Synthesis is done by using RTL Compiler

v11.2. The encrypted cipher text and the decrypted

text are analysed and proved to be correct for all the

stages of pipelining.

REFERENCES

[1] National Institute of Standards and Technology,

"Advanced Encryption Standard (AES)," 2001.

[2] S. K. Mathew, et al. "53 Gbps native GF(24)2

composite field AESencrypt/ decrypt accelerator for

content-protection in 45nm highperformance

microprocessors," IEEE Journal of Solid-State

Circuits, vol. 46, no. 4, pp. 767-776, April 2011.

 Page 2015

[3] M. Mozaffari-Kermani and A. Reyhani-

Masoleh, "Efficient high performance parallel

hardware architectures for the AES-GCM," IEEE

Transactions on Computers, vol. 61, no. 8, pp.

1165-1178, August 2012.

[4] S.-F. Hsiaso, M.-C. Chen and C.-S. Tu,

"Memory-free low cost designs of Advanced

Encryption Standard using common subexpression

elemination for subfunctions in transformations,"

IEEE Transactions on Circuits and Systems, vol.

53, no. 3, pp. 615-626, March 2006.

[5] X. Zhang and K. K. Parhi, "High speed VLSI

architectures for the AES algorithm," IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 12, no. 9, pp. 957-967,

September 2004.

[6] S. K. Reddy S, R. Sakthivel and P. Praneeth,

"VLSI implementation of AES crypto processor for

high throughput," International Journal of

Advanced Engineering Sciences and Technologies,

vol. 6, no. 1, pp. 022-026, 2011.

[7] J. Chu and M. Benaissa, "Low area memory-free

FPGA implementation of the AES algorithm," in

22nd International Conference on Field

Programmable Logic and Applications, pp. 623-

626, August 2012.

[8] T. A. Pham, S. H. Mohammad and H. Yu, "Area

and power optimisation for AES encryption module

implmentation on FPGA," in 18th International

Conference on Automation and Computing, pp. 1-6,

September 2012.

[9] J. M. Granado-Criado, M. A. Vega-Rodríguez,

J. M. Sánchez-Pérez and J. A. Gómez-Pulido, "A

new methodology to implement the AES algorithm

using partial and dynamic reconfiguration,"

Integartion, the VLSI Journal, vol. 43, pp. 72-80,

January 2010.

[10] K. Rahimunnisa, P. Karthigaikumar, S.

Rasheed, J. Jayakumar and S. SureshKumar,

"FPGA implementation of AES algorithm for high

throughput using folded parallel architecture,"

Journal of Security and Communication Networks,

vol. 5, no. 10, October 2012.

[11] M. El Maraghi, S. Hesham and M. A. Abd El

Ghany, "Real-time efficient FPGA implementation

of AES algorithm," in 26th Internation System on

Chip Conference, pp. 203-208, September 2013.

[12] M. Fayed, M. W. El-Kharashi and F. Gebali,

"A high speed fullypipelined VLSI architecture for

real-time AES," in International Conference on

Information and Communications Technology,

December 2006.

[13] C. Paar, "Efficient VLSI architecture for bit-

parallel computations in Galois field," Ph.D.

dissertation, Essen, Germany, 1994.

