
 
 

 Page 992 
 

The Cost-Effective Iterative MapReduce in Big Data Environment 

K.Chandra Sekhar 

Department of Information Technology 

MVSR Engineering College, 

Hyderabad, Telangana - 501510, India. 

P.Karthik 

Department of Information Technology 

MVSR Engineering College, 

Hyderabad, Telangana - 501510, India. 

 

Abstract 

Data is expanding step by step with the Development of 

Information Technology. We could separate more 

important Information from the tremendous scale data. 

Presently a day's practically every online clients hunt 

down items, administrations, points of interest and so 

forth to figure PageRank utilizing the MapReduce 

approach to parallelization. This gives us a method for 

registering PageRank that can on a fundamental level 

be consequently parallelized, thus conceivably scaled 

up to huge connection charts, i.e., to expansive 

accumulations of webpages.  Depict a solitary machine 

usage which effectively handles a million or so pages.  

We utilize a group to scale out much further –be 

intriguing to perceive how far we can get. About 

PageRank and MapReduce finally survey the essential 

actualities. How about we begin with PageRank. 

Hadoop Map-Reduce is a product system for effectively 

composing applications which process unfathomable 

measures of data in parallel on expansive bunches of 

item equipment in a solid, shortcoming tolerant way. 

 

Keywords: Analysis, Big Data, Hadoop, Map Reduce, 

Report, Security. 

 

Introduction 

In Big data the data originates from different, 

heterogeneous, self-ruling sources with complex 

relationship and persistently developingupto 2.5 

quintillion bytes of data are made every day and 90 

percent data on the planet today were delivered inside 

recent years .for instance Flicker, an open picture 

sharing site, where in a normal 1.8 million photographs 

for every day are get from February to walk 2012.this 

demonstrates that it is extremely troublesome for big 

data applications to oversee, prepare and recover data 

from substantial volume of data utilizing existing 

programming devices. It's ended up test to extricate 

proficient data for future use .There are diverse 

difficulties of Data mining with Big Data. We neglect it 

in next segment. At present Big Data preparing relies on 

parallel programming models like MapReduce, and in 

addition giving registering stage of Big Data 

administrations. Data mining calculations need to look 

over the preparation data for getting the insights for 

unraveling or advancing model parameter. Because of 

the substantial size of data it is getting to be costly to 

examination data shape. The Map-Reduce based 

methodology is utilized for data block emergence and 

mining over huge datasets utilizing all-encompassing 

measures like most regular questions. Our paper is 

sorted out as takes after: first we will see key difficulties 

of Big Data Mining then we neglect a few techniques 

like, MapReduce and Page Rank algorithm [1-3]. Map-

Reduce are a disseminated parallel programming model 

acquainted by Google with backing huge data preparing. 

To start with form of the Map Reduce library was 

composed in February 2003. The programming model is 

motivated by the guide and lessens primitives found in 

Lisp and other useful dialects. 

 

MapReduce for Big Data ApplicationsRecently 

MapReduce has emerged as one of the most popular 

computing frameworks for Big Data processing because 

of the simple programming model and also includes the 

automatic management of the parallel execution. The 

MapReduce framework and the open source 

implementation is widely adopted the major and leading 

companies like Yahoo!, Facebook and Google. The 

computation in MapReduce framework has been divided 

into two main phases, that is map and reduce phases, that 

in turn are carried out by different map tasks and reduce 



 
 

 Page 993 
 

tasks, respectively. During the map phase, map tasks are 

launched in parallel in order to convert the input splits to 

intermediate data to form the key/value pairs. The local 

machine stores these key/value pairs then they are 

organized into   multiple data partitions, one per reduce 

task. During the   reduce    phase, each of the reduce task 

fetches its part of data partitions from all map tasks to 

generate the final result. In between the map phase and 

the reduce phase, there is a shuffle step. During this step, 

the data produced by the map phase are ordered, 

partitioned and transferred to the appropriate machines 

executing the reduce phase. During this time, it causes a 

huge volume of traffic from the network traffic pattern 

carried out from all map tasks to all reduce tasks. The 

network traffic imposes a serious constraint on the 

efficiency of data analytic applications. To explain with 

example, when we have a tens of thousands of machines, 

the data shuffling could account for 58.6% of the cross-

pod traffic and it amounts to over 200 petabytes in total 

in the analysis of SCOPE jobs [7]. There will be 

considerable performance overhead in case of the 

shuffle- heavy MapReduce tasks, which could be up to 

30-40 %. A hash function shuffles the intermediate data 

by default in Hadoop, which then leads to a high 

network traffic as it ignores network topology and data 

size associated with each key. 

 
Figure: 1. Three layer model for Traffic Aware 

optimization 

 

To tackle the problem of high network usage, incurred 

by the traffic-oblivious partition scheme, we take into 

account of both task locations and data size associated 

with each key  in the project. By assigning keys with 

larger data size to reduce tasks closer to map tasks, 

network traffic can be significantly reduced. To further 

reduce network traffic within a MapReduce job, we 

consider to aggregate data with the same keys before 

sending them to remote reduce tasks. By aggregating the 

data of same keys before sending them reducers we 

reduce network traffic as shown in the Fig. 1. 

 

Literature Review 

Yanfeng Zhang et al [1] "i2MapReduce: Incrementing 

the MapReduce for Mining Evolving of the Big Data", 

VOL. 27, NO. 7, JULY 2015. Zaharia et al [2] proposed 

framework on the strong appropriated datasets of guide 

diminish. A shortcoming tolerant reflection for the in-

memory of group processing, a web administration is 

encountering mistakes and an administrator needs to 

hunt terabytes data of the guide decrease of logs in the 

Hadoop record framework (HDFS) to discover the cause 

in big data mining. Utilizing Spark, the administrator can 

stack only the blunder messages from the logs into 

Random Access Memory over a set or the fields of hubs 

and question them intelligently in the data sets. J. Li et al 

[3] proposed framework is utilized as a part of building 

quick, conveyed programs with parceled tables, with the 

expanded accessibility of data focuses and cloud stages, 

software engineers from various issue areas confront the 

errand of composing parallel applications that keep 

running crosswise over numerous hubs. These 

application range from machine learning issues (k-

implies bunching, neural networks preparing), chart 

calculations (PageRank), experimental calculation and 

so on. A hefty portion of these applications broadly get 

to and change shared transitional state put away in 

memory. 

 

Mihaylov et.al [5] framework helpful in recursive, delta 

based data driven calculation, Web and interpersonal 

organization situations, inquiry workloads incorporate 

impromptu and OLAP inquiries, and in addition iterative 

calculations that investigate data connections (e.g., join 

examination, bunching, learning). Advanced DBMSs 

bolster impromptu and OLAP inquiries, however most 

are not sufficiently vigorous to scale to vast bunches. 

Then again, cloud stages like MapReduce execute chains 



 
 

 Page 994 
 

of bunch errands crosswise over groups in a shortcoming 

tolerant manner, however have a lot of overhead to 

bolster specially appointed questions. Ewen et al [7] 

created framework that considers Spinning quick 

iterative data streams, a technique to coordinate 

incremental cycles, a type of work set emphasess, with 

parallel data streams.In the wake of demonstrating to 

coordinate mass emphasess into a dataflow framework 

and its streamlining agent, displaying an expansion to 

the programming model for incremental cycles. The 

augmentation lightens for the absence of changeable 

state in dataflow and takes into consideration misusing 

the scanty computational conditions inborn in numerous 

iterative calculations. The assessment of a prototypical 

execution demonstrates that those viewpoints lead to up 

to two requests of extent speedup in calculation runtime, 

when misused. 

 

Howe et. al [6]proposed framework called as Hadoop - 

Efficient iterative data handling on extensive groups, the 

developing interest for largescale data mining and data 

investigation applications has driven both industry and 

the scholarly world to design new sorts of exceptionally 

versatile data-escalated registering stages. MapReduce 

and Dryad are two prevalent stages in which the 

dataflow appears as a coordinated non-cyclic chart of 

administrators. These stages need worked in backing for 

iterative projects, which emerge actually in numerous 

applications including data mining, web positioning, 

diagram investigation, model fitting, etc. Hadoop, a 

changed variant of the Hadoop MapReduce structure that 

is intended to serve these applications. Hadoop not just 

develops MapReduce with programming support for 

iterative applications, it likewise drastically enhances 

their productivity by making the errand scheduler circle 

mindful and by including different storing systems. We 

assessed Hadoop on genuine questions and genuine 

datasets. Contrasted and Hadoop, overall, Hadoop 

diminishes question runtimes by 1.85, and rearranges 

just 4 percent of the data amongst mappers and reducers. 

 

Y. Bu, B. et.al [8]  Map Reduce and Dryad are two 

popular platforms in which the dataflow takes the form 

of a directed acyclic graph of operators. These platforms 

lack built-in support for iterative programs, which arise 

naturally in many applications including data mining, 

web ranking, graph analysis, model fitting, and so on. 

Map Reduce with programming support for iterative 

applications, it also dramatically improves their 

efficiency by making the task scheduler loop-aware and 

by adding various caching mechanisms Ekanayake et al 

[9] proposed framework known as Twister: A runtime 

for iterative mapreduce, MapReduce programming 

model has streamlined the usage of numerous data 

parallel applications. The straightforwardness of the 

programming model and the nature of administrations 

gave by numerous usage of MapReduce draw in a ton of 

energy among dispersed registering groups. From the 

years of involvement in applying MapReduce to 

different investigative applications we distinguished an 

arrangement of augmentations to the programming 

model and changes to its design that will extend the 

appropriateness of MapReduce to more classes of uses. 

D. Logothetis et.al [13] the need for stateful dataflow 

programs that can rapidly sift through huge, evolving 

data sets. These data-intensive applications perform 

complex multi-step computations over successive 

generations of data inflows, such as weekly web 

crawls,daily image/video uploads, log files, and growing 

social networks.While programmers may simply re-run 

the entire dataflow when new data arrives, this grossly 

inefficient, increasing result latency and squandering 

hardware resources and energy. 

 

For example, incrementally computing PageRank using 

CBP can reduce data movement by 46% and cut running 

time in half. 

P.Bhatotia et.al [15]Many online data sets grow 

incrementally over time as new entries are slowly added 

and existing entries are deleted or modified. Taking 

advantage of this incrementality, systems for 

incremental bulk data processing, such as Google’s 

Percolator, can achieve efficient updates. This 

efficiency, however, comes at the price of losing 

compatibility with the simple programming models 

offered by non-incremental systems, e.g., Map Reduce, 



 
 

 Page 995 
 

and more importantly, requires the programmer to 

implement application-specific dynamic/ incremental 

algorithms, ultimately increasing algorithm and code 

complexity. J. Cho and H. Garcia-Molina[16] crawler 

selectively and incrementally updates its index and/or 

local collection of web pages, instead of periodically 

refreshing the collection in batch mode. The incremental 

crawler can improve the \freshness" of the collection 

signi_cantly and bring in new pages in a more timely 

manner. 

 

S. Kang et.al[19]  Programs are expressed as a sequence 

of iterations, in each of which a vertex canreceive 

messages sent in the previous iteration, send messages of 

other vertices, and modify its own state and that of its 

outgoing edges or mutate graph topology. This vertex 

centric approach is exible enough to express a broad set 

of algorithms. The model has been designed for 

efficient, scalable and fault-tolerant implementation on 

clusters of thousands of commodity computers, and its 

implied synchronicity makes reasoning about programs 

easier. Y. Zhang, et.al[21]propose a distributed 

computing framework, PrIter, which enables fast 

iterative computation by providing the support of 

prioritized iteration. 

 

Proposed Method 

The processing of large-scale data is simplified using the 

MapReduce programming model which works very well 

on the commodity cluster which exploits the processing 

by processing of map tasks and reduce tasks in parallel.  

 

There have been many efforts that have been made 

towards in order to enhance performance of jobs of 

MapReduce; in shuffle phase network traffic that is 

generated is ignored many a times. It plays a key role in 

improving the performance. Historically, partition of 

intermediate data is done using a hash function in reduce 

tasks. However, data size and network topology for each 

key are not considered. Hence this is not efficient from 

traffic perspective [6-9]. 

 

Following are the two issues this project aims to resolve: 

1. Network traffic: Cost of the network traffic has to be 

decreased using a novel intermediate data partition 

method. 

2. Aggregator placement problem: An algorithm called 

the distribution algorithm which is designed  to solve the 

issue of optimize the big-scale decomposition of  the big 

data applications. 

 
Figure: 2. Proposed MapReduce Model with 

Aggregators 

 

In this section, we develop a distributed algorithm to 

solve the problem on multiple machines in a parallel 

manner. Our basic idea is to decompose the original 

large-scale problem into several distributively solvable 

subproblems that are coordinated by a high-level master 

problem. The model is as shown in the Figure 3. The 

figure shows the MapReduce with the aggregators 

placed for processing for traffic aware scheme [4-5]. 

 
Figure: 3. Distributed Algorithm 



 
 

 Page 996 
 

In this section, we verify that our distributed algorithm 

can be applied in practice using real trace in a cluster 

consisting of 5 virtual machines with 1GB memory and 

2GHz CPU. Our network topology is based on three tier 

architectures: an access tier, an aggregation tier and a 

core tier (Fig. 4). The access tier is made up of cost 

effective Ethernet switches connecting rack VMs [2]. 

 

The access switches are  connected via Ethernet to a set 

of aggregation switches which in turn are connected to a 

layer of core switches. An inter-rack link is the most 

contentious resource as all the VMs hosted on a rack 

transfer data across the link to the VMs on other racks.  

Our VMs are distributed in three different racks, and the 

map-reduce tasks are scheduled as in Fig. 6. For 

example, rack 1 consists of node 1 and 2; mapper 1 and 

2 are scheduled on node 1 and reducer 1 is scheduled on 

node 2. The intermediate data forwarding between 

mappers and reducers should be transferred across the 

network. The hop distances between mappers and 

reducers are shown in Fig. 4, e.g., mapper 1 and reducer 

2 has a hop distance 6.data forwarding between mappers 

and reducers should be transferred across the network. 

 

The hop distances between mappers and reducers are 

shown in Fig. 4, e.g., mapper 1 and reducer 2 has a hop 

distance 6. 

 
Figure 4. A small example 

 

The intermediate data from all mappers is transferred 

according to the traffic-aware partition scheme. We can 

get the total network 2690:48 in the real Hadoop 

environment while the simulated network cost is 

2673:49. They turn out to be very close to each other, 

which indicates that our distributed algorithm can be 

applied in practice. 

 

CONCLUSION 

In this system, we look into so that we can reduce 

network traffic cost for a MapReduce job by designing a 

novel intermediate data partition scheme. Furthermore, 

we jointly consider the aggregator placement problem, 

where each aggregator can reduce merged traffic from 

multiple map tasks. A decomposition-based distributed 

algorithm is proposed to deal with the large-scale 

optimization problem for big data application and an 

online algorithm is also designed to adjust data partition 

and aggregation in a dynamic manner. The partition and 

aggregators help to add to distance aware routing for 

processing the data for the big data applications. Placing 

the aggregators as close to the nodes and the client 

would also add to the network traffic reduction and in 

turn helps to reduce the cost of the data processing. 

 

References 

[1] Huan Ke, Student Member, IEEE, Peng Li, Member, 

IEEE, Song Guo, Senior Member, IEEE, and Minyi 

Guo, Senior Member, IEEE "On Traffic-Aware Partition 

and Aggregation in MapReduce for Big Data 

Applications " IEEE TRANSACTIONS ON 

PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 

27, NO. 3, MARCH 2016 

 

[2] Y. Wang, W. Wang, C. Ma, and D. Meng, “Zput: A 

speedy data uploading approach for   the hadoop 

distributed file system,” in Cluster Computing 

(CLUSTER), 2013 IEEE International Conference on. 

IEEE, 2013, pp. 1–5. 

 

[3] T. White, Hadoop: the definitive guide: the definitive 

guide. ” O’Reilly Media, Inc.”, 2009. 

 

[4] S. Chen and S. W. Schlosser, “Map-reduce meets 

wider varieties of applications,” Intel Research 

Pittsburgh, Tech. Rep. IRP-TR-08-05, 2008. 

 



 
 

 Page 997 
 

[5] J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J. 

Carey, M. Weimer, T. Condie, and R. Ramakrishnan, 

“Iterative mapreduce for large scale machine learning,” 

arXiv preprint arXiv:1303.3517, 2013. 

 

[6] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, 

and R. S. Schreiber,  “Presto:  distributed machine 

learning and graph processing with sparse matrices,” in 

Proceedings of the 8th ACM European Conference on 

Computer Systems. ACM, 2013, pp. 197– 210. 

 

[7] A. Matsunaga, M. Tsugawa, and J. Fortes, 

“Cloudblast: Combining mapreduce and virtualization 

on distributed resources for bioinformatics applications,” 

in eScience, 2008. eScience’08. IEEE Fourth 

International Conference on. IEEE, 2008, pp. 222–229. 

 

[8] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, and V. 

Markl, “Comparison of distributed data-parallelization 

patterns for big data analysis: A bioinformatics case 

study,” in Proceedings of the Fourth International 

Workshop on Data Intensive Computing in the Clouds 

(DataCloud), 2013. 

 

[9] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “Cloudnmf: 

A mapreduce implementation of nonnegative matrix 

factorization for largescale biological datasets,” 

Genomics, proteomics & bioinformatics,  vol. 12,  no. 1, 

pp. 48–51,  2014. 

 


