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Abstract: 

Structures having the shape of blades are often found 

in several practical engineering examples such as 

turbines and aircraft rotary wings. For reliable and 

economic designs of the structures, it is necessary to 

estimate the modal characteristics of those structures 

accurately. To design these components, the dynamic 

characteristic, especially near resonant condition, 

need to be well examined to assure a safe operation. 

Among the dynamic characteristics of these 

structures, determining the natural frequencies and 

associated mode shapes are of fundamental 

importance in the study of resonant responses. An 

accurate prediction of the forced response is usually 

very difficult because of the uncertainty of the 

excitation. A single free standing blade can be 

considered as a pretwisted cantilever beam with a 

rectangular cross-section. The torsional vibration of 

pre twist cantilever beam of rectangular cross section 

is done so that this resembles to a blade. 

 

The differential equation for the torsional vibration 

of pre-twisted cantilever beam of rectangular cross 

section has been obtained. The beam is considered as 

Timoshenko beam instead of Euler-Bernoulli Beam 

or Rayleigh Beam because it will consider shear 

correction factor, rotary inertia, warping constant. 

The Galerkin’s method is used to obtain the 

frequencies of various modes of vibration. This is 

again solved by fem software ANSYS and their 

results are compared. 

 

 

 

Introduction 

The torsional vibration of a rotating structure can 

occur in many engineering applications such as turbo-

machinery blades, slewing robot arms, aircraft 

propellers, helicopter rotors, and spinning spacecraft. 

To design these components, the dynamic 

characteristic, especially near resonant condition, need 

to be well examined to assure a safe operation. Among 

the dynamic characteristics of these structures, 

determining the natural frequencies and associated 

mode shapes are of fundamental importance in the 

study of resonant responses. 

 

It is very important for manufacturers of turbo 

machinery components to know the natural 

frequencies of the rotor blades, because they have to 

make sure that the turbine on which the blade is to be 

mounted does not have some of the same natural 

frequencies as the rotor blade. Otherwise, a resonance 

may occur in the whole structure of the turbine, 

leading to undammed vibrations, which may 

eventually wreck the whole turbine. An accurate 

prediction of the forced response is usually very 

difficult because of the uncertainty of the excitation. 

Moreover, under the resonance conditions, what limits 

the vibration amplitude is the amount of damping 

available. In most cases, the damping is almost entirely 

aerodynamic and its assessment is just as uncertain as 

the excitation. 

 

Thus, classic design practice for such structures has 

been mainly to rely on the knowledge of the natural 

frequencies to avoid anticipated resonances. 
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Figure 1.1 Schematic view of a part of a steam turbine 

 

A single free standing blade can be considered as a 

pre-twisted cantilever beam with a rectangular cross-

section. Vibration characteristics of such a blade are 

always coupled between the two bending modes in the 

flap wise and chord wise directions and the torsion 

mode. The problem is also complicated by several 

second order effects such as shear deformations, rotary 

inertia, and fiber bending in torsion, warping of the 

cross-section, root fixing and Coriolis accelerations. 

 
Figure 1.2 Pre-Twisted Beam Models 

 

The torsional vibration occurs when the centroid and 

the shear center of the cross section of the beam do not 

coincide. This lack of coincidence between the 

centroid and the shear center occurs when the beam 

has less than two axis of symmetry or has anisotropy 

in the material. This makes the torsional axis different 

from the elastic axis and thus causes torsional 

vibration when flexural vibration occurs. When the 

beam is isotropic and the cross-section of it has two 

axes of symmetry, centroid and shear center coincides 

and flexural vibrations and torsional vibration become 

independent. The flexural-torsional coupled vibration 

can be analyzed by combining one of the beam 

theories for bending with a torsional theory and a 

consideration of the various warping effects. The 

simplest model for the analysis of coupled bending and 

torsional vibration is combining the classical 

Bernoulli- Euler theory for bending and St. Venant 

theory for torsion .Inclusion of a warping effect, 

Bishop and Miao results in a better approximation, 

especially for higher modes. Also, for non slender 

beams, applying the Timoshenko Beam theory instead 

of the Bernoulli-Euler theory along with the inclusion 

of a warping effect can improve the accuracy for 

higher modes. 

 

When obtaining the natural frequencies and the mode 

shapes, the Galerkin’s method is a good candidate both 

because of its simplicity and its ability to give good 

results with relatively less efforts. The Galerkin’s 

method is a very powerful technique that can be used 

to predict the natural frequencies and mode shapes of 

vibrating structures with less calculation time and 

effort. The method requires a linear combination of 

assumed deflection shapes of structures in free 

harmonic vibration that satisfies at least the 

geometrical or kinematical boundary conditions of the 

vibrating structure. Results from the Galerkin’s 

method depend directly on how closely the assumed 

shape functions resemble the actual mode shapes. 

When an assumed shape function contributes to 

several modes, or when some modes are not 

represented in the assumed shape functions, then it is 

difficult to draw definite conclusions from the 

Galerkin’s results. It is very important that the 

assumed shape functions form a complete set so as to 

represent all the modes of the structure, and they 

satisfy at least the geometrical boundary conditions. 

This study presents some insight into the nature of the 

natural frequency values, as obtained by the Galerkin’s 

method and their dependence on the nature of the 

assumed shape functions. 

 

The choice of the admissible functions is very 

important to simplify the calculations and to guarantee 

convergence to the actual solution. As basis functions 

for the Galerkin’smethod, orthogonal polynomials 
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enable the computation of higher natural frequencies 

of any order to be accomplished without facing any 

numerical difficulties arising from the ill-conditioning 

of the matrices like the ones one encounters when 

using simple polynomials as the basis functions. Main 

objective of the present work is to study the analysis of 

the torsional vibration of beams and obtain the natural 

frequencies of structures experiencing torsional 

vibration. 

 

Types of vibrations: 

Vibration can be defined as regularly repeated 

movement of a physical object about a fixed point.  

Vibrations can be classified based on various factors 

like 

A) Nature of excitation (usually the excitation will be 

periodic).   

B) Nature of displacement. 

 

Nature of vibration: 

Here the vibration depends on the nature of 

deformation of the beam, when the external forces acts 

on the system.  These are of two types namely:- 

A) Flexural or transverse vibration. 

B) Torsional vibration. 

 

Literature survey 

Many researchers analyzed uniform and twisted 

Timoshenko beams using different techniques: Exact 

solutions of Timoshenko’s equation for simple 

supported uniform beams were given by Anderson [1]. 

The general equations of motion of a pre-twisted 

cantilever blade were derived by Carnegie [2]. Then 

Carnegie [3] extended his study for the general 

equations of motion of a pre-twisted cantilever blade 

allowing for torsion bending, rotary inertia and 

deflections due to shear. Dawson et al. [4] found the 

natural frequencies of pre-twisted cantilever beams of 

uniform rectangular cross-section allowing for shear 

deformation and rotary inertia by the numerical 

integration of a set of first order simultaneous 

differential equations. They also made some 

experiments in order to obtain the natural frequencies 

for beams of various breadths to depth ratios and 

lengths ranging from 3 to 20 in and pre-twist angle in 

the range 0°-90°. Gupta and Rao [5] used the finite 

element method to determine the natural frequencies of 

uniformly pre-twisted tapered cantilever beams. 

Subrahmanyam et al. [6] applied the Reissner method 

and the total potential energy approach to calculate the 

natural frequencies and mode shapes of pre-twisted 

cantilever blading including shear deformation and 

rotary inertia. Rosen [7] presented a survey paper as an 

extensive bibliography on the structural and dynamic 

aspects of pre-twisted beams. 

 

Chen and Keer [8] studied the transverse vibration 

problems of a rotating twisted Timoshenko beam 

under axial loading and spinning about axial axis, and 

4 investigated the effects of the twist angle, rotational 

speed, and axial force on natural frequencies by finite 

element method. Chen and Ho [9] introduced the 

differential transform to solve the free vibration 

problems of a rotating twisted Timoshenko beam 

under axial loading. Lin et al. [10] derived the coupled 

governing differential equations and the general elastic 

boundary conditions for the coupled bending-bending 

forced vibration of a non-uniform pre-twisted 

Timoshenko beam by Hamilton’s principle. They used 

a modified transfer matrix method to study the 

dynamic behavior of a Timoshenko beam with 

arbitrary pre-twist. Banerjee [11] developed a dynamic 

stiffness matrix and used for free vibration analysis of 

a twisted beam. Rao and Gupta [12] derived the 

stiffness and mass matrices of a rotating twisted and 

tapered Timoshenko beam element, and calculated the 

first four natural frequencies and mode shapes in 

bending-bending mode for cantilever beams.  

 

Narayanaswami and Adelman [13] showed that a 

straightforward energy minimization yields the correct 

stiffness matrix in displacement formulations when 

transverse shear effects are included. They also stated 

that in any finite element displacement formulation 

where transverse shear deformations are to be 

included, it is essential that the rotation of the normal 
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(and not the derivative of transverse displacement) be 

retained as a nodal degree of freedom. Dawe [14] 

presented a Timoshenko beam finite element that has 

three nodes and two degrees of freedom per node, 

which are the lateral deflection and the cross-sectional 

rotation. The element properties were based on a 

coupled displacement field; the lateral deflection was 

interpolated as a quintic polynomialfunction and the 

cross-sectional rotation was linked to the deflection by 

specifying satisfaction of the moment equilibrium 

equation within the element. The effect of rotary 

inertia was included in “lumped” form at the nodes. 

Subrahmanyam et al. [15] analysed the lateral 

vibrations of a uniform rotating blade using Reissner 

and the total potential energy methods. Another 

vibration analysis of rotating pre-twisted blades have 

been done by Yoo et al. [16] 

 

1 Beam theory:  

The study of the torsional vibration start from the basic 

beam theories, it is important to review and study the 

derivation of the various basic beam theories prior to 

the study of torsional vibration of beams. Here, basic 

beam theories of Euler-Bernoulli, Rayleigh, shear and 

Timoshenko beam theories are reviewed from their 

derivation. The assumptions made by all models are as 

follows. 

1. One dimension (the axial direction) is considerably 

larger than the other two. 

2. The material is linear elastic (Hookean). 

3. The Poisson effect is neglected. 

4. The cross-sectional area is symmetric so that the 

neutral and centroidal axes coincide. 

5. The angle of rotation is small so that the small angle 

assumption can be used. 

 

The Euler-Bernoulli Beam Theory 

The simplest beam theory is the Euler-Bernoulli Beam 

theory which relies on bending effect only. The Euler-

Bernoulli beam theory does not consider the rotatory 

inertia and the shear effects. The strain energy of a 

uniform beam due to bending is 

 

where E is the modulus of elasticity, I the area moment 

of inertia of the cross-section about the neutral axis, 

v(x; t) the transverse deflection at the axial location x 

and time t, and L the length of the beam. The kinetic 

energy is 

 
where . is the density of the beam and A, the cross-

sectional area. The Lagrangian is given by 

 

 
Fig 3.1 The Rayleigh Beam Model 

 

The Rayleigh beam theory provides a slight 

improvement on the Euler-Bernoulli theory by 

including the effect of rotations of the cross-section. It 

partially corrects the overestimation of natural 

frequencies in the Euler-Bernoulli model. However, 

the natural frequencies are still overestimated with this 

method especially in the case of non-slender beams 

because shear effect is not considered in this method 

The Rayleigh beam adds the rotary inertia effects to 

the Euler-Bernoulli beam. The Kinetic energy due to 

the rotary inertia is 
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Therefore, the Lagrangian becomes the addition of the 

rotating effect to the Lagrangian of Euler-Bernoulli 

beam and to be 

 
 

The Shear Beam Model 

The shear beam theory adds shear distortion to the 

Euler-Bernoulli model. By adding shear distortion to 

the Euler-Bernoulli beam, the estimate of the natural 

frequencies improves considerably.  This theory does 

not take into account effects of rotation i.e. rotary 

inertia. 

The Shear Beam Model adds the effect of shear 

distortion to the Euler-Bernoulli model. The total 

rotation is the sum of the rotation of the cross-section 

due to the bending moment, s, and the angle of 

distortion due to shear, and is approximated by the first 

derivative of the deflection 

 
Therefore, the strain energy resulting in bending 

becomes: 

 
and the strain energy resulting from shear becomes: 

 
where .k  is the shear factor. 

The Lagrangian of the shear beam model is 

 
 

The Timoshenko Beam Model 

As mentioned earlier that the Euler Bernoulli beam 

theory can approximate the natural frequency in case 

of higher frequency modes and slender beam, hence 

Timoshenko beam theory can be implemented in such 

situations.  In this theory deformation due to transverse 

shear and kinetic energy due to rotation of the cross-

section become important.  Energy expressions include 

both shear deformation and rotary inertia. 

 

The assumption made in the previous theory that the 

plane sections which are normal to the undeformed 

centroidal axis remain plane after bending, will be 

retained. However, it will no longer be assumed that 

these sections remain normal to the deformed axis 

 
Fig 3.2 Timoshenko Beam 

 

Assumptions made in Timoshenko Beam theory:- 

a)Plane sections such as ‘ab’, originally normal to the 

centerline of the beam in the undeformed geometry, 

remain plane but not necessarily normal to the 

centerline in the deformed state. 

b) The cross-sections do not stretch or shorten, i.e., 

they are assumed to act like rigid surfaces. 

 

Comparison among beam theory:- 

 
As it can be seen from the above comparison that the 

Timoshenko beam considers few factors which Euler 

Bernoulli beam theory does not consider. Hence it can 

be predicted that Timoshenko beam can give accurate 

results while considering higher frequencies and 

slender beams.  Hence Timoshenko beam is 

considered in the present project. 



 
 

 Page 1027 
 

Torsional equation of pre-twist beams 

Considering a normal rectangular beam of length “L” 

and cross section area “bxh”. Suppose at a distance of 

“R” from the axis of the fibre exists. Before it gets 

twisted its will appear as shown in figure. 

 
Fig 4.1 Simple rectangular cross section beam 

 

If the beam is twisted through an angle of “β” it will 

appear as shown below. Where β is twist in radians. 

Let “θ” angle of twist in degrees. 

 
Fig 4.2 Twisted Beam 

 

Considering a small element of blade of length dx 

 

It is well known that when a thin bar is under torsion 

there is a slight decrease in distance between cross 

sections.  As the overall length is getting affected due 

to bending it can be said that a strain is developed and 

hence a stress called normal stress is developed. A 

normal stress will be on each longitudinal fibre and 

this in not parallel to the axis of bar, and hence there is 

a stress component which produces an additional 

torque. The normal stress developed will be acting in 

the following way.  

 

Resolving the components of stress along x-direction 

and along y-direction. 

1)Along  x-direction σ(cos Rβ ) = σ.1------4.1 

2)Along y-direction σ(sin Rβ ) = σ Rβ-----4.2 

 

Since Rβ value is very low 

The stress component σ(cos Rβ ) is parallel to the axis 

of the beam and The stress component σ(sin Rβ ) is 

parallel to the axis of the beam. 

 

A torque is generated because of angle of twist θ 

which results in deformation and this deformation is 

not uniform.let the torque be Mt. 

 

For easy considering a shaft of circular cross section. 

The cross-sections of a circular shaft in torsion rotate 

as if they were rigid in-plane. That is, there is no 

relative displacement of any two, arbitrarily chosen 

points of a cross section when the shaft is subjected to 

a torque about its longitudinal, z, axis. We prove this 

assertion relying on rotational symmetry and upon the 

constancy of the internal torque as we move down the 

axis of the shaft. 

 

Let the points along a radius take the shape of a curve 

in plane in the deformed state: Now consider the same 

set of points but from the perspective of someone who 

has the portion and the shaft to the right to observe. 

It is still possible that, while radial lines remain radial, 

there could be some sort of accordion effect as we 

march around the axis of the shaft – some radial lines 

coming closer together, others widening the angle 
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between them. But no, this is not possible since we 

have complete rotational symmetry. Whatever happens 

at one angular position must happen at every other 

angular position. 

 

One further fact follows from the uniformity of torque 

at each section, namely, the relative rotation of two 

cross-sections is the same for any two sections 

separated by the same distance along the axis of the 

shaft. 

 
If we let ‘θ’ be the rotation of any section, then this is 

equivalent to saying dθ/dz is a constant. 

Consider now the strains due to the rotation of one 

section relative to another. The figure shows the 

rotation of a section located along the axis at z+Δ z 

relative to a section at z just below it. Of course the 

section at z has rotated too, most likely. But it is the 

relative rotation of the two sections which gives rise to 

a strain, a shear strain. γ, which measures the decrease 

in right angle, originally formed by two line segments, 

one circumferential, the other axially directed as 

shown. From the geometry we can state: 

 
Note that this relationship shows that the shear strain is 

a linear function of radius - zero at the axis, maximum 

at the shaft’s outer radius. Note too that, with d θ /dz a 

constant, the shear strain does not vary with z with 

position along the axis of the shaft. 

There are no other strains, with no deformation in 

plane and no bulging-out or dishing in, there are no 

other strains. If there existed some asymmetry like that 

of the truss bay structure with one diagonal number 

removed from each bay, then we would not be able to 

rule out a contraction (or extension) in the z direction. 

Because we have but one strain component, this will 

be a very short section. The corresponding stress is the 

shear stress τ and is related to the shear strain 

according to: 

 
The resultant torque about the axis of a circular shaft 

due to a shear stress distribution τ(r), can be obtained 

as  

 
Substituting the value of τ for equation 4.4 in equation 

4.5 

 
since dθ/dz and G are constants, we are left with the 

integral of r3 and can write 

 
where J is a function only of the geometry of the cross-

section - its radius R. You may have encountered it as 

the polar moment of inertia. Similarly for rectangular 

cross-section bar it can be written as: 

 
Considering warping constant the equation can be 

modified as: 

 
Where GJ together forms torsional rigidity for uniform 

torsion and c1 is the warping rigidity. 

 

It is well known that when a thin bar is under torsion 

there is a slight decrease in distance between cross 

sections.  As the overall length is getting affected due 

to bending it can be said that a strain is developed and 

hence a stress called normal stress is developed. As 

there are 2 stress component there will 2 forces acting 

due to pre-twist. One force will be parallel to the bar 
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and other force will be perpendicular to bar. The 

parallel will not have any effect of torque but the 

perpendicular force will create torque. The value of 

that force is given by: σ.Rβ. 

Where σ- is the stress,  R- radius of fibre form the axis 

and β-twist in radians. 

 

Finite Element Solution 

The Finite Element Method (FEM) is a numerical 

procedure that can be used to obtain solutions to a 

large class of engineering problems involving stress 

analysis, heat transfer, electromagnetism, fluid flow 

and vibration and acoustics. 

 

In FEM, a complex region defining a continuum is 

discretized into simple geometric shapes called finite 

elements .The material properties and the governing 

relationships are considered over these elements and 

expressed in terms of unknown values at element 

corners, called nodes. An assembly process, duly 

considering the loading and constraints, results in a set 

of equations. Solution of these equations gives us the 

approximate behaviour of the continuum. 

 
Figure 5.1 Description of the “finite element” 

 

Basic ideas of the FEM originated from advances in 

aircraft structural analysis. The origin of the modern 

FEM may be traced back to the early 20th century, 

when some investigators approximated and modeled 

elastic continua using discrete equivalent elastic bars. 

However, Courant has been credited with being the 

first person to develop the FEM. He used piecewise 

polynomial interpolation over triangular sub regions to 

investigate torsion problems in a paper published in 

1943. The next significant step in the utilization of 

Finite Element Method was taken by Boeing. In the 

1950’s Boeing, followed by others, used triangular 

stress elements to model airplane wings. But the term 

finite element was first coined and used by Clough in 

1960. And since its inception, the literature on finite 

element applications has grown exponentially, and 

today there are numerous journals that are primarily 

devoted to the theory and application of the method. 

 

RESULTS AND DISCUSSION 

In order to validate the proposed finite element model 

for the vibration analysis of pretwisted Timoshenko 

beam, various numerical results are obtained and 

compared with available solutions in the published 

literature. 

 

Comparison between ansys results and 

mathematical modeling results 
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The various examples are considered to evaluate the 

present finite element formulation for the effects of 

related parameters (e.g. twist angle, length, breadth to 

depth ratio) on the natural frequencies of the pre-

twisted cantilever Timoshenko beams. The natural 

frequency ratios for the first five modes of vibration 

are obtained for different breadth to height ratio and in 

each case with different twist angles. Graphs are 

plotted with frequency and twist and it can easily be 

checked out from the Figures that the natural 

frequencies increase as the twist angle increases. 

 

Conclusion 

The equations of motion for the torsional vibration 

analysis of blades, which have a pre-twisted cross-

section, arbitrary orientation are derived. The 

equations of motion are transformed into a 

dimensionless form by employing dimensionless 

variables and several dimensionless parameters 

representing area moment of inertia ratio, the pre-twist 

angle, are identified. The Garlekin’s method used here 

to solve the equation gives an upper bound of 

frequencies. The resultant obtained for various 

frequencies of torsional vibrations shows that it 

increases with the amount of pre-twisted and the 

thinness of the beam. 

 

Numerical results in different cases validated the 

applicability of the proposed method for solving such 

an engineering problem. The pre-twisted angles 

influence the natural frequencies of the beams. The 

natural frequencies found were compared with the 

simulated results. The simulation was carried in 

ANSYS 10.0 software. The simulation software 

provides the investigator with different mode shape 

and frequency for all the beam geometry and the 

resonant data obtained is compared with the 

mathematical models. It has been noted form graphs 

that for all the cases twist with 0.5 radians has 

maximum natural frequency. 
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