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Abstract: 

This paper presents the linear quadratic regulator with 

integral (LQI) action applied to design controller for a 

DC_ DC buck converter to get desired dynamic 

response. For design a controller in continuous mode 

by using LQI small signal average state space model is 

obtained and for digital controller design discrete 

modelling is obtained. This mathematical state space 

models reproduce the converters dynamic behavior. 

After modelling with the aim to obtain the optimal 

control law that minimizes the predefined cost 

function, the compensator design is performed using 

MATLAB. The controlling validated through 

simulation in SIMULINK. 
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I. INTRODUCTION: 

The switch-mode DC–DC converter has evolved into 

an essential component for electronic equipment and is 

finding widespread applications in computers, battery 

chargers, and solar cell based power converters used in 

space power conditioning systems etc.These 

converters are nonlinear dynamical systems. The 

nonlinearities arise primarily due to switching, power 

devices, and passive components, such as inductors, 

and parasitic. State space averaging method can be 

used to model the non-linear DC_DC converter. This 

method proposes linearized model of nonlinear 

converter. With the linearized models do not predict 

large-signal stability information, and are only 

sufficient to predict small-signal stability. Small signal 

model is derived from the linearization around a 

nominal point of space state average model.  

 

 

By using small signal state space modeling we can 

obtain different transfer functions, and hence different 

controllers to get desired response of DC_DC 

converter. By using small signal modeling of converter 

we can also obtain the state transition matrixes, which 

useful in finding discrete modelling of converter, and 

we can also find digital controller. Recently, the 

growing interest in practical digital control for high 

frequency DC-DC converters has prompted renewed 

interest in discrete-time analysis and modeling to 

facilitate precise direct digital compensator design. 

Regarding control strategies, linear-quadratic 

regulators (LQR) offer some interesting properties, 

such as that they can obtain “optimal” response of the 

system in accordance to the designer’s specifications, 

can be methodologically applied with independence of 

the order of the system, and are intrinsically stable. 

Furthermore, LQR can be straightforwardly calculated 

from the matrices of the small signal state-space 

averaged model of the system. 

 

II. STATE SPACE LARGE SIGNAL MODELING 

OF DC_DC CONVERTER: 

State space modeling of switching converter can be 

done by using state space averaging technique. The 

DC_DC converter circuit shown in figure below 

 
Fig 1. DC-DC Buck Converter 

 

 



 

 Page 819 
 

During switch on condition: 
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During switch off condition: 
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By using state space averaging technique, the 

converter can be modelled as 
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III. STATE SPACE SMALL SIGNAL  

MODELING OF DC_DC CONVERTER 

   
1 2 1 2[( ) ( ) ]

d
x Ax Bu A A X B B U d

dt
     

 
   

1 2 1 2[( ) ( ) ]y Cx Du C C X D D U d       

Let  0u  , it implies we assume perturbations in input 

is zero 

Let 
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Small signal modeling 
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IV. DISCRETE MODELING OF DC_DC  

CONVERTER TRAILING EDGE OFF TIME  

SAMPLING 

 

 
Fig 2. Trailing edge OFF Time Sampling 

 

Above circuit is timing diagram of traling edge off 

time sampling. From above figure 

During interval ( 1) ( 1) (1 )S S Sn T t n T D T       
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After state feedback with integral action, the system is 

in the form of: 
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Hence discrete modeling of DC_DC buck converter 

with trailing edge ON time sampling is obtained These 

are useful for finding digital controller. 

 

PARAMETERS OF DC_DC BUCK  

CONVERTER:  

5L H , 25LR m  , 5C F , 16cR m 

1R   , 10gV  volts, 1refV  volt, 0.2d  ,

1Sf MH 1 secST   

 

LQR Control With Integral Action Applied 

to the Converter: 

The control strategy using state-feedback has been 

applied to allocate the poles of the closed loop system 

(if the system is a completely controllable state) in any 

position, chosen to meet design specifications. An 

advantage of the LQR method when compared to the 

allocation method is that the first one provides a 

systematic mode of calculation for the state feedback 

control gain matrix. 

 

Let us consider a system defined by the following 

space state equation: 

    d
x Ax Bu

dt
 

                 
    y Cx Du   

 

The quadratic optimal regulator aims is to find matrix 

K for the optimal control vector given by so that the 

cost function in is minimized. 

 u K x   

Determining the parameters in the above equations is a 

must to design the LQR controller. Here u is 

equivalent to the small signal duty cycle d. Analyzing 

above DC_DC converter model, it can be seen verified 

that the output voltage dynamic behavior of the buck 

converter shown in Figure ( ) does not have a pole 

placed at the state plane origin. Therefore, it is 

necessary to place an integrator into the controller in 

order to eliminate the static error between the control 

reference and the controlled variable, which in this 

case is the output voltage. In other words, the LQR 

control must have integral action. The block diagram 

of the LQR with integral action is shown in Figure ( 2 

) and is named specifically as LQI 
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The LQR with integral action (LQI) assumes the 

following expanded matrix configuration:       




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0
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Whose gain is given by 

 iK k k 
 

k - State-feedback vector gain. 

ki - Integral action error gain. 

In this case, the model cost function is defined by 

( ) ( ) ( ) ( )
o

T T

t
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The gain K is obtained solving Riccati equation for P: 

10 T TQ PBR B P PA A P     

After obtaing P, K can be obtained as 
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After several MATLAB simulations are carried out, 

the best Q and R estimated values were found to be: 
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R=1; 

The physical implement this control system, every 

state variable must be measurable and available for 

feedback. In other words, the system must be of 

controllable. Thus, the controllability test is performed 

as follows: the controllability matrix is determined 

using command Co=ctrb(Anew, Bnew) and then, the 

rank test of this matrix is done with rank (Co). If the 

rank order is the same one of Anew, then it is a 

controllable state system. Once the test is finished, the 

optimal gain of the state feedback vector is determined 

using instruction [k, P, e] = LQR(Anew, Bnew, Q, R). 

This instruction determines the solution of riccati 

equation corresponding to matrix P , determines the 

optimal gain of feedback. matrix K and the poles 

location of closed loop system. The gain values are 

 0.1274 0.1599 141.4214K    

 

LQI for digital controller design: 

Additionally, due to the introduction of an integral 

actuation in the direct chain, zero-order errors caused 

by step references or disturbances can be removed in 

steady-state condition . This integral-type optimal 

regulator is called LQR with integral actuation. 

 

 
After state feedback with integral action, the system is 

in the form of: 

 

  ( 1) ( ) ( )x k x k u k     
Where 

1

1

S S

S

T T

RC C

T

L



 
 

  
 
    

0.8 0.2

0.2 1


 
  

   

 C




 
  
   



 

 Page 822 
 


0.4

0.4

2



 
 


 
    

On the other hand, the term is, ( )v k in fact, the error 

e(k ) from the references and the output variables: 

( ) ( ) ( 1)v k v k v k     
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Therefore 

( ) ( )v k e k   
 Restrictions that must be considered when minimizing 

the cost function J in the LQR problem are: 
1

1

1
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N
T T

k

J X k QX k U k RU k



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and 

  ( 1) ( ) ( )x k x k u k     
An optimal K matrix is obtained when the LQR 

problem is solved, which defines all the constants of 

the control diagram: 

                          
 i xK k k

 
Integral and state feedback gains are  

 340.4 1319.3 1993K  
 

 

IV. SIMULATION RESULT’S: 

DC_DC BUCK CONVERTER WITHOUT  

CONTROLLER 

 
Step resonse of DC DC converter with LQI controller 

in Continuous mode. 

 
Step response of DC_DC buck converter with LQI 

based controller in discrete mode 

 
Step response of discrete lqi controller with load 

perturbations 

 
 

V.CONCLUSION: 

State space modelling of DC_DC buck converter is 

obtained in both continuous and discrete modes. 

Discrete modelling is done for trailing edge off time 

sampling PWM DC_DC buck converter is obtained. 

By state space modelling optimal state regulatory 

problem is formed, with the aim to obtain the optimal 

control law that minimizes the predefined cost 

function, the compensator design is performed using 
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MATLAB, and controlling is validated through 

simulation in SIMULINK OBSERVATIONS: Steady 

state behavior of DC_DC converter is improved by 

using LQI controller but transient response still same 

as before (without controller) Designed LQI controller 

is a robust controller, it is verified under load changes 
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