

 Page 246

Designing Elastic and Reliable Content Based Cloud Storage

System

B Indu Priya

PG Scholor

Department of CSE,

CRIT, Anantapur.

Dr. G Prakash Babu

Professor

Department of CSE,

CRIT, Anantapur.

Abstract:

Publish/subscribe systems implemented as a service

in cloud computing infrastructure provides elasticity

and simplicity in composing distributed applications.

Appropriate service provisioning in distributed

computing infrastructure is an exigent task. Due to

the dynamic changes in the rate of the live content

arrival in the large scale subscriptions presents a

challenge to existing publish/subscribe systems. This

paper proposes ESCC (Elastic and Scalable Content

based Cloud Pub/Sub System) technique that

presents a framework to design elastic and reliable

Content based publish/subscribe system that user

single hop lookup overlay to reduce the latency in

cloud computing environment. ESCC dynamically

adjust the scale of the servers depending on the

churn workloads. ESCC achieves high throughput

rate when compared to various workloads.

Key words: Publish / Subscribe, Cloud storage,

Scalable, content based retrieval, subscriptions

I. Introduction

Cloud computing is the embryonic paradigm with

changing definitions but for this research work, we can

define in the term of a virtual infrastructure which will

provide shared information and communication

technology services, via an internet “cloud,” for

“multiple external users” by the use of the Internet or

“large-scale private networks.”[1] A computer user

access can be provided to Information Technology

services i.e., applications, servers, data storage, there is

no need to understand the technology or also

ownership of the infrastructure. An analogy to an

electricity computing grid is to be useful for

comprehend cloud computing. A power company

maintains and owns the infrastructure, a distribution

company disseminates the electricity, and the

consumers merely use the resources without the

ownership or operational responsibilities. [2]. It is a

subscription-based service where networked storage

space and computer resources can be obtained. One

way to think of cloud computing is to be considered

our experience with email. As the real-time

requirement of data dissemination becomes

increasingly significant in many fields, the emergency

applications have received increasing attention, for

instance, stock quote distribution, earthquake

monitoring [1], emergency weather alert [2], smart

transportation system [3], and social networks.

Recently, the development of emergency applications

demonstrates two trends. One is the sudden change of

the arrival live content rate. Take ANSS [1] as an

example, its mission is to provide real-time and

accurate seismic information for emergency response

personnel.

Publish/subscribe (pub/sub) paradigm is a key

technology for asynchronous data dissemination that

are widely used in the emergency applications. It

decouples senders and receivers of the emergency

applications in space, time, and synchronization [5],

which enables a pub/sub system to seamlessly expand

to massive size. However, traditional pub/sub system

faces a number of challenges. Firstly, the system must

guarantee real-time event matching capacity when it

expands to very large-scale. For instance, Facebook

contains billions of users and 684,478 pieces of

content are published on average in every minute [6].

Secondly, the system needs to be elastic to the sudden

 Page 247

change of incoming event rate to achieve high

performance–price ratio. This is because if a fixed

number of servers are deployed in response to the

sudden change of incoming event rate, numerous

servers are in the idle states delivering few messages in

most of the time. Thirdly, the service must be tolerant

to the server failures. In emergency applications, a

large number of machines and links may be

unavailable instantaneously due to hardware errors or

operator mistakes, which leads to the loss of events

and subscriptions.

Millions of messages are generated by sensors in a

short time when an earthquake happens, while few

events are generated if there is no earthquake. The

other is the skewness of the large-scale subscriptions.

That is, a large number of subscribers demonstrate

similar interests. For instance, the dataset [4] of 297 K

users of Facebook shows that the hottest 100 topics

together have more than 1.1 million subscribers, while

71% topics have no more than 16 subscribers. In

contrast, a large number of P2P based systems [13] do

not provide dedicated brokers. All nodes are organized

into a P2P based overlay [6], and they act both as

publishers and subscribers. All events and

subscriptions are forwarded through multihop routing.

Then the subscriptions falling into the same subspace

of the entire content space are organized into a

multicast group or stored in a rendezvous node. With

the growth of arrival event rate, the multi-hop routing

may lead to high latency and traffic overhead. A large

body of skewed subscriptions may incur unbalanced

load on the multicast groups or rendezvous nodes,

which imposes a limit on scalability. Besides that, the

P2P based systems are hard to provide elastic service

due to the unpredictability of the node behavior.

Existing pub/sub systems are not adequate to

efficiently address all above challenges. In the broker

based pub/sub systems [7–14], all publishers and

subscribers are directly connected to a group of

servers, known as brokers. Subscriptions are

commonly replicated to all brokers or a part of

brokers, so that each broker can match events and

forward them to the interested subscribers. However,

replicating subscriptions incurs that each event is

matched against the same subscriptions for many

times, which leads to high matching latency and low

scalability when a large number of events and

subscriptions arrive. Moreover, it is difficult to provide

elastic service in order to deal with the changing

workloads. This is because these systems often over-

provision brokers to reduce their loads, and do not

have financial incentives to reduce the scale of brokers

during off-peak hours

2. Related Work

This section presents some elasticity solutions

implemented in IaaS clouds. In general, most public

cloud providers offer some elasticity feature, from the

most basic, to more elaborate automatic solutions. In

turn, the solutions developed by academy are similar to

those provided by commercial providers, but include

new techniques and methodologies for elastic

provisioning of resources. Amazon Web Services [14],

one of the most traditional cloud providers, offers a

replication mechanism called AutoScaling, as part of

the EC2 service. The solution is based on the concept

of Auto Scaling Group (ASG), which consists of a set

of instances that can be used for an application.

Amazon Auto-Scaling uses an automatic-reactive

approach, in which, for each ASG there is a set of rules

that defines the instances number to be added or

released. The metric values are provided by Cloud

Watch monitoring service, and include CPU usage,

network traffic, disk reads and writes. The solution

also includes load balancers that are used to distribute

the workload among the active instances.

GoGrid [10] and Rackspace [11] also implement

replication mechanisms, but unlike Amazon, does not

have native automatic elasticity services. Both

providers offer API to control the amount of virtual

machines instantiated, leaving to the user the

implementation of more elaborate automated

mechanisms. To overcome the lack of automated

 Page 248

mechanisms, tools such as RightScale [6] and Scalr [7]

have been developed. RightScale is a management

platform that provides control and elasticity

capabilities for different public cloud providers

(Amazon, Rackspace, GoGrid, and others) and also for

private cloud solutions (CloudStack, Eucalyptus and

OpenStack). The solution provides automatic-reactive

mechanisms based on an Elasticity Daemon whose

function is to monitor the input queues, and to launch

worker instances to process jobs in the queue.

Different scaling metrics (from hardware and

applications) can be used to determine the number of

worker instances to launch and when to launch these

instances. Scalr is an open-source project whose goal

is to offer elasticity solutions for web applications that

supports several clouds, such as, Amazon, Rackspace,

Eucalyptus and Cloudstack. Currently supports

Apache and ngnix, MySQL database, PostgreSQL,

Redis and MongoDB. Likewise RightScale, the

operations use hardware and software monitoring

metrics to trigger actions. A more comprehensive

elasticity solution is provided by OnApp Cloud [5], a

software package for IaaS cloud providers. According

to its documentation, it is possible implement

replication and redimensioning of VM’s, allowing

changes in virtual environments manually or

automatically, using user-defined rules and metrics

obtained by the monitoring system. In order to take

full advantage of the elasticity provided by clouds, it is

necessary more than an elastic infrastructure. It is also

necessary that the applications have the ability to

dynamically adapt itself according to changes in its

requirements. In general, applications developed in

PaaS clouds have implicit elasticity. These clouds

provide execution environments, called containers, in

which users can execute their applications without

having to worry about which resources will be used. In

this case, the cloud manages automatically the

resource allocation, so developers do not have to

constantly monitor the service status or interact to

request more resources [8], [9]. An example of PaaS

platform with elasticity support is Aneka [10]. In

Aneka, when an application needs more resources,

new container instances are executed to handle the

demand, using local or public cloud resources. There

are exceptions, such as Microsoft Azure [12] in which

the user must define the resources used by

applications. Some academic works have presented

elasticity mechanisms for applications, with the main

objective of enabling the development of flexible and

adaptable applications for cloud environments.

Neamtiu [13] described Elastin, a framework that

comprises a compiler and a runtime environment,

whose goal is to convert inelastic programs into elastic

applications. The idea behind Elastin is the use of a

compiler that combines diverse program versions into

a single application that can switch between

configurations at runtime, without shutting down the

application. The executable binary file stores several

configurations, each one for a given scenario. The

choice of which configuration should be used is

defined by the user and can be changed at runtime.

Vijayakumar et al. [9] presented an elasticity

mechanism for streaming applications. The proposal

consists in to adapt the CPU resources of the virtual

machine in accordance with the data streams. The

streaming application consists of a pipeline of several

stages, each one allocated individually in a virtual

machine. The elasticity mechanism compares the input

and output flow at each stage, and if there is a

bottleneck, increases the percentage of physical CPU

allocated to the virtual machine that hosts the affected

stage. Knauth & Fetzer [4] also addressed streaming

applications, but focusing energy consumption

reduction. The proposed solution employs virtual

machine migration and consolidation to provide

elasticity. The basic idea is to start each application

stage inside a virtual machine. When load is minimal,

all virtual machines are consolidated into a minimal set

of physical machines. When the load increases, virtual

machines are migrated to other servers, until each

physical server hosts a single virtual machine. Rajan et

al. [14] presented Work Queue, a framework for the

development of master-slave elastic applications.

Applications developed using Work Queue allow

 Page 249

adding slave replicas at runtime. The slaves are

implemented as executable files that can be

instantiated by the user on different machines on

demand. When executed, the slaves communicate with

the master that coordinates task execution and the data

exchange.

3. PROPOSED SCHEME:

3.1 ESCC Technique: Elastic and Scalable Content

based Cloud Pub/Sub System

To achieve scalable and elastic total order in content

based pub/sub system, we first propose a distributed

two-layer pub/sub framework based on the cloud

computing environment. At a high level, the

framework consists of two layers: the matching layer

and the delivery layer

 The matching layer is responsible for

matching events against subscriptions and

sending events with matched subscribers to the

delivery layer.

 The delivery layer is responsible for ordering

events according to the total order semantics,

and distributing them to their interested

subscribers For matching service, the main

factors limiting its scalability contain the scale

of subscriptions, the distributions of

subscriptions and events, data dimensionality,

and the arrival rate of events. For total

ordering service, the main factors limiting its

scalability contain the arrival rate of events

and the probability of ordering conflict. Thus,

we can flexibly improve the capacities of

either event matching service or total ordering

service based on various workload

characteristics if both services are decoupled.

Figure 1.ESCC Architecture

3.2 Matching Layer

The matching layer is responsible for matching events

against subscription and sending events with their

matched subscribers to the delivery layer. At this layer,

we employs SREM technique as shown in Figure 1 to

implement high matching throughput. In SREM,

through a hierarchical multi-attribute space partition

technique (called HPartition), the content space is

divided into multiple hypercube, each of which is

managed by one server. Subscriptions and events

falling into the same hypercube are matched with each

other, such that the matching latency can be greatly

reduced. Besides, a performance aware detection

technique (called PDetection) is proposed in ESCC to

adaptively adjust the scale of servers based on the

churn workloads

3.2 Delivery Layer

The delivery layer is responsible for total ordering

events and delivering them to their interested

subscribers. The main novelty of this layer lies in a

preceding graph building technique (called PGBuilder)

and a performance aware provisioning technique

(called PProvision). The first aims to reduce the total

order latency in a scalable manner. In PGBuilder,

subscribers are divided into multiple groups, each of

which is managed by a single server. That is, all

servers of PGBuilder are able to detect total order

conflicts among events simultaneously, which greatly

reduces the delivery latency. Each server of PGBuilder

constructs preceding graphs among arrival events,

which can quickly detect non-conflicting events and

deliver them in a parallel manner. Besides, to ensure

reliable delivery, PGBuilder provides a series of

dynamics maintenance mechanisms.

 Page 250

Firstly, the arrival events in each sequencer are

dispatched into multiple separated clusters, and all

these clusters are managed by a global queue (GQ).

Then, e is added into the tail cluster. Clusters in the

GQ are naturally conflicted with each other, and each

cluster can be treated as a sliding window. That is,

each sequencer only processes the head cluster. After

the events of the head cluster are delivered to all their

corresponding subscribers, the head cluster is removed

from the global queue, and the sequencer processes

next head cluster. Thus, each new arrival event only

needs to detect conflicts against the events in the tail

cluster of GQ, but not all events of GQ. Through

dividing events into multiple clusters, it greatly

reduces the conflict detecting latency regardless of the

event arrival rate.

3.3 Delivery Strategy

In ESCC technique, there are mainly two roles:

sequencers and subscribers. Since the joining or

leaving of both roles may severely hurt the

performance of total ordering, we will discuss how to

keep continuous and efficient total ordering under

dynamic networks.

i. Subscriber:

Recall that each subscriber sends its subscriptions to

one of the dispatchers in our framework as shown in

Fig. 1. When a new subscriber joins the system, it is

dispatched to one sequencer whose hash value is

nearest to its own value according to the consistent

hashing technique. To ensure reliable delivery, the

sequencer starts to send the next event until it receives

all acknowledgements from subscribers of the last

event. Thus, sequencers need to obtain the latest view

of its local subscribers. Otherwise, waiting

acknowledgements from failed subscribers may lead to

high delivery latency.

ii. Sequencer:

When a number of new sequencers join in the system,

the root sequencer assigns every new sequencer to be a

child of the existing sequencers one by one.

Correspondingly, each exiting sequencer should detect

whether its every local subscriber needs to be migrated

to one of the new sequencers based on the consistent

hashing technique.

4. Performance Analysis

This section presents the design and implementation of

ESCC prototype and performance analysis of the

proposed framework. In order to design the prototype

in modular and portable fashion we made use of the

object oriented middleware that allows the users to

focus on the application logic, rather than interact with

lowlevel network programming interfaces.

 Page 251

To evaluate the scalability and elasticity each matcher

estimates its waiting time per 200 ms. we set both

timeout intervals Tout and T′ out to 10 s for adding

and removing matchers, respectively That is, ESCC

collects all new matchers or failed matchers until the

continuous arrival interval or failure interval of two

matchers exceeds 10 s. Besides that, Ds supposes that

a matcher fails if its continuous arrival interval of two

heartbeat messages exceeds 10 s Firstly the evaluation

process involves in how how ESCC adjust the number

of matchers to adapt to both linear and instantaneous

increasing event arrival rates as shown in Figure 2.

Next the process show the elasticity of ESCC adapts to

both linear and instantaneous decreasing event arrival

rates.

Figure 2. The changing of event loss rate with a

number of matcher's failure.

5. Conclusion

This paper introduces ESCC, a novel scalable and

elastic event matching approach for the attribute-based

pub/sub systems. ESCC utilizes an one-hop lookup

overlay in the cloud computing environment to reduce

the clustering latency. Through a hierarchical multi-

attribute space partition technique, ESCC reaches

scalable clustering of subscriptions and matches each

event on one cluster. The performance-aware detection

technique enables the system to adaptively adjusts the

scale of matchers according to the changing of

workloads. Compared with the existing cloud based

pub/sub systems, our analytical and experimental

results demonstrate that ESCC shows a much higher

matching rate and better load balance with different

workload characteristics. Moreover, ESCC adapts to

the sudden workload changes and server failures with

low latency and small traffic overhead.

References:

1. M. Gjoka, M. Kurant, C.T. Butts, A. Markopoulou,

Walking in Facebook: a case study of unbiased

sampling of OSNs, in: International Conference on

Computer Communications, INFOCOM, 2010, pp. 1–

9.

2. P.T. Eugster, P. Felber, R. Guerraoui, A.-M.

Kermarrec, The many faces of publish/subscribe,

ACM Computing Surveys (CSUR) 35 (2) (2003) 114–

131.

3. Datacreatedperminite. URL:

http://www.domo.com/blog/2012/06/ how-much-data-

is-created-every-minute/?dkw=socf3/.

4. P. Pietzuch, J. Bacon, Hermes: a distributed event-

based middleware architecture, in: 22nd International

Conference on Distributed Computing Systems

Workshops, 2002.

5. F. Cao, J.P. Singh, Efficient event routing in

content-based publish/subscribe service network, in:

International Conference on Computer

Communications, INFOCOM, 2004.

6. G. Banavar, T. Chandra, B. Mukherjee, J.

Nagarajarao, R.E. Strom, D.C. Sturman, An efficient

multicast protocol for content-based publish–subscribe

systems, in: IEEE International Conference on

Distributed Computing Systems, ICDCS, 1999, pp.

262–272.

7. F. Cao, J.P. Singh, Medym: match-early with

dynamic multicast for contentbased publish–subscribe

networks, 2005, pp. 292–313.

8. L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R.

Strom, D. Sturman, Exploiting IP multicast in content-

 Page 252

based publish–subscribe systems, in: IFIP/ACM

International Conference on Distributed Systems

Platforms, 2000, pp. 185–207.

9. A. Riabov, Z. Liu, J.L. Wolf, P.S. Yu, L. Zhang,

Clustering algorithms for content-based publication–

subscription systems, in: IEEE 22nd International

Conference on Distributed Computing Systems,

ICDCS, 2002, pp. 133–142.

10. A. Carzaniga, Architectures for an event

notification service scalable to widearea networks,

Ph.D. Thesis, POLITECNICO DI MILANO, 1998.

11.Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas,

G. Das, P.-Å Larson, Summarybased routing for

content-based event distribution networks, Computer

Communication Review 34 (5) (2004) 59–74.

12.A. Carzaniga, M.J. Rutherford, A.L. Wolf, A

routing scheme for content-based networking, in: IEEE

International Conference on Computer

Communications, INFOCOM, 2004.

13.W.W. Terpstra, S. Behnel, L. Fiege, A. Zeidler,

A.P. Buchmann, A peer-topeer approach to content-

based publish/subscribe, in: Proceedings of the 2nd

International Workshop on Distributed Event-Based

Systems, 2003, pp. 1–8.

14.I. Aekaterinidis, P. Triantafillou, Pastrystrings: a

comprehensive content-based publish/subscribe DHT

network, in: IEEE 26nd International Conference on

Distributed Computing Systems, ICDCS, 2006

