

 Page 840

HADOOP
K.Nagaraju

B.Tech Student,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist.T.S.

J.Deepthi

Associate Professor & HOD,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist.T.S.

Mr.T.Pavan Kumar

Assistant Professor,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist.T.S.

Apache Hadoop is an open-source software framework

used for distributed storage and processing of very

large data sets. It consists of computer clusters built

from commodity hardware. All the modules in Hadoop

are designed with a fundamental assumption that

hardware failures are a common occurrence and should

be automatically handled by the framework.[2]. The

core of Apache Hadoop consists of a storage part,

known as Hadoop Distributed File System (HDFS),

and a processing part called MapReduce. Hadoop

splits files into large blocks and distributes them across

nodes in a cluster. It then transfers packaged code into

nodes to process the data in parallel. This approach

takes advantage of data locality[3] – nodes

manipulating the data they have access to – to allow

the dataset to be processed faster and more efficiently

than it would be in a more conventional supercomputer

architecture that relies on a parallel file system where

computation and data are distributed via high-speed

networking.[4] The base Apache Hadoop framework is

composed of the following modules:

Hadoop Common:

Contains libraries and utilities needed by other Hadoop

modules;

Hadoop Distributed File System (HDFS):

A distributed file-system that stores data on

commodity machines, providing very high aggregate

bandwidth across the cluster;

Hadoop YARN:

A resource-management platform responsible for

managing computing resources in clusters and using

them for scheduling of users' applications;[5][6] and

Hadoop MapReduce:

An implementation of the MapReduce programming

model for large scale data processing. The term

Hadoop has come to refer not just to the base modules

above, but also to the ecosystem,[7] or collection of

additional software packages that can be installed on

top of or alongside Hadoop, such as Apache Pig,

Apache Hive, Apache HBase, Apache Phoenix,

Apache Spark, Apache ZooKeeper, Cloudera Impala,

Apache Flume, Apache Sqoop, Apache Oozie, Apache

Storm.[8] Apache Hadoop's MapReduce and HDFS

components were inspired by Google papers on their

MapReduce and Google File System.[9]

The Hadoop framework itself is mostly written in the

Java programming language, with some native code in

C and command line utilities written as shell scripts.

Though MapReduce Java code is common, any

programming language can be used with "Hadoop

Streaming" to implement the "map" and "reduce" parts

of the user's program.[10] Other projects in the

Hadoop ecosystem expose richer user interfaces.

History:

The genesis of Hadoop came from the Google File

System paper[11] that was published in October 2003.

This paper spawned another research paper from

Google – MapReduce: Simplified Data Processing on

Large Clusters.[12] Development started on the

Apache Nutch project, but was moved to the new

Hadoop subproject in January 2006.[13] Doug Cutting,

who was working at Yahoo! at the time,[14] named it

after his son's toy elephant.[15] The initial code that

was factored out of Nutch consisted of 5k lines of code

for NDFS and 6k lines of code for MapReduce.

 Page 841

The first committer added to the Hadoop project was

Owen O’Malley in March 2006.[16] Hadoop 0.1.0 was

released in April 2006[17] and continues to evolve by

the many contributors[18] to the Apache Hadoop

project.

File Systems:

Hadoop Distributed File System:

The Hadoop distributed file system (HDFS) is a

distributed, scalable, and portable file system written

in Java for the Hadoop framework. Some consider

HDFS to instead be a data store due to its lack of

POSIX compliance and inability to be mounted,[62]

but it does provide shell commands and Java API

methods that are similar to other file systems.[63] A

Hadoop cluster has nominally a single namenode plus

a cluster of datanodes, although redundancy options

are available for the namenode due to its criticality.

Each datanode serves up blocks of data over the

network using a block protocol specific to HDFS. The

file system uses TCP/IP sockets for communication.

Clients use remote procedure call (RPC) to

communicate between each other.

HDFS stores large files (typically in the range of

gigabytes to terabytes[64]) across multiple machines.

It achieves reliability by replicating the data across

multiple hosts, and hence theoretically does not require

RAID storage on hosts (but to increase I/O

performance some RAID configurations are still

useful). With the default replication value, 3, data is

stored on three nodes: two on the same rack, and one

on a different rack. Data nodes can talk to each other

to rebalance data, to move copies around, and to keep

the replication of data high. HDFS is not fully POSIX-

compliant, because the requirements for a POSIX file-

system differ from the target goals for a Hadoop

application. The trade-off of not having a fully POSIX-

compliant file-system is increased performance for

data throughput and support for non-POSIX operations

such as Append.[65]

HDFS added the high-availability capabilities, as

announced for release 2.0 in May 2012,[66] letting the

main metadata server (the NameNode) fail over

manually to a backup. The project has also started

developing automatic fail-over. The HDFS file system

includes a so-called secondary namenode, a misleading

name that some might incorrectly interpret as a backup

namenode for when the primary namenode goes

offline. In fact, the secondary namenode regularly

connects with the primary namenode and builds

snapshots of the primary namenode's directory

information, which the system then saves to local or

remote directories. These checkpointed images can be

used to restart a failed primary namenode without

having to replay the entire journal of file-system

actions, then to edit the log to create an up-to-date

directory structure. Because the namenode is the single

point for storage and management of metadata, it can

become a bottleneck for supporting a huge number of

files, especially a large number of small files.

HDFS Federation, a new addition, aims to tackle this

problem to a certain extent by allowing multiple

namespaces served by separate namenodes. Moreover,

there are some issues in HDFS, namely, small file

issue, scalability problem, Single Point of Failure

(SPoF), and bottleneck in huge metadata request. An

advantage of using HDFS is data awareness between

the job tracker and task tracker. The job tracker

schedules map or reduce jobs to task trackers with an

awareness of the data location. For example: if node A

contains data (x,y,z) and node B contains data (a,b,c),

the job tracker schedules node B to perform map or

reduce tasks on (a,b,c) and node A would be scheduled

to perform map or reduce tasks on (x,y,z). This

reduces the amount of traffic that goes over the

network and prevents unnecessary data transfer. When

Hadoop is used with other file systems, this advantage

is not always available. This can have a significant

impact on job-completion times, which has been

demonstrated when running data-intensive jobs.[67]

 Page 842

HDFS was designed for mostly immutable files[65]

and may not be suitable for systems requiring

concurrent write-operations. HDFS can be mounted

directly with a Filesystem in Userspace (FUSE) virtual

file system on Linux and some other Unix systems.

File access can be achieved through the native Java

application programming interface (API), the Thrift

API to generate a client in the language of the users'

choosing (C++, Java, Python, PHP, Ruby, Erlang, Perl,

Haskell, C#, Cocoa, Smalltalk, and OCaml), the

command-line interface, browsed through the HDFS-

UI Web application (webapp) over HTTP, or via 3rd-

party network client libraries.[68]. HDFS is designed

for portability across various hardware platforms and

compatibility with a variety of underlying operating

systems.

The HDFS design introduces portability limitations

that result in some performance bottlenecks, since the

Java implementation can't use features that are

exclusive to the platform on which HDFS is

running.[69] Due to its widespread integration into

enterprise-level infrastructures, monitoring HDFS

performance at scale has become an increasingly

important issue. Monitoring end-to-end performance

requires tracking metrics from datanodes, namenodes,

and the underlying operating system.[70] There are

currently several monitoring platforms to track HDFS

performance, including HortonWorks, Cloudera, and

Datadog.

Features of HDFS:

 It is suitable for the distributed storage and

processing.

 Hadoop provides a command interface to interact

with HDFS.

 The built-in servers of namenode and datanode

help users to easily check the status of cluster.

 Streaming access to file system data.

 HDFS provides file permissions and

authentication.

HDFS Architecture:

Namenode:

The namenode is the commodity hardware that

contains the GNU/Linux operating system and the

namenode software. It is a software that can be run on

commodity hardware. The system having the

namenode acts as the master server and it does the

following tasks:

 Manages the file system namespace.

 Regulates client’s access to files.

 It also executes file system operations such as

renaming, closing, and opening files and

directories.

Datanode:

The datanode is a commodity hardware having the

GNU/Linux operating system and datanode software.

For every node (Commodity hardware/System) in a

cluster, there will be a datanode. These nodes manage

the data storage of their system.

 Datanodes perform read-write operations on the

file systems, as per client request.

 They also perform operations such as block

creation, deletion, and replication according to the

instructions of the namenode.

Block:

Generally the user data is stored in the files of HDFS.

The file in a file system will be divided into one or

more segments and/or stored in individual data nodes.

These file segments are called as blocks.

 Page 843

In other words, the minimum amount of data that

HDFS can read or write is called a Block. The default

block size is 64MB, but it can be increased as per the

need to change in HDFS configuration.

Goals of HDFS:

 Fault Detection and Recovery: Since HDFS

includes a large number of commodity hardware,

failure of components is frequent. Therefore

HDFS should have mechanisms for quick and

automatic fault detection and recovery.

 Huge datasets: HDFS should have hundreds of

nodes per cluster to manage the applications

having huge datasets.

 Hardware at data: A requested task can be done

efficiently, when the computation takes place near

the data. Especially where huge datasets are

involved, it reduces the network traffic and

increases the throughput.

Other file systems:

Hadoop works directly with any distributed file system

that can be mounted by the underlying operating

system simply by using a file:// URL; however, this

comes at a price, the loss of locality. To reduce

network traffic, Hadoop needs to know which servers

are closest to the data; this is information that Hadoop-

specific file system bridges can provide. In May 2011,

the list of supported file systems bundled with Apache

Hadoop were:

HDFS: Hadoop's own rack-aware file system.[71]

This is designed to scale to tens of petabytes of storage

and runs on top of the file systems of the underlying

operating systems. FTP File system: this stores all its

data on remotely accessible FTP servers.

Amazon S3 (Simple Storage Service) File System:

This is targeted at clusters hosted on the Amazon

Elastic Compute Cloud server-on-demand

infrastructure.

There is no rack-awareness in this file system, as it is

all remote.

Windows Azure Storage Blobs (WASB) File

System:

WASB, an extension on top of HDFS, allows

distributions of Hadoop to access data in Azure blob

stores without moving the data permanently into the

cluster. A number of third-party file system bridges

have also been written, none of which are currently in

Hadoop distributions. However, some commercial

distributions of Hadoop ship with an alternative

filesystem as the default – specifically IBM and MapR.

JobTracker and TaskTracker: the MapReduce

engine Main article: MapReduce

Above the file systems comes the MapReduce Engine,

which consists of one JobTracker, to which client

applications submit MapReduce jobs. The JobTracker

pushes work out to available TaskTracker nodes in the

cluster, striving to keep the work as close to the data as

possible. With a rack-aware file system, the

JobTracker knows which node contains the data, and

which other machines are nearby. If the work cannot

be hosted on the actual node where the data resides,

priority is given to nodes in the same rack. This

reduces network traffic on the main backbone network.

If a TaskTracker fails or times out, that part of the job

is rescheduled. The TaskTracker on each node spawns

a separate Java Virtual Machine process to prevent the

TaskTracker itself from failing if the running job

crashes its JVM. A heartbeat is sent from the

TaskTracker to the JobTracker every few minutes to

check its status. The Job Tracker and TaskTracker

status and information is exposed by Jetty and can be

viewed from a web browser.

Known limitations of this approach are:

The allocation of work to TaskTrackers is very simple.

Every TaskTracker has a number of available slots

(such as "4 slots"). Every active map or reduce task

takes up one slot. The Job Tracker allocates work to

the tracker nearest to the data with an available slot.

 Page 844

There is no consideration of the current system load of

the allocated machine, and hence its actual availability.

If one TaskTracker is very slow, it can delay the entire

MapReduce job – especially towards the end of a job,

where everything can end up waiting for the slowest

task. With speculative execution enabled, however, a

single task can be executed on multiple slave nodes.

Map Reduce Workflow:

Scheduling:

By default Hadoop uses FIFO scheduling, and

optionally 5 scheduling priorities to schedule jobs from

a work queue.[77] In version 0.19 the job scheduler

was refactored out of the JobTracker, while adding the

ability to use an alternate scheduler (such as the Fair

scheduler or the Capacity scheduler, described

next).[78]

Fair Scheduler:

The fair scheduler was developed by Facebook.[79]

The goal of the fair scheduler is to provide fast

response times for small jobs and QoS for production

jobs. The fair scheduler has three basic concepts.[80]

Jobs are grouped into pools.

Each pool is assigned a guaranteed minimum share.

Excess capacity is split between jobs.

By default, jobs that are uncategorized go into a

default pool. Pools have to specify the minimum

number of map slots, reduce slots, and a limit on the

number of running jobs.

Capacity Scheduler:

The capacity scheduler was developed by Yahoo. The

capacity scheduler supports several features that are

similar to the fair scheduler.[81] Queues are allocated

a fraction of the total resource capacity. Free resources

are allocated to queues beyond their total capacity.

Within a queue a job with a high level of priority has

access to the queue's resources. There is no pre-

emption once a job is running.

Other applications:

The HDFS file system is not restricted to MapReduce

jobs. It can be used for other applications, many of

which are under development at Apache. The list

includes the HBase database, the Apache Mahout

machine learning system, and the Apache Hive Data

Warehouse system. Hadoop can in theory be used for

any sort of work that is batch-oriented rather than real-

time, is very data-intensive, and benefits from parallel

processing of data. It can also be used to complement a

real-time system, such as lambda architecture, Apache

Storm, Flink and Spark Streaming.[82]

As of October 2009, commercial applications of

Hadoop[83] included:

log and/or clickstream analysis of various kinds

marketing analytics machine learning and/or

sophisticated data mining image processing

processing of XML messages web crawling and/ or

text processing general archiving, including of

relational/ tabular data, e.g. for compliance

Prominent users:

On February 19, 2008, Yahoo! Inc. launched what it

claimed was the world's largest Hadoop production

application. The Yahoo! Search Webmap is a Hadoop

application that runs on a Linux cluster with more than

10,000 cores and produced data that was used in every

Yahoo! web search query.[84] There are multiple

Hadoop clusters at Yahoo! and no HDFS file systems

or MapReduce jobs are split across multiple

datacenters. Every Hadoop cluster node bootstraps the

 Page 845

Linux image, including the Hadoop distribution. Work

that the clusters perform is known to include the index

calculations for the Yahoo! search engine. In June

2009, Yahoo! made the source code of the Hadoop

version it runs available to the public via the open-

source community.[85] In 2010, Facebook claimed

that they had the largest Hadoop cluster in the world

with 21 PB of storage.[86] In June 2012, they

announced the data had grown to 100 PB[87] and later

that year they announced that the data was growing by

roughly half a PB per day.[88] As of 2013, Hadoop

adoption had become widespread: more than half of

the Fortune 50 used Hadoop.[89]

Hadoop hosting in the cloud:

Hadoop can be deployed in a traditional onsite

datacenter as well as in the cloud.[90] The cloud

allows organizations to deploy Hadoop without

hardware to acquire or specific setup expertise.[91]

Vendors who currently have an offer for the cloud

include Microsoft, Amazon, IBM,[92] Google and

Oracle.[93]

On Microsoft Azure:

Azure HDInsight[94] is a service that deploys Hadoop

on Microsoft Azure. HDInsight uses Hortonworks

HDP and was jointly developed for HDI with

Hortonworks. HDI allows programming extensions

with .NET (in addition to Java). HDInsight also

supports creation of Hadoop clusters using Linux with

Ubuntu.[94] By deploying HDInsight in the cloud,

organizations can spin up the number of nodes they

want and only get charged for the compute and storage

that is used.[94] Hortonworks implementations can

also move data from the on-premises datacenter to the

cloud for backup, development/test, and bursting

scenarios.[94] It is also possible to run Cloudera or

Hortonworks Hadoop clusters on Azure Virtual

Machines.

On Amazon EC2/S3 services:

It is possible to run Hadoop on Amazon Elastic

Compute Cloud (EC2) and Amazon Simple Storage

Service (S3).[95] As an example, The New York

Times used 100 Amazon EC2 instances and a Hadoop

application to process 4 TB of raw image TIFF data

(stored in S3) into 11 million finished PDFs in the

space of 24 hours at a computation cost of about $240

(not including bandwidth).[96] There is support for

the S3 object store in the Apache Hadoop releases,

though this is below what one expects from a

traditional POSIX filesystem. Specifically, operations

such as rename() and delete() on directories are not

atomic, and can take time proportional to the number

of entries and the amount of data in them.

Amazon Elastic MapReduce:

Elastic MapReduce (EMR)[97] was introduced by

Amazon.com in April 2009. Provisioning of the

Hadoop cluster, running and terminating jobs, and

handling data transfer between EC2(VM) and

S3(Object Storage) are automated by Elastic

MapReduce. Apache Hive, which is built on top of

Hadoop for providing data warehouse services, is also

offered in Elastic MapReduce.[98] Support for using

Spot Instances[99] was later added in August

2011.[100] Elastic MapReduce is fault-tolerant for

slave failures,[101] and it is recommended to only run

the Task Instance Group on spot instances to take

advantage of the lower cost while maintaining

availability.[102]

Google Cloud Platform

There are multiple ways to run the Hadoop ecosystem

on Google Cloud Platform ranging from self-managed

to Google-managed.[106]

Google Cloud Dataproc – A managed Spark and

Hadoop service[107]

Command line tools (bdutil) – A collection of shell

scripts to manually create and manage Spark and

Hadoop clusters[108]

Third Party Hadoop Distributions:

Cloudera – Using the Cloudera Director Plugin for

 Page 846

Google Cloud Platform[109]

Hortonworks – Using bdutil support for Hortonworks

HDP[110]

MapR – Using bdutil support for MapR[111]

Google also offers connectors for using other Google

Cloud Platform products with Hadoop, such as a

Google Cloud Storage connector for using Google

Cloud Storage and a Google BigQuery connector for

using Google BigQuery.

Author’s Details:

K.Nagaraju

B.Tech Student,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist..T.S.

J.Deepthi

Associate Professor & HOD,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist.T.S.

Mr.T.Pavan Kumar

Assistant Professor,

Department of CSE,

Sphoorthy Engineering College,

Nadergul (Vill.), Sagar Road,

Saroonagar (Mdl), R.R Dist.T.S.

