

A Peer Reviewed Open Access International Journal

Tropological Modeling and Classification of Mammographic Micro Calcification Clusters

C.Soundarya M.Tech (Embedded Systems), Kshatriya College of Engineering.

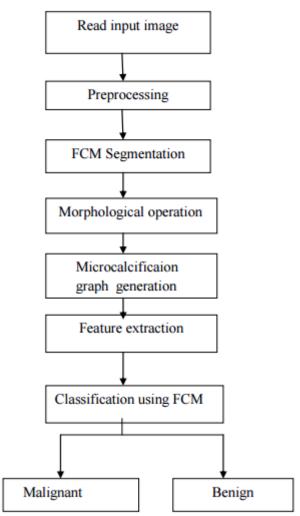
ABSTRACT:

Microcalcification is a tiny abnormal deposit of calcium salt especially in the breast cancer that in the human female is often an indicator of breast cancer. In currently the microcalcification cluster is a important primary sign of breast cancer. The breast cancer is detected the early stage and it is identify the benign or malignant. The existing approaches are tending to concentrate on to the morphological of microcalcification and/or statistical cluster features. In this paper, the proposed method is fuzzy techniques are used to detect the malignant or graph generation is a set of benign. A microcalcification is to represent the multiple scales at topological structure of microcalcification clusters.

INTRODUCTION

Breast cancer is one of the types of cancer which is seen in humans and is one of the deadliest diseases. Early detection of breast cancer the patients gives a good chance of survival, whereas the late detection can cause death .A breast cancer is only detected can be classified as benign or malignant. It is one of the most difficult to differentiate between a benign microcalcification from one that is malignant microcalcification. Medical image processing is the process of creating the visual representation of inside part of the body for clinical analysis and medical intervention. Image processing is the process of dividing a digital image into multiple segments. Goal of segmentation is to simplify and /or change the image representation in to something that is more meaningful and easier to analyze. It is based on the measurement taken from the image and might be texture. gray level, color, depth or motion. Mammography is used as a screening tool and

Inala Raghava, M.Tech Assistant Professor, Kshatriya College of Engineering.


diagnostic. Screening mammogram is performed to attempt to detect breast cancer before symptoms occur. The goal of screening mammography programs is to decrease mortality from breast cancer. Diagnostic mammogram is performed to help detect breast cancer if a woman has symptoms, such as a lump that can be felt in her breast. The goal of mammography is one of the early detection of breast cancer, typically through masses and detection of characteristics /or microcalcifications. Mammography is to detect the around 80% to 90% of breast cancers. The mammography is used with the masses and abnormalities detection at early stage is quite possible. There are several steps of breast image processing ,first step is read the input image ,next step is preprocessing, segmentation, morphological operation, microcalcification graph generation, feature extraction, classification and finally detect the images are malignant or benign .Morphological is used on gray value image, if viewed as a stack to binary image. The morphological characteristics of microcalcification could be used to difference between benign or malignant cases. It is difficult and time consuming for radiologists to differentiate between malignant from benign microcalcification. The morphological features and shape are based on mainly extracted from the individual microcalcification and describe the morphological characteristics of individual microcalcification, such as size and shape. The proposed method for modeling and classifying the microcalcification clusters in mammogram is based on the topological properties. A set of topological features are used to extract from the microcalcification graph at the multiple scales, and the MultiScale topological feature is generated to differentiate between the benign or malignant cases.

A Peer Reviewed Open Access International Journal

2. PROPOSED METHOD:

In this paper, the proposed method is to classify the stages of malignant or benign of breast cancer.

Fig: flow diagram

Preprocessing:

Preprocessing phase is needed to improve the image quality and make the segmentation results more accurate. First we remove the unwanted parts in the background of the mammogram. The objective of this process is to improve the quality of the image, to make it ready for further processing. Removing the irrelevant parts of the image is done by increasing contrast of the mammogram using threshold value. This images is converted into a rgb image to lab.

Segmentation:

Segmentation is the process of confining a digital image into multiple segments. By segmentation technique it is easy to change the representation of an image so it will be easier to analyze and it is easy to locate objects and boundaries in images. In this technique image can be segmented and the set of segments will cover the entire image.

Morphological operation:

The techniques of image processing based on the shape. The value of each pixel in the output image is based on a comparison of the corresponding pixel with its neighbors in the input image. By choosing the size and shape of the neighborhood, you can construct a morphological operation that adapts to specific shapes in the input image. Add pixels to the boundaries of object in the image.

Microcalcification graph generation:

In this step, we are using a multiple scale. It is generated to the spatial connectivity relationship between microcalcification with in the clusters. The individual microcalcification is based on corresponding to the each nodes to represents an edge between two nodes are created if the two corresponding microcalcification are connected.

Feature extraction:

Over a range of scales microcalcification graph is a set of graph theoretical features can be extracted to express the topological properties of microcalcification clusters. These features will constitute the feature space for the classification of malignant and benign clusters. Before extractingthe topological features of microcalcification clusters, wefirst provide the definitions following for general graphs. Furtherdefinitions for graphs can be found in [32]. Here, we use G(V,E) to represent a graph, where V is the vertex set and E is the edge set, and use |V| (the cardinality of V) and E (the cardinality of E) to denote the number of vertices and the number of edges

A Peer Reviewed Open Access International Journal

in G, respectively. Gconndenotes the subgraph of G that corresponds to the largest connected component.

Definition 1:

The adjacency matrix

A(i, j) of a graph G(V,E) is a $|V| \times |V|$ matrix, defined as A(i, j) = 1, if (i, j) \in E 0, otherwise

Where $(i,j)\epsilon E$ indicates(i,j) is an edges, there is an edges between vertex j and G

Definition 2:

The degree matrix D(i, j) of a graph G(V,E) is a $|V| \times |V|$ diagonal matrix containing the degree of vertex I at entry (i,j), defined as D(i, j) = d(i), if i = j 0, otherwise

 $d(i)=\Sigma j\epsilon vaij$ is the number of edges incident to vertex i and $\Sigma i\epsilon v d(i)=2|E|$.

F. FCM:

Fuzzy c-means is a method of clustering which allows a piece of data to be a member of two or more clusters. The FCM algorithm consists of the following steps:

Step 1: Let us suppose that M-dimensional N data points represented by xi(i = 1, 2, ..., N), are to be clustered.

Step 2: Assume the number of clusters to be made, that is, C, where $2 \le C \le N$.

Step 3: Choose an appropriate level of cluster fuzziness f > 1.

Step 4: Initialize the N × C ×M sized membership matrix U, at random, suchthatUijm \in [0, 1] and Σ c j=1 Uijm=1.0, for each i and a fixed value of m and Determine the cluster centers CCjm, for jth cluster and its mth dimension by using the expression given below

$$\Sigma_{jm} = \sum_{i=1}^{N} U_{ijm} x_{im}$$

 $\Sigma^{N_{i=1}} U^{f_{ijm}}$(1)

Step 5: Calculate the Euclidean distance between ith data point and jthclustercenter with respect to, say mth dimension like the following: Dijm =||(xim - CCjm)||......(2)

RESULT AND DISCUSSION:

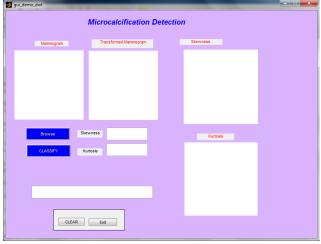


Fig: GUI for Micro classification Detection

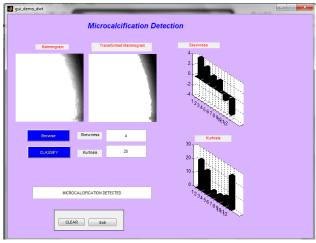


Fig: Input and Outputs

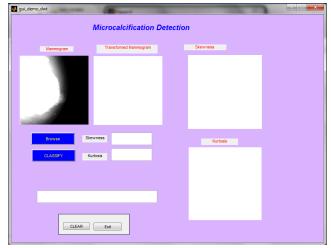


Fig: Input image for GUI

A Peer Reviewed Open Access International Journal

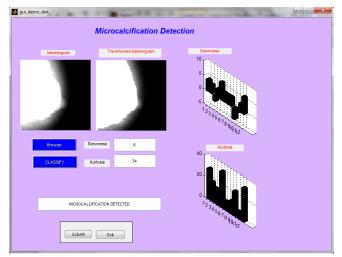


Fig: input and output images and graphs of micro classification

CONCLUSION:

The paper presented fcm method for determining the stage of breast cancer malignant or benign based on the size of the cancer on the mammogram image basis. In previous publication is extracted at a single scale, microcalcification cluster is a representation of covering MultiScale characteristics was developed in this paper. The resulting eight graph feature sets were aggregated and constituted the MultiScale topological feature vector, which has been used to classify the microcalcification clusters into malignant or benign.

REFERRENCES:

 Zhili Chen*, Harry Strange, Arnau Oliver, Erika R.
E. Denton, Caroline Boggis, and ReyerZwiggelaar," Topological Modeling and Classification of Mammographic Microcalcification Clusters", IEEE transactions on biomedical engineering, vol. 62, NO.
4, APRIL 2015.

2. Heang-Ping Chany, BerkmanSahiner, Nicholas Petrick" Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network,IEEE transactions on biomedical engineering,(2001)

3. Nizar Ben Hamad, Mohamed Ellauze* and Med SalimBouhlel" Wavelets Investigation for Computer Aided Detection of Microcalcification in Breast Cancer" IEEE transaction 978-1-4244-3757-3/09/\$25.00 ©2009.4

4. F. Dehghan, H. Abrishami-Moghaddam, M. Giti" Automatic Detection of Clustered Microcalcifications in Digital Mammograms: Study on Applying Adaboost with SVM-based Component Classifiers"IEEE transaction August 20-24, 2008.

5. Robert M. Nishikawa, Dulcy E. Wolverton" Computerized Classification of Malignant and benign Clustered Microcalcifications in Mammograms"IEEEtransactionOct. 30 - Nov. 2, 1997 Chicago, IL. USA

6. Shrinivas D Desai, Megha G" Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm"IEEE transaction on 2013.

7. Liang Shen, Rangaraj M. Rangayyan, and J. E. Leo Desautels" Application of Shape Analysis to Mammographic Calcifications" IEEE transactions ok Medical imaging, vol 13. no. 2. June 1994.

8. Joachim Dengler, Sabine Behrens, and Johann Friedrich Desaga" Segmentation of Microcalcifications in Mammograms" IEEE transactions on Medical imaging, vol. 12, no. 4, december 1993.

9. Caro Lucas, GelarehMortezaie" Analysis of Mammographic Microcalcifications Using gray –level Images and Neural Networks" IEEE transactions on medical imaging, vol. 12, no. 4, december 2001.

10.AymanA.AbuBaker"AutomaticMicrocalcificationDetectionUsingWaveletTransform"International Journal of Computer Theoryand Engineering, Vol. 7, No. 1, February 2015.

A Peer Reviewed Open Access International Journal

11. H.Strange et al.," Modelling mammographic microcalcification clusters using persistant mereotopology", Pattern Recog.Lett.,vol.47,pp.157-163,2014. 12. Chun-Ming Chang and Andrew Laine"Coherence of Multiscale Features for Enhancement of Digital Mammograms"IEEE trans on information tech in biomedical,vol.,3,march 1999.

Volume No: 3 (2016), Issue No: 12 (December) www.ijmetmr.com