

 Page 40

Research on Heuristic Based Load Balancing Algorithms in Cloud

Computing
Mohammed Vaziuddin

M.Tech Student,

Dept of IT,

Sreenidhi Institute of Science and Technology.

K.Sreenu

Assistant Professor,

Dept of IT,

Sreenidhi Institute of Science and Technology.

Abstract:

Since the recommendation of the idea of cloud

computing in the year 2006, cloud computing has

drawn heaps of consideration from both industry and

scholarly territory. A few innovations, for example,

virtualization shaped the premise of cloud computing,

while some different advances goes about as

framework change procedures in distributed

computing. Among the utilized advancements, Load

adjusting is fundamental and critical in enhancing

framework execution and keeping up clients'

understanding. In this paper, we concentrate on load

adjusting calculations ordinarily utilized as a part of

distributed computing. Through our examination we

proposed our enhanced online load balancing

algorithm. We utilize a few exploratory results to

demonstrate its energy and effectiveness. We utilize

CloudSim as a test system to check our thoughts.

Keywords:

Cloud computing, Cloud Sim, Load balancing

algorithm, Heuristic.

1 Introduction:

Cloud computing is developed as another plan of

action in IT Industry. Huge Internet organizations, for

example, google, amazon sold its excess figuring and

capacity at an aggressive cost to those in need. Cloud

computing worldview is well known among both

administration suppliers and administration clients for

its qualities, for example, minimal effort, high

versatility, on request provisioning, and programmed

administration. For those administration suppliers,

cloud computing is another benefit point by making

utilization of hard ware assets possessed.

For those clients, by leasing virtualized assets gave by

administration suppliers, a lot of examination

concerning IT infra-structures could be saved. Cloud

computing sellers utilize virtualization and multi-

specialist innovations to enhance framework's use,

alongside the well known pay per utilize estimating

model to guarantee a long haul advantage, and the

administration suppliers may briefly utilize other

merchants' distributed computing administrations

offered to manage the condition where there's a

sudden development in asset necessity. Contrasts from

customary supercomputer focuses, server farms work

in distributed computing worldview for the most part

depend on modest x86 servers facilitating at least one

machine.

Another enormous contrast between supercomputer

focuses and distributed computing server farms lies in

the sort of assignments to be prepared: conventional

super-PC focuses for the most part do some logical

process, in the view where assets required by

submitted undertakings could be known before errands

are taken care of, while in distributed computing

landscapes server farms handle different sorts of

undertakings and the flexible normal for cloud

computing confirms that both of errands' kind and size

couldn't be known some time recently. Cloud

computing is develop in a time where organize

association gets to be helpful to get to. Accordingly,

distributed computing depends on web to offer

administration. Sorted by administration sort, a large

portion of the administrations could be grouped into

IaaS, PaaS or SaaS.

 Page 41

Not at all like conventional web based applications,

through web, could clients get virtualized capacity,

system, OS and various programming. Load balancing

is critical in web based applications and in lattice

figuring situation. We utilize Load balancing

procedures to adjust the load among servers backend,

where the heap is happened by frameworks' clients'

prerequisites. That is, in online applications,

fundamentally the point of the heap adjust is to

appropriate web demands among applications servers

or information servers, while in framework based

supercomputer situation, we utilize stack adjusting

procedures to make works submitted by end clients

complete as snappy as could be expected under the

circumstances. Load balancing is imperative for

distributed computing worldview, as well. In any case,

contrasted with matrix registering and the

conventional system stack adjusting, there exist

different requirements making Load balancing in

cloud computing a test work. In Load balancing, what

we really do is to discover a component by which

undertakings are appropriated to process hub

uniformly; keeping away from both problem area and

hungry focuses exists. In this way it is a complex to

make stacks as adjust as we anticipate. In this paper,

we make some examination on Load balancing issue

in a heterogeneous cloud computing environment. We

concentrate on Load balancing’s absolute entirety: its

calculation. The accompanying parts are sorted out in

a specific order: In "Related works" we give a few

materials having done in load adjusting range. In

"Proposed strategy" we give our enhanced calculation.

In "Test Results" we utilize tests done in CloudSim to

demonstrate our contemplations. At last we give the

determination and observe into what's to come.

Research on Heuristic Based Load Balancing

Algorithms

2 Related Works:

Distinctive needs and loads making diverse Load

balancing technique works. Base on various types of

load, different Load balancing model and techniques

are created.

Azodolmolky S, Wieder P and Yahyapour R presented

organize issues exists in IaaS and cloud league in [1].

They call attention to that the issue we confronted at

this point in cloud computing system zone is the

manner by which to build virtual systems. They

professional represented a determination of SDN based

applications. By uncouple control streams and

information streams in SDN, advanced calculations

and components could be created to address the issue

of substantial transmission capacity, flexible gadget

course of action, and live movement of VMs etc. In [

2], Yeo S and Lee H S made scientific models about

heterogeneous cloud computing environment's vitality

utilization and reaction time. Yeo S and Lee H S

dissected electronic vitality expended and execution

qualities of cloud, finding that to accomplish better

execution in heterogeneous based cloud frameworks,

the most exceedingly terrible hub's reaction time ought

to be close to 3 times of the brute ones. In [3], Doyle

J, Shorten R and O'Mahony D dynamic system and

server parts in cloud into a diagram.

They utilize carbon discharge, electronic utilization,

together with administration achieve time as variables

to settle on Load balancing choices. Doyle J, Shorten

R and O'Mahony D utilize a straight weighted total

approach on the three elements to acquire the edges'

weight esteem in the chart got and they utilize Voronio

realistic segment to figure out where to send the

solicitations. In [4], Gulisano V, Jimenez-Peris R,

Patino-Martinez M, et al. In 2012 proposed a flexible,

extendable, register motor "StreamCloud" to manage

stream information. Going for giving least assets to

fulfill the given requests, they utilize a limit technique

to offer assets while making load the adjust. In [5],

Zhang Y and Zhou Y proposed another processing

worldview, called straightforward registering. By

making process "straightforward" to those end clients,

work load is appropriated among backend servers and

clients' terminals. In [6], Xu G, Pang J and Fu X

proposed another heap adjusting model. By segment

and switch components composed, they utilize a "brute

replay" assessment standard to approach nash

 Page 42

equilibria. The player enlisted in the amusement is

undertakings and server nodes. Load balancing could

be performed in different levels, in a concentrated or

decentralized frame. In [7], a definite depiction for

Load balancing techniques in assignment level is

given. In [8], a novel load adjusting system in VM

level is given. By utilizing strategies proposed as a part

of [8], a superior movement overhead at runtime is

accomplished. In [9], Load balancing in cloud

computing is done in system level. Load balancing

could be static or element. As depicted in [7], static

Load balancing techniques pick up data required

before errands are executed, appropriate assignments

in an altered way. In this way static Load balancing

techniques couldn't accomplish a decent result.

Dynamic load adjusting techniques screen framework's

state and appropriate framework's heaps as per it. By

doing this, dynamic load adjusting techniques could

accomplish preferred execution over static ones. In any

case, there's more overhead added

3 Proposed Method:

As shown in part 2, load balancing cloud be achieved

in various level. But generally speaking, it could be

categorized into 2 abstract levels: Job level and task

level. Job is consisted of a sequence of tasks. In

another word, job is a finite graph where tasks are the

vertices and their relationships among are edges. In

this paper we focus task level load balancing. Before

we raise the method we based and the improvement

we done, we Will give our problem definition first:

1. Task number: n, Task Vector: Vt = ð T1, T2, . . .

TnÞ
T
 , here Ti is a single task with resources needed

2. Server number: m, Server Vector: Vs = ð S1,

S2, . . . SmÞ, here we have Research on Heuristic

Based Load Balancing Algorithms …

Si = α*MIPS + β*BW + γ*MEMORY where α + β + γ

= 1, MIPS is short for million instruction per second,

BW is short for bandwidth

3.Vectors implying the status of each sever fLi = ðLT1i,

LT2i, . . . LTniÞ
T
 j0 < i ≤ mg where Li is the load status

and LTji ∈ f0, 1g, 0 < j ≤ n, implies whether Tj is

assigned to Si

4.Vectors implying the status of each task

element by element, at the same position.

7. Our object is to find an A to minimal make span

time. Actually we make tradeoffs among Timei assign,

Timei proc and Timei queue over all tasks. The dif-

ficulty lies in that if we do this in a greedy manner, we

could not get a social optimal solution in the long run.

It is clearly that small assignment time may leads to

big queue time and process time. In turn, small process

time may obtained by a long queuing time and

assignment time. Also, a small queue time cannot

guarantee an ideal process time and assignment time.

Basically, it is NP-hard to get a best server to send

load. Thus a suboptimal method is acceptable in most

cases. M. Mitzenmacher proposed a randomized load

balancing method in [12]. He established a natural

supermarket model, shown as Fig. 2,

where:

1. Customers arrive as a Poisson stream

of rate λn, λ < 1.

2. The number of servers is n

 Page 43

Fig. 2 Supermarket model

3.Each consumer chooses some constant d servers

independently and uniformly from the n servers.

4.Customer waits for service at the one with fewest

customers.

5.Service time is exponentially distributed with mean 1

Customers are serviced in a FIFO model

 6.He proved that when d = 2, there’s an exponential

improvement in the expected time a customer spends

in system over d = 1. And when d = 3, there’s a

constant factor better than d = 2.

When d = 1, this method is the same with the random

method. Random method is susceptible because it

always could not work well in small scale and in

traditional scenarios the number of backend server

points is not large. Thus we modify the step in 4 to

this: customer waits in the queue where its estimated

time spend in total is minimal among the queues

chosen. Here we use the following formula (1) to

calculate the estimated execution time Task Tk may

spend on processing node Si:

 m ≤ i ≤ k

E Timeik Þ = ∑ aij ð

 1 Þ

ð i = 1

Here amj is the first task’s required time in node sj

According to the mathematical description, it is clear

that this formula is used as heuristic information to

make decision. Load balancing could work in

centralized or decentralized manner. On one hand, in

centralized load balancing, it is easy to achieve the

goals we set. But centralized load balancing has some

shortcuts such as that it may become a bottleneck of

the whole system. Although in a sense we can avoid

this problem by adding more load balancing decision

nodes, it could not deal with the situation well that the

number of backend processing node is big. On the

other hand, in decentralized load balancing, it is robust

in handling with single point failure while elastic with

system scale. But distributed load balancing is a little

complex compared to centralized load balancing and

the performance may not as good as centralized ones.

The algorithm we based and improved could be used

in both centralized and decentralized environment for

the reason that it relies on little system information

and little calculation process. Load balancing

algorithms or mechanisms could be either static or

dynamic, where static methods get the Information

before execution and dynamic ones got information

while executing. It is obvious that both the proposed

method and improved one works in a dynamic

manner.

4 Experiments and the Results:

FFD Algorithm:

One of the most natural heuristics for one dimensional

bin packing is a greedy algorithm in which items are

sorted by size in decreasing order and then items

placed sequentially in the first bin that has sufficient

capacity. This algorithm is often referred to as First Fit

Decreasing (FFD). FFD is guaranteed to find an

allocation with at most 11 9 OP T + 1 bins in the one

dimensional case (c.f. [24]) and is known to be

effective in practice. There isn’t a unique obvious way

of generalizing FFD for the multi-dimensional case.

One has to decide how to assign a weight to a d-

dimensional vector. In this work we’ve tested two

natural options:

w(I)= π Ii (FFDProd)…….(1)

i≤d

w(I) = € ai Ii (FFDSum) ……(2)

i≤d

Where the vector a = a1, ...ad is a scaling vector of our

choosing.

 Page 44

The vector a has two functions. First, it is needed to

scale and normalize demand across dimensions (which

not needed when taking the product of the demands).

Secondly, it allows us to weight the demands

according their importance, or their likelihood of

actually being a bottleneck for placement. We test

several ways of doing that.

Bad instances for FFD:

It is easy to see that any greedy algorithm has an

approximation ratio of at most 2d. Since this is a weak

guarantee it is important to identify inputs for which

FFD performs particularly poor. In this section we

identify such a family and argue that it is natural

enough to motivate us to look for other algorithms.

Consider the two-dimensional instance where half the

items are of size (1 3 , 1 6), and the other half of size

(1 6 , 1 3). In this case, the optimal solution puts four

items per bin, two of each kind, while any FFD variant

would place three items per bin. This example can be

easily generalized to give a worse class of instances.

Fig. 1 Results when VM servers are descending

while tasks are all the same

Fig. 2 Results when tasks and VM servers are same

separately

Bad Example for our new heuristics We remark that

the example of Theorem 1 can be modi_ed to create an

instance where the new proposed heuristics are o_ by

the same factor. Indeed suppose that the items of type

Ti were to beeach split uniformly into (dk)i items of

equal size, so that there are n(dk)I d items of size 1

(dk)i times the size of the type Ti items in Theorem 1.

This instance forces our algorithms to make the same

choices as FFD and results in the same approximation

ratio. Note however that these new instances are

signi_cantly less robust to perturbations. In the second

experiment, we relax the condition where Si, i ≤ m is in

a descending manner while keeping tasks all the same.

Better than that of the round robin, while the Random

has little chance to be better than the Round Robin

method. What’s more, we can clearly get that K2i is

more close to the best line we got in this figure.

Fig. 3 Results when both VM servers and tasks are

not in a sequential manner

In the third experiment, we make Si, i ≤ m not in a

sequential manner. In another word, we use the same

configurations as in the second experiment. Following

5 Conclusions:

Load balancing procedures are fundamental for each

disseminated framework, to a great degree in cloud

computing situation. They expect to make Load

balancing is to enhancing framework execution while

ensure framework clients execution, stack adjusting

could be performed in different levels by countless. In

this paper, we concentrated on the calculation utilized

as a part of Load balancing. In view of the

hypothetically demonstrated the force of-two-decisions

strategy, we proposed our change to make it more

appropriate in distributed computing conditions.

 Page 45

Trials are done utilizing CloudSim. CloudSim is a

controllable, rehashed capable test system for us to test

and check our musings. Cloud computing is another

created circulated and organizes based registering

worldview. There's a great deal more work about load

adjusting in distributed computing should be done later

on. Future works may incorporate errands displaying,

SLA ensured stack adjusting, Load balancing in server

farm level, live VM migration consolidated Load

balancing, etc.

References:

1. Azodolmolky S, Wieder P, Yahyapour R (2013)

Cloud computing networking: challenges and

opportunities for innovations. IEEE Commun Mag

51(7):59–63

2. Yeo S, Lee HHS (2011) Using mathematical

modeling in provisioning a heterogeneous cloud

computing environment. Computer 44(8):55–62

3. Doyle J, Shorten R, O’Mahony D (2013) Stratus:

load balancing the cloud for carbon emissions

control. IEEE Trans Cloud Comput 1(1):116–128

4. Gulisano V, Jimenez-Peris R, Patino-Martinez M et

al (2012) Streamcloud: An elastic and scalable data

streaming system. IEEE Trans Parallel Distrib Syst

23(12):2351–2365

5. Zhang Y, Zhou Y (2013) Transparent computing:

spatio-temporal extension on von neumann

architecture for cloud services. Tsinghua Sci

Technol 18(1):10–21

6. Xu G, Pang J, Fu X (2013) A load balancing model

based on cloud partitioning for the public cloud.

Tsinghua Sci Technol 18(1):34–39

7. Mathew T, Sekaran KC, Jose J (2014) Study and

analysis of various task scheduling algorithms in

the cloud computing environment. In: International

conference on advances in computing,

communications and informatics (ICACCI). IEEE,

pp 658–664

8. Internet technology and secured transactions

(ICITST). IEEE, pp 178–184

9. Wang SC, Yan KQ, Liao WP et al (2010) Towards

a load balancing in a three-level cloud computing

network. In: 3rd IEEE international conference on

computer science and information technology

(ICCSIT), vol 1. IEEE, pp 108–113

10.Goyal A (2014) A study of load balancing in cloud

computing using soft computing techniques. Int J

Comput Appl 92(9):33–39

11.Calheiros RN, Ranjan R, Beloglazov A et al (2011)

CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of

resource provisioning algorithms. Softw Pract

Experience 41(1):23–50.

12.Mitzenmacher M (2001) The power of two choices

in randomized load balancing. IEEE Trans Parallel

Distrib Syst 12(10):1094–1104.

	page1
	page2
	page3
	page4
	page5
	page8

