

 Page 194

A Novel Secure Key Generation Protocol for Group Data Sharing

K.Naveed Kumar Reddy

Dept of Computer Science Engineering,

Andhra University College of Engineering,

Visakhapatnam, AP, India.

Dr.Kasukurthi Venkata Rao

Dept of Computer Science Engineering,

Andhra University College of Engineering,

Visakhapatnam, AP, India.

Abstract:

Secure Transmission of data over cloud is still an

important research issue in cloud computing and multi

owner data sharing takes much importance in recent

days of research. We are proposing an efficient data

storage mechanism with an efficient group key

protocol for secure data transmission between the

multi owners and also introducing a novel approach of

a new data owner addition without violating the data

integrity with authentication of data owners.

Keywords:

Data Sharing, Encryption, Cloud Storage, Key-

Aggregate Encryption, Dynamic Group.

1.Introduction:

Cloud storage is gaining popularity recently. In

enterprise settings, we see the rise in demand for data

outsourcing, which assists in the strategic management

of corporate data. It is also used as a core technology

behind many online services for personal applications.

Nowadays, it is easy to apply for free accounts for

email, photo album, file sharing and/or remote access,

with storage size more than 25 GB (or a few dollars for

more than 1 TB). Together with the current wireless

technology, users can access almost all of their files

and emails by a mobile phone in any corner of the

world. Considering data privacy, a traditional way to

ensure it is to rely on the server to enforce the access

control after authentication (e.g., [1]), which means

any unexpected privilege escalation will expose all

data. In a shared-tenancy cloud computing

environment, things become even worse.

Data from different clients can be hosted on separate

virtual machines (VMs) but reside on a single physical

machine. Data in a target VM could be stolen by

instantiating another VM co-resident with the target

one [2]. Regarding availability of files, there are a

series of cryptographic schemes which go as far as

allowing a third-party auditor to check the availability

of files on behalf of the data owner without leaking

anything about the data [3], or without compromising

the data owners anonymity [4]. Likewise, cloud users

probably will not hold the strong belief that the cloud

server is doing a good job in terms of confidentiality.

A cryptographic solution, for example, [5], with

proven security relied on number-theoretic

assumptions is more desirable, whenever the user is

not perfectly happy with trusting the security of the

VM or the honesty of the technical staff. These users

are motivated to encrypt their data with their own keys

before uploading them to the server.

Fig 1. KAC for data sharing in cloud storage.

 Page 195

Naturally, there are two extreme ways for her under

the traditional encryption paradigm:

 Alice encrypts all files with a single encryption

key and gives Bob the corresponding secret key

directly.

 Alice encrypts files with distinct keys and sends

Bob the corresponding secret keys.

Obviously, the first method is inadequate since all un-

chosen data may be also leaked to Bob. For the second

method, there are practical concerns on efficiency. The

number of such keys is as many as the number of the

shared photos, say, a thousand. Transferring these

secret keys inherently requires a secure channel, and

storing these keys requires rather expensive secure

storage. The costs and complexities involved generally

increase with the number of the decryption keys to be

shared. In short, it is very heavy and costly to do that.

Encryption keys also come with two flavors—

symmetric key or asymmetric (public) key. Using

symmetric encryption, when Alice wants the data to be

originated from a third party, she has to give the

encryptor her secret key; obviously, this is not always

desirable. By contrast, the encryption key and

decryption key are different in publickey encryption.

The use of public-key encryption gives more flexibility

for our applications. For example, in enterprise

settings, every employee can upload encrypted data on

the cloud storage server without the knowledge of the

company’s master-secret key.

2. System Model and Design:

A. System Model

Fig 2. System Model Diagram

As illustrated in figure 2, the system model consists of

three different entities: the cloud, a group manager and

a large number of group members. The cloud,

maintained by the cloud service providers, provides

storage space for hosting data files in a pay-as-you-go

manner. However, the cloud is untrusted since the

cloud service providers are easily to become untrusted.

Therefore, the cloud will try to learn the content of the

stored data. Group manager takes charge of system

parameters generation, user registration,

B. Design:

We describe the main design goals of the proposed

scheme including key distribution, data confidentiality,

access control and efficiency as follows:

Key Distribution:

The requirement of key distribution is that users can

securely obtain their private keys from the group

manager without any Certificate Authorities. In other

existing schemes, this goal is achieved by assuming

that the communication channel is secure, however, in

our scheme, we can achieve it without this strong

assumption.

Access control:

First, group members are able to use the cloud

resource for data storage and data sharing. Second,

unauthorized users cannot access the cloud resource at

any time, and revoked users will be incapable of using

the cloud resource again once they are revoked.

Data confidentiality:

Data confidentiality requires that unauthorized users

including the cloud are incapable of learning the

content of the stored data. To maintain the availability

of data confidentiality for dynamic groups is still an

important and challenging issue. Specifically, revoked

users are unable to decrypt the stored data file after the

revocation.

 Page 196

Efficiency:

Any group member can store and share data files with

others in the group by the cloud. User revocation can

be achieved without involving the others, which means

that the remaining users do not need to update their

private keys.

3. Key Aggregate for Encryption:

We first give the framework and definition for key

aggregate encryption. Then we describe how to use

KAC

in a scenario of its application in cloud storage.

A. A key-aggregate encryption scheme consists of five

polynomial-time algorithms as follows. The data

owner establishes the public system parameter via

Setup and generates a public/master-secret3 key pair

via KeyGen. Messages can be encrypted via Encrypt

by anyone who also decides what cipher text class is

associated with the plaintext message to be encrypted.

The data owner can use the master-secret to generate

an aggregate decryption key for a set of ciphertext

classes via Extract. The generated keys can be passed

to delegatees securely (via secure e-mails or secure

devices) Finally, any user with an aggregate key can

decrypt any cipher text provided that the ciphertext’s

class is contained in the aggregate key via Decrypt.

a. Setup (1λ , n): executed by the data owner to setup an

account on an untrusted server. On input a security

level parameter 1λ and the number of ciphertext

classes n (i.e., class index should be an integer

bounded by 1 and n), it outputs the public system

parameter param, which is omitted from the input of

the other algorithms for brevity.

b. KeyGen: executed by the data owner to randomly

generate a public/master-secret key pair (pk, msk).

c. Encrypt(pk, i, m): executed by anyone who wants to

encrypt data. On input a public-key pk, an index i

denoting the ciphertext class, and a message m, it

outputs a ciphertext C.

d. Extract(msk, S): executed by the data owner for

delegating the decrypting power for a certain set of

ciphertext classes to a delegatee. On input the master-

secret key msk and a set S of indices corresponding to

different classes, it outputs the aggregate key for set S

denoted by Ks .

e. Decrypt(Ks , S, i, C): executed by a delegate who

received an aggregate key KS generated by Extract.

On input KS, the set S, an index i denoting the

ciphertext class the ciphertext C belongs to, and C, it

outputs the decrypted result m if i ∈ S.

4. Methodology:

Algorithm:

• Goal is to divide some data D (e.g., the safe

combination) into n pieces D1,D2….Dn in such a

way that:

– Knowledge of any k or more D pieces makes D

easily computable.

– Knowledge of anyk -1 or fewer pieces leaves D

completely undetermined (in the sense that all its

possible values are equally likely).

• This scheme is called (k,n) threshold scheme. If

k=n then all participants are required together to

reconstruct the secret.

• Suppose we want to use (k,n) threshold scheme to

share our secret S where k < n.

• Choose at random (k-1) coefficients a1,a2,a3…ak-1

, and let S be the a0

f(x)=a0 + a1x + a2x
2
 + ……….+ak-1

k-1

• Construct n points (i,f(i)) where i=1,2…..n

Example:

• Let S=1234

• n=6 and k=3 and obtain random integers

a1=166 and a2=94

f(x)=1234+166x+94x
2

• Secret share points

(1,1494),(2,1942)(3,2598)(4,3402)(5,4414)(6,

5614)

• We give each participant a different single

point (both x and f(x)).

 Page 197

Re-construction:

• In order to reconstruct the secret any 3 points will

be enough

• Let us consider

(x0,y0)=(2,1924),(x1,y1)=(4,3402),(x2,y2)=(5,4414)

Using lagrangeous polynomials

L0=x-x1/x0-x1*x-x2/x0-x2=x-4/2-4*x-5/2-5=(1/6)x
2
-

(3/2)x+10/3

L1=x-x0/x1-x0*x-x2/x1-x2=x-2/4-2*x-5/4-5=-(1/2)x
2
-

(7/2)x-5

L2=x-x0/x2-x0*x-x1/x2-x1=x-2/5-2*x-4/5-4=(1/3)x
2
-

2x+8/3

f(x)= y2
j=0 jlj(x)=1942((1/6)x

2
-(3/2)x+10/3)+3402(-

(1/2)x
2
-(7/2)x-)+4414((1/3)x

2
-2x+8/3)

f(x)=1234+166x+94x
2

Recall that the secret is the free coefficient, which

means that S=1234.

AES algorithm:

AES is a cryptographic algorithm, with this

cryptographic algorithm data owner convert the plain

data components to cipher with the help of key which

is generated from Shamir secret sharing algorithm and

uploads the cipher data components to the server and

downloads the data components when ever required. A

Software Requirements Specification (SRS) is a

complete description of the behavior of the system to

be developed. It includes a set of use cases that

describe all the interactions the users will have with

the software. Use cases are also known as functional

requirements. In addition to use cases, the SRS also

contains non-functional (or supplementary)

requirements. Non-functional requirements are

requirements which impose constraints on the design

or implementation (such as performance engineering

requirements, quality standards, or design constraints).

5. Performance Evaluation:

Considering that the algorithms including KASE.

Setup, KASE. Adjust and KASE. Test are only run in

the cloud server, only the execution times in computer

are tested.

1) The execution time of KASE. Setup is linear in the

maximum number of documents belonging to one

owner, and when the maximum number grows up to

20000, it is reasonable that KASE.Setup algorithm

only needs 259 second.

2) The execution time of KASE.Encrypt is linear in the

number of keywords, and when the number grows up

to 10000, KASE.Encrypt algorithm only needs 206

second in computers, but 10018 second in mobile

devices. Therefore, we can draw two conclusions; one

is that it is not feasible to upload document with lots of

keywords using a mobile phone; the other is that the

keyword search with pairing computation can be

executed quickly in computers now.

3) The execution time of KASE. Extract is linear in the

number of shared documents, and when the number

grows up to 10000, KASE. Extract algorithm only

needs 132 second in computer, but 2430 second in

mobile devices. Because the KASE. Extract always

runs along with the KASE. Encrypt, it is not suggested

to be executed in the mobile devices.

4) The execution time of KASE. Trapdoor is a

constant, i.e., 0.01 second in computer and 0.25 second

in mobile devices. In fact, the mathematical operation

in KASE. Trapdoor is the once multiplication in G, so

that the keyword search can be performed efficiently

in both mobile devices and computer. Compared with

other schemes, there is a significant improvement in

our scheme.

5) The execution time of KASE. Adjust is linear in the

number of documents. In fact, it can be improved in

the practical application, and the details are shown in

section 6.4.

6) The execution time of KASE. Test is linear in the

number of keyword cipher texts. In fact, the

mathematical operation in KASE. Test is twice as

much as the pairing computations. When the number

grows up to 20000, it will take 467 second.

 Page 198

The below figures show the results after developing

the project.

Fig 3. Valid Key generation

Fig 5: File retrival

6. Conclusion:

This project deals with efficient centralized group key

protocol Initially Data member’s authentication can be

verified with random challenge and secret share. Key

can be generated at group key manager and points

forwarded to Group members for reconstruction of key

and after reconstruction data members verifies the

signature or hash code which is applied over key and

points for group key manager authentication any group

member can be encode and decodes shared files

whenever required. We can improve our current

research work dynamic member addition and

revocation because once session is initiated new user

cannot participate in group session but can get the key

to encode and decode. Dynamic member addition

followed by dynamic key generation improves current

research work.

References:

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu,

―SPICE - Simple Privacy-Preserving Identity-

Management for Cloud Environment,‖ Proc. 10th Int’l

Conf. Applied Cryptography and Network Security

(ACNS), vol. 7341, pp. 526-543, 2012.

[2] L. Hardesty, Secure Computers Aren’t so Secure.

MIT press,

http:// www.physorg.com/news 176107396.html,

2009.

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W.

Lou, ―Privacy- Preserving Public Auditing for Secure

Cloud Storage,‖ IEEE Trans. Computers, vol. 62, no.

2, pp. 362-375, Feb. 2013.

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, ―Storing

Shared Data on the Cloud via Security-Mediator,‖

Proc. IEEE 33rd Int’l Conf. Distributed Computing

Systems (ICDCS), 2013.

[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and

R.H. Deng, ―Dynamic Secure Cloud Storage with

Provenance,‖ Cryptography and Security, pp. 442-464,

Springer, 2012.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham,

―Aggregate and Verifiably Encrypted Signatures from

Bilinear Maps,‖ Proc. 22nd Int’l Conf. Theory and

Applications of Cryptographic Techniques

(EUROCRYPT ’03), pp. 416-432, 2003.

[7] P. Van,S. Sedghi, JM. Doumen. ―Computationally

efficient searchable symmetric encryption‖, Secure

Data Management, pp. 87-100, 2010.

 Page 199

[8] S. Kamara, C. Papamanthou, T. Roeder. ―Dynamic

searchable symmetric encryption‖, Proceedings of the

2012 ACM conference on Computer and

communications security (CCS), ACM, pp. 965- 976,

2012.

[9] D. Boneh, C. G, R. Ostrovsky, G. Persiano. ―Public

Key Encryption with Keyword Search‖,

EUROCRYPT 2004, pp. 506C522, 2004.

[10] Y. Hwang, P. Lee. ―Public Key Encryption with

Conjunctive Keyword Search and Its Extension to a

Multi-user System‖, In: Pairing-Based Cryptography C

Pairing 2007, LNCS, pp. 2-22, 2007.

[11] J. Li, Q. Wang, C. Wang. ―Fuzzy keyword search

over encrypted data in cloud computing‖, Proc. IEEE

INFOCOM, pp. 1-5, 2010.

[12] C. Bosch, R. Brinkma, P. Hartel. ―Conjunctive

wildcard search over encrypted data‖, Secure Data

Management. LNCS, pp. 114- 127, 2011.

[13] C. Dong, G. Russello, N. Dulay. ―Shared and

searchable encrypted data for untrusted servers‖,

Journal of Computer Security, pp. 367-397, 2011.

[14] F. Zhao, T. Nishide, K. Sakurai. Multi-User

Keyword Search Scheme for Secure Data Sharing with

Fine-Grained Access Control. Information Security

and Cryptology, LNCS, pp. 406-418, 2012.

[15] J. W. Li, J. Li, X. F. Chen, et al. ―Efficient

Keyword Search over Encrypted Data with Fine-

Grained Access Control in Hybrid Cloud‖, In:

Network and System Security 2012, LNCS, pp. 490-

502, 2012.

Author’s Details:

K.Naveed Kumar Reddy

Pursuing M.Tech in the department of Computer

Science and Systems Engineering, Andhra University,

Visakhapatnam, AP, India. He obtained his B.Tech

(CSE) from NBKRIST VIDYA NAGAR.

Dr. Kasukurthi Venkata Rao

M.Tech, Ph.D working as Professor in the department

of Computer Science and System Engineering, Andhra

University College of Engineering, Visakhapatnam,

A.P, India. His research field is in Image Processing,

Web Technology, Quantum Cryptography, Data and

Cyber Security.

