
 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Abstract:

Cloud computing allows business customers to scaleup
and down their resource usage based on needs., we pres-
ent asystem that uses virtualization technology to allocate
data center resources dynamically based on application
demands and support green computing by optimizing the
number of servers in use.We introduce the concept of
“skewness” to measure theunevenness in the multidi-
mensional resource utilization of a server By minimizing
imbalance, wewill mix completely different of workloads
nicely and improve the overall utilization of server re-
sources. We develop a set of heuristics that prevent over-
load in the system effectively while saving energy used.
Many of the touted gains in the cloud model come
from resource multiplexing through virtualization tech-
nology. In this paper•Trace driven simulation and ex-
periment results demonstrate thatour algorithm achieves
good performance.

Index Terms:

Cloud computing, resource management, virtualiza-
tion, green computing.

I. INTRODUCTION:

THE physical property and therefore the lack of direct
capital investment offered by cloud computing is appeal-
ing to several businesses. There’s lots of dialogue on the
and prices of the cloud model and on a way to move in-
heritance applications onto the cloud platform. Here we
have a tendency to study a special problem: however will
a cloud service supplier best multiplex its virtual resourc-
es onto the physical hardware. This is often necessary as
a result of a lot of of the touted gains within the cloud
model return from such multiplexing. Studies have found
that servers in many existing data centers are often se-
verely underutilized due to over provisioning for the peak
demand [1], [2].

S.Akhila
PG Scholar,

Department of CSE,
Aurora’s Scientific Technological &

Research Academy.

K.Ramakanth
Assistant professor,
Department of CSE,

Aurora’s Scientific Technological &
Research Academy.

The cloud model is expected to make such practice un-
necessary by offering automatic scale up and down in re-
sponse to load variation. Besides reducing the hardware
cost, it also saves on electricity which contributes to a sig-
nificant portion of the operational expenses in large data
centers. Virtual machine monitors (VMMs) like Xen pro-
vide a mechanism for mapping virtual machines (VMs)
to physical resources [3]. This mapping is largely hidden
from the cloud users. Users with the Amazon EC2 service
[4], for example, do not know where their VM instances
run. It is up to the cloud provider to make sure the under-
lying physical machines (PMs) have sufficient resources
to meet their needs. VM live migration technology makes
it possible to change the mapping between VMs and PMs
while applications are running [5], [6]. However, a policy
issue remains as how to decide the mapping adaptively
so that the resource demands of VMs are met while the
number of PMs used is minimized. This is challenging
when the resource needs of VMs are heterogeneous due
to the diverse set of applications they run and vary with
time as the workloads grow and shrink. The capacity of
PMs can also be heterogeneous because multiple gen-
erations of hardware coexist in a data center. We aim to
achieve two goals in our algorithm:Overload avoidance.
The capacity of a PM should be sufficient to satisfy
the resource needs of all VMs running on it. Otherwise,
the PM is overloaded and can lead to degraded perfor-
mance of its VMs..Green computing. The number of
PMs used should be minimized as long as they can still
satisfy the needs of all VMs. Idle PMs can be turned off
to save energy. There is an inherent tradeoff between the
two goals in the face of changing resource needs of VMs.
For overload avoidance, we should keep the utilization
of PMs low to reduce the possibility of overload in case
the resource needs of VMs increase later. For green com-
puting, we should keep the utilization of PMs reasonably
high to make efficient use of their energy. In this paper,
we present the design and implementation of an automat-
ed resource management system that achieves a good bal-
ance between the two goals.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 624

An Efficient Approach for Virtual Machine Migration of
Cloud Systems

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

We make the following contributions: We develop a re-
source allocation system that can avoid overload in the
system effectively while minimizing the number of serv-
ers used. We introduce the concept of “skewness” to mea-
sure the uneven utilization of a s erver. By minimizing
skewness, we can improve the overall utilization of serv-
ers in the face of multidimensional resource constraints.
We design a load prediction algorithm that can capture the
future resource usages of application accurately without
looking inside the VMs. The algorithm can capture the
rising trend of resource usage patterns and help reduce the
placement churn significantly.

Fig. 1. System architecture

The rest of the paper is organized as follows. Section 2
provides an overview of our system and Section 3 de-
scribes our algorithm to predict resource usage. The
details of our algorithm are presented in Section 4. Sec-
tions 5 and 6 present simulation and experiment results,
respectively. Section 7 discusses related work. Section
8 concludes. There is an inherent trade off between the
two goals in the face of changing resource needs of VMs.
For overload avoidance, we should keep the utilization
of PMs low to reduce the possibility of overload in case
the resource needs of VMs increase later. For green com-
puting, we should keep the utilization of PMs reasonably
high to make efficient use of their energy.

2.EXISTING SYSTEM :

The number of servers is comparatively small, typically
below 10, which makes them unsuitable for performance
analysis of cloud computing data centers. Approxima-
tions are very sensitive to the probability distribution of
task service times. User may submit many tasks at a time
because of this bags-of-task will appear. Due to dynamic
nature of cloud environments, diversity of user’s requests
and time dependency of load is high. The coefficient of
variation of task service time is high.

3.PROPOSED SYSTEM :

In Proposed system, the task is sent to the cloud center
is serviced within a suitable facility node; upon finish-
ing the service, the task leaves the center. A facility node
may contain different computing resources such as web
servers, database servers, directory servers, and others.
A service level agreement, SLA, outlines all aspects of
cloud service usage and the obligations of both service
providers and clients, including various descriptors col-
lectively referred to as Quality of Service (QoS). QoS
includes availability, throughput, reliability, security, and
many other parameters, but also performance indicators
such as response time, task locking probability, probabil-
ity of immediate service, and mean number of tasks in the
system, all of which may be determined using the tools of
queuing theory

We model a cloud server system which indicates that the
inter arrival time of requests is exponentially distributed,
while task service times are independent and identically
distributed random variables that follow a general distri-
bution with mean value of u. The system under consider-
ation contains m servers which render service in order of
task request arrivals (FCFS).The capacity of system is m
þ r which means the buffer size for incoming request is
equal to r. As the population size of a typical cloud center
is relatively high while the probability that a given user
will request service is relatively small, the arrival process
can be modeled as a Markovian process.

4.THE SKEWNESS ALGORITHM :

We introduce the concept of skewness to quantify the
unevenness in the utilization of multiple resources on a
server. Let n be the number of resources we consider and
ri be the utilization of the ith resource. We define the re-
source skewness of a server p as

where r is the average utilization of all resources for server
p. In practice, not all types of resources are performance
critical and hence we only need to consider bottleneck re-
sources in the above calculation. By minimizing the skew-
ness, we can combine different types of workloads nicely
and improve the overall utilization of server resources. In
the following, we describe the details of our algorithm.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 625

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Analysis of the algorithm is presented in Section 1 in the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2012.283.

Hot and Cold Spots:

Our algorithm executes periodically to evaluate the re-
source allocation status based on the predicted future
resource demands of VMs. We define a server as a hot
spot if the utilization of any of its resources is above a hot
threshold. This indicates that the server is overloaded and
hence some VMs running on it should be migrated away.
We define the temperature of a hot spot p as the square
sum of its resource utilization beyond the hot threshold:

where R is the set of overloaded resources in server p and
rt is the hot threshold for resource r. (Note that only over-
loaded resources are considered in the calculation.) The
temperature of a hot spot reflects its degree of overload.
If a server is not a hot spot, its temperature is zero. We
define a server as a cold spot if the utilizations of all its
resources are below a cold threshold. This indicates that
the server is mostly idle and a potential candidate to turn
off to save energy. However, we do so only when the av-
erage resource utilization of all actively used servers (i.e.,
APMs) in the system is below a green computing thresh-
old. A server is actively used if it has at least one VM
running. Otherwise, it is inactive. Finally, we define the
warm threshold to be a level of resource utilization that is
sufficiently high to justify having the server running but
not so high as to risk becoming a hot spot in the face of
temporary fluctuation of application resource demands

5.HOT SPOT MITIGATION:

We sort the list of hot spots in the system in descend-
ing temperature (i.e., we handle the hottest one first). Our
goal is to eliminate all hot spots if possible. Otherwise,
keep their temperature as low as possible. For each server
p, we first decide which of its VMs should be migrated
away.

We sort its list of VMs based on the resulting tempera-
ture of the server if that VM is migrated away. We aim to
migrate away the VM that can reduce the server’s tem-
perature the most. In case of ties, we select the VM whose
removal can reduce the skewness of the server the most.
For each VM in the list, we see if we can find a destination
server to accommodate it. The server must not become a
hot spot after accepting this VM. Among all such servers,
we select one whose skewness can be reduced the most by
accepting this VM. Note that this reduction can be nega-
tive which means we select the server whose skewness
increases the least. If a destination server is found, we
record the migration of the VM to that server and update
the predicted load of related servers. Otherwise, we move
onto the next VM in the list and try to find a destination
server for it. As long as we can find a destination server
for any of its VMs, we consider this run of the algorithm
a success and then move onto the next hot spot. Note that
each run of the algorithm migrates away at most one VM
from the overloaded server

Green Computing:

When the resource utilization of activeservers is just too
low, a number of them may be turned off to avoid wast-
ing energy. This can be handled in our inexperienced
computing rule. The challenge here is to scale back the
amount of active servers throughout low load while not
sacrificing performance either currently or within the fu-
ture. We want to avoid oscillation within the system. Our
inexperienced computing rule is invoked once the typi-
cal utilizations of all resources on active servers are be-
low the inexperienced computing threshold. We tend to
type the list of cold spots within the system supported the
ascending order of their memory size. Since we want to
migrate away all its VMs before we are able to finish off
associate degree underutilized server, we tend to outline
the memory sizeof a chilly spot because the mixture
memory size of all VMs running thereon. Recall that our
model assumes all VMs hook up with shared back-end
storage. Hence, the value of a VM live migration is decid-
ed largely by its memory footprint. Section seven within
the supplementary file explains why the memory could
be a smart live full. we tend to attempt to eliminate the
cold spot with the bottom price initial. For a chilly spot
p, we tend to check if we are able to migrate all its VMs
elsewhere. For every VM on p, we tend to attempt to real-
ize a destination server to accommodate it. The resource
utilizations of the server once acceptive the VMshould

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 626

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

be below the nice and cozy threshold. Whereas we are
able to save energy by consolidating underutilized servers,
overdoing it should produce hot spots within the future.
The nice and cozy threshold is intended to forestall that.
If multiple servers satisfy the higher than criterion, we
tend to like one that’s not a current cold spot. This may be
as a result of increasing load on a chilly spot reduces the
chance that it can be eliminated. However, we’ll settle for
a chilly spot because the destination server if necessary.
All things being equal, we tend to choose a destination
server whose lopsidedness may be reduced the foremost
by acceptive this VM. If we are able to realize destina-
tion servers for all VMs on a chilly spot, we tend to
record the sequence of migrations and update the an-
ticipated load of connected servers. Otherwise, we tend
to don’t migrate any of its VMs. The list of cold spots
is additionally updated as a result of a number of them
might not be cold because of the projected VM migra-
tions within the higher than method.

Consolidated Movements:

The movements generated in eachstep above are not ex-
ecuted until all steps have finished. The list of movements
is then consolidated so that each VM is moved at most
once to its final destination. For example, hot spot miti-
gation may dictate a VM to move from PM A to PM B,
while green computing dictates it to move from PM B to
PM C. In the actual execution, the VM is moved from A
to C directly.

6.SIMULATIONS:

We evaluate the performance of our algorithm using trace
driven simulation. Note that our simulation uses the same
code base for the algorithm as the real implementation in
the experiments. This ensures the fidelity of our simulation
results. Traces are per-minute server resource utilization,
such as CPU rate, memory usage, and network traffic sta-
tistics, collected using tools like “perfmon” (Windows),
the “/proc” file system (Linux), “pmstat/vmstat/netstat”
comman ds (Solaris), etc.. The raw traces are pre-pro-
cessed into “Usher” format so that the simulator can read
them. We collected the traces from a variety of sources:
. Web InfoMall.The largest online Web archive in China
(i.e.,the counterpart of Internet Archive in the US) with
more than three billion archived Web pages. RealCourse.
The largest online distance learning system inChina with
servers distributed across 13 major cities.

AmazingStore.The largest P2P storage system in China.
We also collected traces from servers and desktop com-
puters in our university including one of our mail servers,
the central DNS server, and desktops in our department.
We post processed the traces based on days collected and
use random sampling and linear combination of the data
sets to generate the workloads needed. All simulation in
this section uses the real trace workload unless otherwise
specified. Simulation in this section uses the real trace
workload unless otherwise specified..

7.EXPERIMENTS:

Our experiments are conducted using a group of 30 Dell
PowerEdge blade servers with Intel E5620 CPU and 24
GB of RAM. The servers run Xen-3.3 and Linux 2.6.18.
We periodically read load statistics using the xenstat li-
brary (same as what xentop does). The servers are con-
nected over a Gigabit ethernet to a group of four NFS
storage servers where our VM Scheduler runs. We use the
same default parameters as in the simulation.Algorithm
Effectiveness: We evaluate the effectiveness of ouralgo-
rithm in overload mitigation and green computing. We
start with a small scale experiment consisting of three
PMs and five VMs so that we can present the results for
all servers in Fig. 7.

Different shades are used for each VM. All VMs are con-
figured with 128 MB of RAM. An Apache server runs on
each VM. We use httperf to invoke CPU intensive PHP
scripts on the Apache server. This allows us to subject the
VMs to different degrees of CPU load by adjusting the
client request rates.The utilization of other resources are
kept low. We first increase the CPU load of the three VMs
on PM1 to create an overload. Our algorithm resolves the
overload by migrating VM3 to PM3.

It reaches a stable state under high load around 420 sec-
onds. Around 890 seconds, we decrease the CPU load of
all VMs gradually. Because the FUSD prediction algo-
rithm is conservative when the load decreases, it takes a
while before green computing takes effect. Around 1,700
seconds, VM3 is migrated from PM3 to PM2 so that PM3
can be put into the standby mode. Around 2,200 seconds,
the two VMs on PM1 are migrated to PM2 so that PM1
can be released as well. As the load goes up and down,
our algorithm will repeatthe above process: spread over
or consolidate the VMs as needed.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 627

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Analysis of the algorithm is presented in Section 1 in the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2012.283.

Hot and Cold Spots:

Our algorithm executes periodically to evaluate the re-
source allocation status based on the predicted future
resource demands of VMs. We define a server as a hot
spot if the utilization of any of its resources is above a hot
threshold. This indicates that the server is overloaded and
hence some VMs running on it should be migrated away.
We define the temperature of a hot spot p as the square
sum of its resource utilization beyond the hot threshold:

where R is the set of overloaded resources in server p and
rt is the hot threshold for resource r. (Note that only over-
loaded resources are considered in the calculation.) The
temperature of a hot spot reflects its degree of overload.
If a server is not a hot spot, its temperature is zero. We
define a server as a cold spot if the utilizations of all its
resources are below a cold threshold. This indicates that
the server is mostly idle and a potential candidate to turn
off to save energy. However, we do so only when the av-
erage resource utilization of all actively used servers (i.e.,
APMs) in the system is below a green computing thresh-
old. A server is actively used if it has at least one VM
running. Otherwise, it is inactive. Finally, we define the
warm threshold to be a level of resource utilization that is
sufficiently high to justify having the server running but
not so high as to risk becoming a hot spot in the face of
temporary fluctuation of application resource demands

5.HOT SPOT MITIGATION:

We sort the list of hot spots in the system in descend-
ing temperature (i.e., we handle the hottest one first). Our
goal is to eliminate all hot spots if possible. Otherwise,
keep their temperature as low as possible. For each server
p, we first decide which of its VMs should be migrated
away.

We sort its list of VMs based on the resulting tempera-
ture of the server if that VM is migrated away. We aim to
migrate away the VM that can reduce the server’s tem-
perature the most. In case of ties, we select the VM whose
removal can reduce the skewness of the server the most.
For each VM in the list, we see if we can find a destination
server to accommodate it. The server must not become a
hot spot after accepting this VM. Among all such servers,
we select one whose skewness can be reduced the most by
accepting this VM. Note that this reduction can be nega-
tive which means we select the server whose skewness
increases the least. If a destination server is found, we
record the migration of the VM to that server and update
the predicted load of related servers. Otherwise, we move
onto the next VM in the list and try to find a destination
server for it. As long as we can find a destination server
for any of its VMs, we consider this run of the algorithm
a success and then move onto the next hot spot. Note that
each run of the algorithm migrates away at most one VM
from the overloaded server

Green Computing:

When the resource utilization of activeservers is just too
low, a number of them may be turned off to avoid wast-
ing energy. This can be handled in our inexperienced
computing rule. The challenge here is to scale back the
amount of active servers throughout low load while not
sacrificing performance either currently or within the fu-
ture. We want to avoid oscillation within the system. Our
inexperienced computing rule is invoked once the typi-
cal utilizations of all resources on active servers are be-
low the inexperienced computing threshold. We tend to
type the list of cold spots within the system supported the
ascending order of their memory size. Since we want to
migrate away all its VMs before we are able to finish off
associate degree underutilized server, we tend to outline
the memory sizeof a chilly spot because the mixture
memory size of all VMs running thereon. Recall that our
model assumes all VMs hook up with shared back-end
storage. Hence, the value of a VM live migration is decid-
ed largely by its memory footprint. Section seven within
the supplementary file explains why the memory could
be a smart live full. we tend to attempt to eliminate the
cold spot with the bottom price initial. For a chilly spot
p, we tend to check if we are able to migrate all its VMs
elsewhere. For every VM on p, we tend to attempt to real-
ize a destination server to accommodate it. The resource
utilizations of the server once acceptive the VMshould

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 626

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

be below the nice and cozy threshold. Whereas we are
able to save energy by consolidating underutilized servers,
overdoing it should produce hot spots within the future.
The nice and cozy threshold is intended to forestall that.
If multiple servers satisfy the higher than criterion, we
tend to like one that’s not a current cold spot. This may be
as a result of increasing load on a chilly spot reduces the
chance that it can be eliminated. However, we’ll settle for
a chilly spot because the destination server if necessary.
All things being equal, we tend to choose a destination
server whose lopsidedness may be reduced the foremost
by acceptive this VM. If we are able to realize destina-
tion servers for all VMs on a chilly spot, we tend to
record the sequence of migrations and update the an-
ticipated load of connected servers. Otherwise, we tend
to don’t migrate any of its VMs. The list of cold spots
is additionally updated as a result of a number of them
might not be cold because of the projected VM migra-
tions within the higher than method.

Consolidated Movements:

The movements generated in eachstep above are not ex-
ecuted until all steps have finished. The list of movements
is then consolidated so that each VM is moved at most
once to its final destination. For example, hot spot miti-
gation may dictate a VM to move from PM A to PM B,
while green computing dictates it to move from PM B to
PM C. In the actual execution, the VM is moved from A
to C directly.

6.SIMULATIONS:

We evaluate the performance of our algorithm using trace
driven simulation. Note that our simulation uses the same
code base for the algorithm as the real implementation in
the experiments. This ensures the fidelity of our simulation
results. Traces are per-minute server resource utilization,
such as CPU rate, memory usage, and network traffic sta-
tistics, collected using tools like “perfmon” (Windows),
the “/proc” file system (Linux), “pmstat/vmstat/netstat”
comman ds (Solaris), etc.. The raw traces are pre-pro-
cessed into “Usher” format so that the simulator can read
them. We collected the traces from a variety of sources:
. Web InfoMall.The largest online Web archive in China
(i.e.,the counterpart of Internet Archive in the US) with
more than three billion archived Web pages. RealCourse.
The largest online distance learning system inChina with
servers distributed across 13 major cities.

AmazingStore.The largest P2P storage system in China.
We also collected traces from servers and desktop com-
puters in our university including one of our mail servers,
the central DNS server, and desktops in our department.
We post processed the traces based on days collected and
use random sampling and linear combination of the data
sets to generate the workloads needed. All simulation in
this section uses the real trace workload unless otherwise
specified. Simulation in this section uses the real trace
workload unless otherwise specified..

7.EXPERIMENTS:

Our experiments are conducted using a group of 30 Dell
PowerEdge blade servers with Intel E5620 CPU and 24
GB of RAM. The servers run Xen-3.3 and Linux 2.6.18.
We periodically read load statistics using the xenstat li-
brary (same as what xentop does). The servers are con-
nected over a Gigabit ethernet to a group of four NFS
storage servers where our VM Scheduler runs. We use the
same default parameters as in the simulation.Algorithm
Effectiveness: We evaluate the effectiveness of ouralgo-
rithm in overload mitigation and green computing. We
start with a small scale experiment consisting of three
PMs and five VMs so that we can present the results for
all servers in Fig. 7.

Different shades are used for each VM. All VMs are con-
figured with 128 MB of RAM. An Apache server runs on
each VM. We use httperf to invoke CPU intensive PHP
scripts on the Apache server. This allows us to subject the
VMs to different degrees of CPU load by adjusting the
client request rates.The utilization of other resources are
kept low. We first increase the CPU load of the three VMs
on PM1 to create an overload. Our algorithm resolves the
overload by migrating VM3 to PM3.

It reaches a stable state under high load around 420 sec-
onds. Around 890 seconds, we decrease the CPU load of
all VMs gradually. Because the FUSD prediction algo-
rithm is conservative when the load decreases, it takes a
while before green computing takes effect. Around 1,700
seconds, VM3 is migrated from PM3 to PM2 so that PM3
can be put into the standby mode. Around 2,200 seconds,
the two VMs on PM1 are migrated to PM2 so that PM1
can be released as well. As the load goes up and down,
our algorithm will repeatthe above process: spread over
or consolidate the VMs as needed.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 627

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Impact of Live Migration: One concern about the use
of VMlive migration is its impact on application per-
formance. Previous studies have found this impact to be
small [5]. Weinvestigate this impact in our own experi-
ment. We extract the data on the 340 live migrations in
our 30 server experiment above. We find that 139 of them
are for hot spot mitigation. We focus on these migrations
because that is when the potential impact on application
performance is the most. Among the 139 migrations, we
randomly pick seven corresponding TPC-W sessions
undergoing live migration. All these sessions run the
“shopping mix” workload with 200 emulated browsers.
As a target for comparison, we rerun the session with the
sameparameters but perform no migration and use the re-
sulting performance as the baseline. WIPS is the perfor-
mance metric used by TPC-W. The figure shows that most
live migration sessions exhibit no noticeable degradation
in performance compared to the baseline: the normalized
WIPS is close to

1. The only exception is session 3 whose degraded perfor-
mance is caused by an extremely busy server in the origi-
nal experiment Next we take a closer look at one of the
sessions in and show how its performance vary over time
in The dots in the figure show the WIPS every second. The
two curves show the moving average over a 30 second
window as computed by TPC-W. We marked in the figure
when live migration starts and finishes. With self-balloon-
ing enabled, the amount of memory transferred during the
migration is about 600 MB. The figure verifies that live
migration causes no noticeable performance degradation.
The duration of the migration is under 10 seconds. Recall
that our algorithm is invoked every 10 minutes.

Fig2. Impact of live migration on TPC-W perfor-
mance.

Resource Balance:

Recall that the goal of the skewnessalgorithm is to mix
workloads with different resource requirements together
so that the overall utilization of server capacity is im-
proved.

In this experiment, we see how our algorithm handles a
mix of CPU, memory, and network intensive workloads.
We vary the CPU load as before. We inject the network
load by sending the VMs a series of network packets. The
memory intensive applications are created by allocating
memory on demand. Again we start with a small scale
experiment consisting of two PMs and four VMs so that
we can present the results for all servers in Fig. 11. The
two rows represent the two PMs. The two columns rep-
resent the CPU and network dimensions, respectively.
The memory consumptionis kept low for this experiment.
Initially, the two VMs on PM1 are CPU intensive while
the two VMs on PM2 are network intensive. We increase
the load of their bottleneck resources gradually. Around
500 seconds, VM4 is migrated from PM2 to PM1 due to
the network overload in PM2. Then around 600 seconds,
VM1 is migrated from PM1 to PM2 due to the CPU over-
load in PM1.Now the system reaches a stable state with
a balanced resource utilization for both PMs—each with
a CPU i ntensive VM and a network intensive VM. Later
we decrease the load of all VMs gradually so that both
PMs become cold spots. We can see that the two VMs on
PM1 are consolidated to PM2 by green computing.

8.CONCLUSION :

We have presented the design, implementation, and evalu-
ation of a resource management system for cloud comput-
ing services. Our system multiplexes virtual to physical
resources adaptively based on the changing demand. We
use the skewness metric to combine VMs with different
resource characteristics appropriately so that the capaci-
ties of servers are well utilized. Our algorithm achieves
both overload avoidance and green computing for sys-
tems with multi resource constraints.

REFERENCES:

[1]M. Armbrust et al., “Above the Clouds: A Berkeley V
iew of Cloud Computing,” technical report, Univ. of Cali-
fornia, Berkeley, Feb. 2009.

[2]L. Siegele, “Let It Rise: A Special Report on Corpo
rate IT,” The Economist, vol. 389, pp. 3-16, Oct. 2008.

[3]P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the Art of Virtualization,” Proc. ACM Symp. Operating
Systems Principles (SOSP ’03), Oct. 2003.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 628

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[7]M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker, “
Usher: An Extensible Framework for Managing Clusters
of Virtual Machines,” Proc. Large Installation System Ad-
ministration Conf. (LISA ’07 T. Wood, P. Shenoy, A. Ven-
kataramani, and M. Yousif, “ Black-Box and Gray-Box
Strategies for Virtual Machine Migration,” Proc. Symp.
Networked Systems Design and Implementation (NSDI
’07), Apr. 2007.

[8]C.A. Waldspurger, “Memory Resource Management in
VM ware ESX Server,” Proc. Symp. Operating Systems
Design and I mplementation (OSDI ’02), Aug. 2002.

[9]G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao, “Energy-Aware Server Provisioning and
Load Dispatch ing for Connection-Intensive Internet Ser-
vices,” Proc. USEN IX Symp. Networked Systems De-
sign and Implementation (NSDI ’08), Apr.

[10] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant, “Automated Con-
trol of Multiple Virtualized Resources,” Proc. ACM Euro-
pean conf. Computer Systems (EuroSys ’09), 2009.

[11]N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Place
ment of Virtual Machines for Managing SLA Violations,”
Proc. IFIP/I EEEInt’lSymp. Integrated Network Manage-
ment (IM ’07), 2007.

[12]“TPC-W: Transaction Processing Performance Coun-
cil, ” http:// www.tpc.org/tpcw/, 2012.

[13]J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat,
and R.P. Doyle, “Managing Energy and Server Resources
in Hosting Centers,” Proc. ACM Symp. Operating Sys-
tem Principles (SOSP ’01), Oct. 2001.

[14]C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici,
“A Scalable Application Placement Controller for Enter-
prise Data Centers,” Proc. Int’l World Wide Web Conf.
(WWW ’07), May 2007.

[15]M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz,
and I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” Proc. Symp. Operating
Systems Design and Implementation (OSDI ’08), 2008.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 629

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

Impact of Live Migration: One concern about the use
of VMlive migration is its impact on application per-
formance. Previous studies have found this impact to be
small [5]. Weinvestigate this impact in our own experi-
ment. We extract the data on the 340 live migrations in
our 30 server experiment above. We find that 139 of them
are for hot spot mitigation. We focus on these migrations
because that is when the potential impact on application
performance is the most. Among the 139 migrations, we
randomly pick seven corresponding TPC-W sessions
undergoing live migration. All these sessions run the
“shopping mix” workload with 200 emulated browsers.
As a target for comparison, we rerun the session with the
sameparameters but perform no migration and use the re-
sulting performance as the baseline. WIPS is the perfor-
mance metric used by TPC-W. The figure shows that most
live migration sessions exhibit no noticeable degradation
in performance compared to the baseline: the normalized
WIPS is close to

1. The only exception is session 3 whose degraded perfor-
mance is caused by an extremely busy server in the origi-
nal experiment Next we take a closer look at one of the
sessions in and show how its performance vary over time
in The dots in the figure show the WIPS every second. The
two curves show the moving average over a 30 second
window as computed by TPC-W. We marked in the figure
when live migration starts and finishes. With self-balloon-
ing enabled, the amount of memory transferred during the
migration is about 600 MB. The figure verifies that live
migration causes no noticeable performance degradation.
The duration of the migration is under 10 seconds. Recall
that our algorithm is invoked every 10 minutes.

Fig2. Impact of live migration on TPC-W perfor-
mance.

Resource Balance:

Recall that the goal of the skewnessalgorithm is to mix
workloads with different resource requirements together
so that the overall utilization of server capacity is im-
proved.

In this experiment, we see how our algorithm handles a
mix of CPU, memory, and network intensive workloads.
We vary the CPU load as before. We inject the network
load by sending the VMs a series of network packets. The
memory intensive applications are created by allocating
memory on demand. Again we start with a small scale
experiment consisting of two PMs and four VMs so that
we can present the results for all servers in Fig. 11. The
two rows represent the two PMs. The two columns rep-
resent the CPU and network dimensions, respectively.
The memory consumptionis kept low for this experiment.
Initially, the two VMs on PM1 are CPU intensive while
the two VMs on PM2 are network intensive. We increase
the load of their bottleneck resources gradually. Around
500 seconds, VM4 is migrated from PM2 to PM1 due to
the network overload in PM2. Then around 600 seconds,
VM1 is migrated from PM1 to PM2 due to the CPU over-
load in PM1.Now the system reaches a stable state with
a balanced resource utilization for both PMs—each with
a CPU i ntensive VM and a network intensive VM. Later
we decrease the load of all VMs gradually so that both
PMs become cold spots. We can see that the two VMs on
PM1 are consolidated to PM2 by green computing.

8.CONCLUSION :

We have presented the design, implementation, and evalu-
ation of a resource management system for cloud comput-
ing services. Our system multiplexes virtual to physical
resources adaptively based on the changing demand. We
use the skewness metric to combine VMs with different
resource characteristics appropriately so that the capaci-
ties of servers are well utilized. Our algorithm achieves
both overload avoidance and green computing for sys-
tems with multi resource constraints.

REFERENCES:

[1]M. Armbrust et al., “Above the Clouds: A Berkeley V
iew of Cloud Computing,” technical report, Univ. of Cali-
fornia, Berkeley, Feb. 2009.

[2]L. Siegele, “Let It Rise: A Special Report on Corpo
rate IT,” The Economist, vol. 389, pp. 3-16, Oct. 2008.

[3]P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the Art of Virtualization,” Proc. ACM Symp. Operating
Systems Principles (SOSP ’03), Oct. 2003.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 628

 ISSN No: 2348-4845
International Journal & Magazine of Engineering,

Technology, Management and Research
A Peer Reviewed Open Access International Journal

[7]M. McNett, D. Gupta, A. Vahdat, and G.M. Voelker, “
Usher: An Extensible Framework for Managing Clusters
of Virtual Machines,” Proc. Large Installation System Ad-
ministration Conf. (LISA ’07 T. Wood, P. Shenoy, A. Ven-
kataramani, and M. Yousif, “ Black-Box and Gray-Box
Strategies for Virtual Machine Migration,” Proc. Symp.
Networked Systems Design and Implementation (NSDI
’07), Apr. 2007.

[8]C.A. Waldspurger, “Memory Resource Management in
VM ware ESX Server,” Proc. Symp. Operating Systems
Design and I mplementation (OSDI ’02), Aug. 2002.

[9]G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao, “Energy-Aware Server Provisioning and
Load Dispatch ing for Connection-Intensive Internet Ser-
vices,” Proc. USEN IX Symp. Networked Systems De-
sign and Implementation (NSDI ’08), Apr.

[10] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant, “Automated Con-
trol of Multiple Virtualized Resources,” Proc. ACM Euro-
pean conf. Computer Systems (EuroSys ’09), 2009.

[11]N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Place
ment of Virtual Machines for Managing SLA Violations,”
Proc. IFIP/I EEEInt’lSymp. Integrated Network Manage-
ment (IM ’07), 2007.

[12]“TPC-W: Transaction Processing Performance Coun-
cil, ” http:// www.tpc.org/tpcw/, 2012.

[13]J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat,
and R.P. Doyle, “Managing Energy and Server Resources
in Hosting Centers,” Proc. ACM Symp. Operating Sys-
tem Principles (SOSP ’01), Oct. 2001.

[14]C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici,
“A Scalable Application Placement Controller for Enter-
prise Data Centers,” Proc. Int’l World Wide Web Conf.
(WWW ’07), May 2007.

[15]M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz,
and I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments,” Proc. Symp. Operating
Systems Design and Implementation (OSDI ’08), 2008.

 Volume No: 2 (2015), Issue No: 12 (December) December 2015
 www.ijmetmr.com Page 629

