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Abstract:

Cloud computing allows business customers   to scaleup 
and down their resource usage based on needs., we pres-
ent asystem that uses virtualization technology to allocate 
data center resources  dynamically based on application 
demands and support green computing by optimizing the 
number of servers in use.We  introduce the concept of 
“skewness”  to  measure  theunevenness  in the multidi-
mensional  resource utilization of  a server By minimizing 
imbalance, wewill mix completely different of workloads 
nicely and improve the overall utilization of server re-
sources. We develop a set of heuristics that prevent over-
load in the system effectively while saving energy used. 
Many of  the  touted  gains  in  the  cloud  model  come  
from  resource multiplexing  through  virtualization  tech-
nology.  In  this  paper•Trace driven simulation and ex-
periment results demonstrate thatour algorithm achieves 
good performance.

Index   Terms:

Cloud   computing,   resource   management, virtualiza-
tion, green computing.

I. INTRODUCTION:

THE physical property and therefore the lack of direct 
capital investment offered by cloud computing is appeal-
ing to several businesses. There’s lots of dialogue on the 
and prices of the cloud model and on a way to move in-
heritance applications onto the cloud platform. Here we 
have a tendency to study a special problem: however will 
a cloud service supplier best multiplex its virtual resourc-
es onto the physical hardware. This is often necessary as 
a result of a lot of of the touted gains within the cloud 
model return from such multiplexing. Studies have found 
that servers in many existing data centers are often se-
verely underutilized due to over provisioning for the peak 
demand [1], [2]. 
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The cloud model is expected to make such practice un-
necessary by offering automatic scale up and down in re-
sponse to load variation. Besides reducing the hardware 
cost, it also saves on electricity which contributes to a sig-
nificant portion of the operational expenses in large data 
centers. Virtual machine monitors (VMMs) like Xen pro-
vide a mechanism for mapping virtual machines (VMs) 
to physical resources [3]. This mapping is largely hidden 
from the cloud users. Users with the Amazon EC2 service 
[4], for example, do not know where their VM instances 
run. It is up to the cloud provider to make sure the under-
lying physical machines (PMs) have sufficient resources 
to meet their needs. VM live migration technology makes 
it possible to change the mapping between VMs and PMs 
while applications are running [5], [6]. However, a policy 
issue remains as how to decide the mapping adaptively 
so that the resource demands of VMs are met while the 
number of PMs used is  minimized.  This is  challenging 
when the resource needs of VMs are heterogeneous due 
to the diverse set of applications they run and vary with 
time as the workloads  grow and shrink. The capacity of 
PMs can also be heterogeneous  because multiple  gen-
erations of hardware coexist in a data center. We aim to 
achieve two goals in our algorithm:Overload avoidance.  
The capacity of a PM should be sufficient to satisfy 
the resource needs of all VMs running on it. Otherwise, 
the PM is overloaded and can lead to degraded perfor-
mance of its VMs..Green  computing.  The  number  of  
PMs  used  should  be minimized as long as they can still 
satisfy the needs of all VMs. Idle PMs can be turned off 
to save energy. There is an inherent tradeoff between the 
two goals in the face of changing resource needs of VMs. 
For overload avoidance, we should keep the utilization 
of PMs low to reduce the possibility of overload in case 
the resource needs of VMs increase later. For green com-
puting, we should keep the utilization of PMs reasonably 
high to make efficient use of their energy. In this paper, 
we present the design and implementation of an automat-
ed resource management system that achieves a good bal-
ance between the two goals.  
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We make the following contributions: We develop a re-
source allocation system that can avoid overload in the 
system effectively while minimizing the number of serv-
ers used. We introduce the concept of “skewness” to mea-
sure the uneven utilization of a s erver. By minimizing 
skewness, we can improve the overall utilization of serv-
ers in the face of multidimensional resource constraints. 
We design a load prediction algorithm that can capture the 
future resource usages of application accurately without 
looking inside the VMs. The algorithm can capture the 
rising trend of resource usage patterns and help reduce the 
placement churn significantly.

Fig. 1. System architecture

The rest of the paper is organized as follows. Section 2 
provides an overview of our system and Section 3 de-
scribes our algorithm to predict resource usage. The 
details of our algorithm are presented in Section 4. Sec-
tions 5 and 6 present simulation and experiment results, 
respectively. Section 7 discusses related work. Section 
8 concludes. There is an inherent trade off between the 
two goals in the face of changing resource needs of VMs. 
For overload avoidance, we should keep the utilization 
of PMs low to reduce the possibility of overload in case 
the resource needs of VMs increase later. For green com-
puting, we should keep the utilization of PMs reasonably 
high to make efficient use of their energy.

2.EXISTING SYSTEM :

The number of servers is comparatively small, typically 
below 10, which makes them unsuitable for performance 
analysis of cloud computing data centers. Approxima-
tions are very sensitive to the probability distribution of 
task service times. User may submit many tasks at a time 
because of this bags-of-task will appear. Due to dynamic 
nature of cloud environments, diversity of user’s requests 
and time dependency of load is high. The coefficient of 
variation of task service time is high.

3.PROPOSED SYSTEM :

In Proposed system, the task is sent to the cloud center 
is serviced within a suitable facility node; upon finish-
ing the service, the task leaves the center. A facility node 
may contain different computing resources such as web 
servers, database servers, directory servers, and others. 
A service level agreement, SLA, outlines all aspects of 
cloud service usage and the obligations of both service 
providers and clients, including various descriptors col-
lectively referred to as Quality of Service (QoS). QoS 
includes availability, throughput, reliability, security, and 
many other parameters, but also performance indicators 
such as response time, task locking probability, probabil-
ity of immediate service, and mean number of tasks in the 
system, all of which may be determined using the tools of 
queuing theory

We model a cloud server system which indicates that the 
inter arrival time of requests is exponentially distributed, 
while task service times are independent and identically 
distributed random variables that follow a general distri-
bution with mean value of u. The system under consider-
ation contains m servers which render service in order of 
task request arrivals (FCFS).The capacity of system is m 
þ r which means the buffer size for incoming request is 
equal to r. As the population size of a typical cloud center 
is relatively high while the probability that a given user 
will request service is relatively small, the arrival process 
can be modeled as a Markovian process.

4.THE SKEWNESS ALGORITHM :

We introduce the concept of skewness to quantify the 
unevenness in the utilization of multiple resources on a 
server. Let n be the number of resources we consider and 
ri be the utilization of the ith resource. We define the re-
source skewness of a server p as

where r is the average utilization of all resources for server 
p. In practice, not all types of resources are performance 
critical and hence we only need to consider bottleneck re-
sources in the above calculation. By minimizing the skew-
ness, we can combine different types of workloads nicely 
and improve the overall utilization of server resources. In 
the following, we describe the details of our algorithm.
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Analysis of the algorithm is presented in Section 1 in the 
supplementary file, which can be found on the Computer 
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2012.283.

Hot and Cold Spots:

Our algorithm executes periodically to evaluate the re-
source allocation status based on the predicted future 
resource demands of VMs. We define a server as a hot 
spot if the utilization of any of its resources is above a hot 
threshold. This indicates that the server is overloaded and 
hence some VMs running on it should be migrated away. 
We define the temperature of a hot spot p as the square 
sum of its resource utilization beyond the hot threshold:

where R is the set of overloaded resources in server p and 
rt is the hot threshold for resource r. (Note that only over-
loaded resources are considered in the calculation.) The 
temperature of a hot spot reflects its degree of overload. 
If a server is not a hot spot, its temperature is zero. We 
define a server as a cold spot if the utilizations of all its 
resources are below a cold threshold. This indicates that 
the server is mostly idle and a potential candidate to turn 
off to save energy. However, we do so only when the av-
erage resource utilization of all actively used servers (i.e., 
APMs) in the system is below a green computing thresh-
old. A server is actively used if it has at least one VM 
running. Otherwise, it is inactive. Finally, we define the 
warm threshold to be a level of resource utilization that is 
sufficiently high to justify having the server running but 
not so high as to risk becoming a hot spot in the face of 
temporary fluctuation of application resource demands

5.HOT SPOT MITIGATION:

We sort the list of hot spots in the system in descend-
ing temperature (i.e., we handle the hottest one first). Our 
goal is to eliminate all hot spots if possible. Otherwise, 
keep their temperature as low as possible. For each server 
p, we first decide which of its VMs should be migrated 
away.

We sort its list of VMs based on the resulting tempera-
ture of the server if that VM is migrated away. We aim to 
migrate away the VM that can reduce the server’s tem-
perature the most. In case of ties, we select the VM whose 
removal can reduce the skewness of the server the most. 
For each VM in the list, we see if we can find a destination 
server to accommodate it. The server must not become a 
hot spot after accepting this VM. Among all such servers, 
we select one whose skewness can be reduced the most by 
accepting this VM. Note that this reduction can be nega-
tive which means we select the server whose skewness 
increases the least. If a destination server is found, we 
record the migration of the VM to that server and update 
the predicted load of related servers. Otherwise, we move 
onto the next VM in the list and try to find a destination 
server for it. As long as we can find a destination server 
for any of its VMs, we consider this run of the algorithm 
a success and then move onto the next hot spot. Note that 
each run of the algorithm migrates away at most one VM 
from the overloaded server

Green Computing: 

When the resource utilization of activeservers is just too 
low, a number of them may be turned off to avoid wast-
ing energy. This can be handled in our inexperienced 
computing rule. The challenge here is to scale back the 
amount of active servers throughout low load while not 
sacrificing performance either currently or within the fu-
ture. We want to avoid oscillation within the system. Our 
inexperienced computing rule is invoked once the typi-
cal utilizations of all resources on active servers are be-
low the inexperienced computing threshold. We tend to 
type the list of cold spots within the system supported the 
ascending order of their memory size. Since we want to 
migrate away all its VMs before we  are able to finish off 
associate degree underutilized  server, we tend to outline 
the  memory sizeof a  chilly spot because  the mixture  
memory size  of all VMs running thereon.  Recall that our  
model assumes all VMs hook up with shared back-end 
storage. Hence, the value of a VM live migration is decid-
ed largely by its memory footprint. Section seven within 
the supplementary file explains why the memory could 
be a smart live full. we tend to attempt to eliminate the 
cold spot with the bottom price initial. For a chilly spot 
p, we tend to check if we are able to migrate all its VMs 
elsewhere. For every VM on p, we tend to attempt to real-
ize a destination server to accommodate it. The resource 
utilizations of the server once acceptive the  VMshould
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be below the  nice and cozy threshold. Whereas we   are 
able to save energy by consolidating underutilized servers, 
overdoing it  should produce hot spots within the future. 
The nice and cozy threshold is intended to forestall that. 
If multiple servers satisfy the higher than criterion, we 
tend to like one that’s not a current cold spot. This may be 
as a result of increasing load on a chilly spot reduces the 
chance that it can be eliminated. However, we’ll settle for 
a chilly spot because the destination server if necessary. 
All things being equal, we tend to choose a  destination  
server  whose lopsidedness may be reduced the foremost   
by   acceptive   this VM. If we are able to realize destina-
tion  servers  for all  VMs  on a  chilly spot, we tend  to 
record  the  sequence  of  migrations and update the an-
ticipated load of connected servers. Otherwise, we tend 
to don’t migrate any of  its VMs.  The list of cold  spots 
is additionally updated as a result of a number of them 
might not be cold because  of the projected VM migra-
tions within the higher than method.   

Consolidated Movements: 

The movements generated in eachstep above are not ex-
ecuted until all steps have finished. The list of movements 
is then consolidated so that each VM is moved at most 
once to its final destination. For example, hot spot miti-
gation may dictate a VM to move from PM A to PM B, 
while green computing dictates it to move from PM B to 
PM C. In the actual execution, the VM is moved from A 
to C directly.

6.SIMULATIONS:

We evaluate the performance of our algorithm using trace 
driven simulation. Note that our simulation uses the same 
code base for the algorithm as the real implementation in 
the experiments. This ensures the fidelity of our simulation 
results. Traces are per-minute server resource utilization, 
such as CPU rate, memory usage, and network traffic sta-
tistics, collected using tools like “perfmon” (Windows), 
the “/proc” file system (Linux), “pmstat/vmstat/netstat” 
comman ds (Solaris), etc.. The raw traces are pre-pro-
cessed into “Usher” format so that the simulator can read 
them. We collected the traces from a variety of sources: 
. Web InfoMall.The largest online Web archive in China 
(i.e.,the counterpart of Internet Archive in the US) with 
more than three billion archived Web pages. RealCourse. 
The largest online distance learning system inChina with 
servers distributed across 13 major cities.
 

AmazingStore.The largest P2P storage system in China.
We also collected traces from servers and desktop com-
puters in our university including one of our mail servers, 
the central DNS server, and desktops in our department. 
We post processed the traces based on days collected and 
use random sampling and linear combination of the data 
sets to generate the workloads needed. All simulation in 
this section uses the real trace workload unless otherwise 
specified. Simulation in this section uses the real trace 
workload unless otherwise specified..

7.EXPERIMENTS:

Our experiments are conducted using a group of 30 Dell 
PowerEdge blade servers with Intel E5620 CPU and 24 
GB of RAM. The servers run Xen-3.3 and Linux 2.6.18. 
We periodically read load statistics using the xenstat li-
brary (same as what xentop does). The servers are con-
nected over a Gigabit ethernet to a group of four NFS 
storage servers where our VM Scheduler runs. We use the 
same default parameters as in the simulation.Algorithm 
Effectiveness: We evaluate the effectiveness of ouralgo-
rithm in overload mitigation and green computing. We 
start with a small scale experiment consisting of three 
PMs and five VMs so that we can present the results for 
all servers in Fig. 7. 

Different shades are used for each VM. All VMs are con-
figured with 128 MB of RAM. An Apache server runs on 
each VM. We use httperf to invoke CPU intensive PHP 
scripts on the Apache server. This allows us to subject the 
VMs to different degrees of CPU load by adjusting the 
client request rates.The utilization of other resources are 
kept low. We first increase the CPU load of the three VMs 
on PM1 to create an overload. Our algorithm resolves the 
overload by migrating VM3 to PM3. 

It reaches a stable state under high load around 420 sec-
onds. Around 890 seconds, we decrease the CPU load of 
all VMs gradually. Because the FUSD prediction algo-
rithm is conservative when the load decreases, it takes a 
while before green computing takes effect. Around 1,700 
seconds, VM3 is migrated from PM3 to PM2 so that PM3 
can be put into the standby mode. Around 2,200 seconds, 
the two VMs on PM1 are migrated to PM2 so that PM1 
can be released as well. As the load goes up and down, 
our algorithm will repeatthe above process: spread over 
or consolidate the VMs as needed.
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Analysis of the algorithm is presented in Section 1 in the 
supplementary file, which can be found on the Computer 
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2012.283.

Hot and Cold Spots:

Our algorithm executes periodically to evaluate the re-
source allocation status based on the predicted future 
resource demands of VMs. We define a server as a hot 
spot if the utilization of any of its resources is above a hot 
threshold. This indicates that the server is overloaded and 
hence some VMs running on it should be migrated away. 
We define the temperature of a hot spot p as the square 
sum of its resource utilization beyond the hot threshold:

where R is the set of overloaded resources in server p and 
rt is the hot threshold for resource r. (Note that only over-
loaded resources are considered in the calculation.) The 
temperature of a hot spot reflects its degree of overload. 
If a server is not a hot spot, its temperature is zero. We 
define a server as a cold spot if the utilizations of all its 
resources are below a cold threshold. This indicates that 
the server is mostly idle and a potential candidate to turn 
off to save energy. However, we do so only when the av-
erage resource utilization of all actively used servers (i.e., 
APMs) in the system is below a green computing thresh-
old. A server is actively used if it has at least one VM 
running. Otherwise, it is inactive. Finally, we define the 
warm threshold to be a level of resource utilization that is 
sufficiently high to justify having the server running but 
not so high as to risk becoming a hot spot in the face of 
temporary fluctuation of application resource demands

5.HOT SPOT MITIGATION:

We sort the list of hot spots in the system in descend-
ing temperature (i.e., we handle the hottest one first). Our 
goal is to eliminate all hot spots if possible. Otherwise, 
keep their temperature as low as possible. For each server 
p, we first decide which of its VMs should be migrated 
away.

We sort its list of VMs based on the resulting tempera-
ture of the server if that VM is migrated away. We aim to 
migrate away the VM that can reduce the server’s tem-
perature the most. In case of ties, we select the VM whose 
removal can reduce the skewness of the server the most. 
For each VM in the list, we see if we can find a destination 
server to accommodate it. The server must not become a 
hot spot after accepting this VM. Among all such servers, 
we select one whose skewness can be reduced the most by 
accepting this VM. Note that this reduction can be nega-
tive which means we select the server whose skewness 
increases the least. If a destination server is found, we 
record the migration of the VM to that server and update 
the predicted load of related servers. Otherwise, we move 
onto the next VM in the list and try to find a destination 
server for it. As long as we can find a destination server 
for any of its VMs, we consider this run of the algorithm 
a success and then move onto the next hot spot. Note that 
each run of the algorithm migrates away at most one VM 
from the overloaded server

Green Computing: 

When the resource utilization of activeservers is just too 
low, a number of them may be turned off to avoid wast-
ing energy. This can be handled in our inexperienced 
computing rule. The challenge here is to scale back the 
amount of active servers throughout low load while not 
sacrificing performance either currently or within the fu-
ture. We want to avoid oscillation within the system. Our 
inexperienced computing rule is invoked once the typi-
cal utilizations of all resources on active servers are be-
low the inexperienced computing threshold. We tend to 
type the list of cold spots within the system supported the 
ascending order of their memory size. Since we want to 
migrate away all its VMs before we  are able to finish off 
associate degree underutilized  server, we tend to outline 
the  memory sizeof a  chilly spot because  the mixture  
memory size  of all VMs running thereon.  Recall that our  
model assumes all VMs hook up with shared back-end 
storage. Hence, the value of a VM live migration is decid-
ed largely by its memory footprint. Section seven within 
the supplementary file explains why the memory could 
be a smart live full. we tend to attempt to eliminate the 
cold spot with the bottom price initial. For a chilly spot 
p, we tend to check if we are able to migrate all its VMs 
elsewhere. For every VM on p, we tend to attempt to real-
ize a destination server to accommodate it. The resource 
utilizations of the server once acceptive the  VMshould
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be below the  nice and cozy threshold. Whereas we   are 
able to save energy by consolidating underutilized servers, 
overdoing it  should produce hot spots within the future. 
The nice and cozy threshold is intended to forestall that. 
If multiple servers satisfy the higher than criterion, we 
tend to like one that’s not a current cold spot. This may be 
as a result of increasing load on a chilly spot reduces the 
chance that it can be eliminated. However, we’ll settle for 
a chilly spot because the destination server if necessary. 
All things being equal, we tend to choose a  destination  
server  whose lopsidedness may be reduced the foremost   
by   acceptive   this VM. If we are able to realize destina-
tion  servers  for all  VMs  on a  chilly spot, we tend  to 
record  the  sequence  of  migrations and update the an-
ticipated load of connected servers. Otherwise, we tend 
to don’t migrate any of  its VMs.  The list of cold  spots 
is additionally updated as a result of a number of them 
might not be cold because  of the projected VM migra-
tions within the higher than method.   

Consolidated Movements: 

The movements generated in eachstep above are not ex-
ecuted until all steps have finished. The list of movements 
is then consolidated so that each VM is moved at most 
once to its final destination. For example, hot spot miti-
gation may dictate a VM to move from PM A to PM B, 
while green computing dictates it to move from PM B to 
PM C. In the actual execution, the VM is moved from A 
to C directly.

6.SIMULATIONS:

We evaluate the performance of our algorithm using trace 
driven simulation. Note that our simulation uses the same 
code base for the algorithm as the real implementation in 
the experiments. This ensures the fidelity of our simulation 
results. Traces are per-minute server resource utilization, 
such as CPU rate, memory usage, and network traffic sta-
tistics, collected using tools like “perfmon” (Windows), 
the “/proc” file system (Linux), “pmstat/vmstat/netstat” 
comman ds (Solaris), etc.. The raw traces are pre-pro-
cessed into “Usher” format so that the simulator can read 
them. We collected the traces from a variety of sources: 
. Web InfoMall.The largest online Web archive in China 
(i.e.,the counterpart of Internet Archive in the US) with 
more than three billion archived Web pages. RealCourse. 
The largest online distance learning system inChina with 
servers distributed across 13 major cities.
 

AmazingStore.The largest P2P storage system in China.
We also collected traces from servers and desktop com-
puters in our university including one of our mail servers, 
the central DNS server, and desktops in our department. 
We post processed the traces based on days collected and 
use random sampling and linear combination of the data 
sets to generate the workloads needed. All simulation in 
this section uses the real trace workload unless otherwise 
specified. Simulation in this section uses the real trace 
workload unless otherwise specified..

7.EXPERIMENTS:

Our experiments are conducted using a group of 30 Dell 
PowerEdge blade servers with Intel E5620 CPU and 24 
GB of RAM. The servers run Xen-3.3 and Linux 2.6.18. 
We periodically read load statistics using the xenstat li-
brary (same as what xentop does). The servers are con-
nected over a Gigabit ethernet to a group of four NFS 
storage servers where our VM Scheduler runs. We use the 
same default parameters as in the simulation.Algorithm 
Effectiveness: We evaluate the effectiveness of ouralgo-
rithm in overload mitigation and green computing. We 
start with a small scale experiment consisting of three 
PMs and five VMs so that we can present the results for 
all servers in Fig. 7. 

Different shades are used for each VM. All VMs are con-
figured with 128 MB of RAM. An Apache server runs on 
each VM. We use httperf to invoke CPU intensive PHP 
scripts on the Apache server. This allows us to subject the 
VMs to different degrees of CPU load by adjusting the 
client request rates.The utilization of other resources are 
kept low. We first increase the CPU load of the three VMs 
on PM1 to create an overload. Our algorithm resolves the 
overload by migrating VM3 to PM3. 

It reaches a stable state under high load around 420 sec-
onds. Around 890 seconds, we decrease the CPU load of 
all VMs gradually. Because the FUSD prediction algo-
rithm is conservative when the load decreases, it takes a 
while before green computing takes effect. Around 1,700 
seconds, VM3 is migrated from PM3 to PM2 so that PM3 
can be put into the standby mode. Around 2,200 seconds, 
the two VMs on PM1 are migrated to PM2 so that PM1 
can be released as well. As the load goes up and down, 
our algorithm will repeatthe above process: spread over 
or consolidate the VMs as needed.
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Impact of Live Migration: One concern about the use 
of VMlive migration is its impact on application per-
formance. Previous studies have found this impact to be 
small [5]. Weinvestigate this impact in our own experi-
ment. We extract the data on the 340 live migrations in 
our 30 server experiment above. We find that 139 of them 
are for hot spot mitigation. We focus on these migrations 
because that is when the potential impact on application 
performance is the most. Among the 139 migrations, we 
randomly pick seven corresponding TPC-W sessions 
undergoing live migration. All these sessions run the 
“shopping mix” workload with 200 emulated browsers. 
As a target for comparison, we rerun the session with the 
sameparameters but perform no migration and use the re-
sulting performance as the baseline. WIPS is the perfor-
mance metric used by TPC-W. The figure shows that most 
live migration sessions exhibit no noticeable degradation 
in performance compared to the baseline: the normalized 
WIPS is close to

1. The only exception is session 3 whose degraded perfor-
mance is caused by an extremely busy server in the origi-
nal experiment Next we take a closer look at one of the 
sessions in and show how its performance vary over time 
in The dots in the figure show the WIPS every second. The 
two curves show the moving average over a 30 second 
window as computed by TPC-W. We marked in the figure 
when live migration starts and finishes. With self-balloon-
ing enabled, the amount of memory transferred during the 
migration is about 600 MB. The figure verifies that live 
migration causes no noticeable performance degradation. 
The duration of the migration is under 10 seconds. Recall 
that our algorithm is invoked every 10 minutes.

Fig2. Impact of live migration on TPC-W perfor-
mance.

Resource Balance: 

Recall that the goal of the skewnessalgorithm is to mix 
workloads with different resource requirements together 
so that the overall utilization of server capacity is im-
proved.

In this experiment, we see how our algorithm handles a 
mix of CPU, memory, and network intensive workloads. 
We vary the CPU load as before. We inject the network 
load by sending the VMs a series of network packets. The 
memory intensive applications are created by allocating 
memory on demand. Again we start with a small scale 
experiment consisting of two PMs and four VMs so that 
we can present the results for all servers in Fig. 11. The 
two rows represent the two PMs. The two columns rep-
resent the CPU and network dimensions, respectively. 
The memory consumptionis kept low for this experiment. 
Initially, the two VMs on PM1 are CPU intensive while 
the two VMs on PM2 are network intensive. We increase 
the load of their bottleneck resources gradually. Around 
500 seconds, VM4 is migrated from PM2 to PM1 due to 
the network overload in PM2. Then around 600 seconds, 
VM1 is migrated from PM1 to PM2 due to the CPU over-
load in PM1.Now the system reaches a stable state with 
a balanced resource utilization for both PMs—each with 
a CPU i ntensive VM and a network intensive VM. Later 
we decrease the load of all VMs gradually so that both 
PMs become cold spots. We can see that the two VMs on 
PM1 are consolidated to PM2 by green computing.

8.CONCLUSION :

We have presented the design, implementation, and evalu-
ation of a resource management system for cloud comput-
ing services. Our system multiplexes virtual to physical 
resources adaptively based on the changing demand. We 
use the skewness metric to combine VMs with different 
resource characteristics appropriately so that the capaci-
ties of servers are well utilized. Our algorithm achieves 
both overload avoidance and green computing for sys-
tems with multi resource constraints.
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The duration of the migration is under 10 seconds. Recall 
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Fig2. Impact of live migration on TPC-W perfor-
mance.
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memory on demand. Again we start with a small scale 
experiment consisting of two PMs and four VMs so that 
we can present the results for all servers in Fig. 11. The 
two rows represent the two PMs. The two columns rep-
resent the CPU and network dimensions, respectively. 
The memory consumptionis kept low for this experiment. 
Initially, the two VMs on PM1 are CPU intensive while 
the two VMs on PM2 are network intensive. We increase 
the load of their bottleneck resources gradually. Around 
500 seconds, VM4 is migrated from PM2 to PM1 due to 
the network overload in PM2. Then around 600 seconds, 
VM1 is migrated from PM1 to PM2 due to the CPU over-
load in PM1.Now the system reaches a stable state with 
a balanced resource utilization for both PMs—each with 
a CPU i ntensive VM and a network intensive VM. Later 
we decrease the load of all VMs gradually so that both 
PMs become cold spots. We can see that the two VMs on 
PM1 are consolidated to PM2 by green computing.

8.CONCLUSION :

We have presented the design, implementation, and evalu-
ation of a resource management system for cloud comput-
ing services. Our system multiplexes virtual to physical 
resources adaptively based on the changing demand. We 
use the skewness metric to combine VMs with different 
resource characteristics appropriately so that the capaci-
ties of servers are well utilized. Our algorithm achieves 
both overload avoidance and green computing for sys-
tems with multi resource constraints.
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