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ABSTRACT 

Polar codes have become an important error 

correction codes due to their competence achieving 

property. Successive cancellation (SC) algorithm is 

considered as a good candidate for hardware design 

of polar decoders due to its low complexity. Although 

the previous fully parallel encoder is sensitive and 

easy to implement, it is not suitable for long polar 

codes because of the huge hardware complexity 

required. The Partial parallel encoder is intuitive and 

easy to implement, it is not suitable for long polar 

codes because of the huge hardware complexity 

required. The partial parallel encoder architecture 

that is adequate for long polar codes but increases in 

delay. The proposed architecture is used to avoid the 

faulty outputs in the propagation path of encoder 

circuit and delay element is added in each and every 

stage to get fault free output. In this brief, we analyze 

the encoding process in the viewpoint of very-large-

scale integration implementation and simulation 

result shows the reduction in faulty output. 

 

I. INTRODUCTION 

Polar code is a linear block error correcting code. The 

code construction is based on a multiple recursive 

concatenation of a short kernel code which transforms 

the physical channel into virtual outer channels. When 

the number of recursions becomes large, the virtual 

channels tend to either have high reliability or low 

reliability (in other words, they polarize), and the data 

bits are allocated to the most reliable channels. 

 

Polar-coding is a capacity achieving code setting up 

method mainly for binary-input discrete memory much 

less channels. This can be done by the phenomenon of 

channel-polarization that every channel processes a 

flawlessly secure else a fully noisy channel as the 

code-length drives beyond over a collective channel 

built using a suite of N same sub channels1. 50% of 

power consumption can be reduced by parallel 

processing of two-input samples which reduces the 

frequency of operation by. For small or adequate polar 

code, fault performance by the Cyclic Redundancy 

Check (CRC) supported Successive Cancelation List 

(SCL) decoding procedure is improved than the 

Successive Cancelation (SC) decoding process3, 

which isn’t appropriate for lengthy polar-codes owing 

to extreme hardware density. Linear block code with 

appropriate  parameters  can  be  used  to  perform  

block wise decoding of outer codes if there is not take 

into account, not necessary polar, as C 4. Path-search 

techniques for coding tree polar-codes are given as 

combined depiction of the SC, SCL, and SCS 

decoding algorithm. Integration of SCL and SCS, a 
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new decoding process called the Successive 

Cancellation Hybrid (SCH). A semi-parallel- encoder 

based partial-sum update features as accessible 

architecture for SC decoding of polar-codes. This 

module uses Static Random Access Memory (SRAM) 

for storing, and uses a fixed data path. This design 

influences a multi-level quantization structure for 

Limb Lengthening and Reconstruction society (LLRs), 

reducing the memory usage and area. 

 

Polar-codes require tremendous code lengths to 

strategy the capacity of the underlying channel6. 

Coding theorem by Shannon’s proof for noisy channel 

is random coding method which is used to exhibit the 

presence of ability-reaching code structures without 

revealing any designated one7. In realistic 

implementations, the memory measurement and the 

usage of XOR-gates expand because code size 

increases. The polar-decoders is 8 times more than the 

successive cancellation decoder to increase the 

throughput of polar- decoding by an order of 

magnitude8. None of the previous works has deeply 

analyzed the best way to the polar-code encoding 

effectively, although quite a lot of trade-offs are 

feasible among the latency and hardware difficulty. 

 

This design synthesized in a CMOS technology of 

130nm for a parallel structure. Then again, the 

complex parallel structure has benefits of low latency 

and high throughput. The Polar Cosine Transform 

(PCT) algorithm used to divide the image into 

overlapping patches and then feature vectors are 

extracted from the patches. Hence, the polarization 

method is used in the image encryption and 

decryption9. Folding Transformation is a technique in 

which the number of butterflies in the same column is 

mapped into one butterfly unit. A pipelined parallel 

Fast Fourier Transform (FFT) architecture which has a 

lesser power consumption compared to serial FFT 

architectures. Digital Signal Processor (DSP) 

operations are repetitive and periodic in nature. 

 

The life time chart specifies the life period of all 

variables in a single frame and the subsequent frames 

are computed in a periodic manner. 

 

II. EXISTING SYSTEM 

Polar code is a new class of error correcting codes that 

provably achieves the capacity of the underlying   

channels.   In   addition   concrete   algorithms   for   

constructing,   encoding   and decoding the code are all 

developed.  Due  to  the  channel  capacity  achieving  

property,  the polar code is now considered as a major 

breakthrough in coding theory, and the applicability of  

the  polar  code  is  being  investigated  in  many  

application  including  data  storage  devices. The 

property of efficient error correcting codes based  

upon the channel capacity, the code length should be 

at least 220bits, and many literature works introduces 

polar codes ranging from  210to  215to  achieve  good  

error-correcting  performances  in  practice. In 

addition, the size of a message protected by an error-

correcting code in storage systems in normally 4096 

bytes. Although the polar code has been regarded as 

being associated with low complexity, such a long 

polar code suffers from severe hardware complexity 

and long latency,. The polar code utilizes the channel 

polarization phenomenon that each channel 

approaches either  a perfectly  reliable or a completely 

noisy channel as the code length  goes to infinity over  

a  combined  channel  constructed  with  a set  of  N  

identical  sub-channels.  As  the reliability  of  each  

sub-channel  known  a  priori,  K  most  reliable  sub-

channels  are  used  to transmit  information  and  the 

remaining  sub-channels  are  set  to  predetermined  

values  to construct a polar (N,K) code. 

 
Figure 1: Parallel architecture for encoding a 16-

bit polar code. 
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Figure 2: DFG of 16 bit polar encoding 

 

The  fully  parallel  encoder  is  intuitively  designed  

based  on  the  generator  matrix,  but implementing 

such an encoder becomes a significant burden when a 

long polar code is used to  achieve  a  good  error  

correcting  performance.  In Practical implementation, 

the memory size and the number of XOR gates 

increase as the code length increases. 

 

Disadvantages: 

1. More Hardware complexity 

2. More Power dissipation 

3. Not support for long polar codes 

 

III. PROPOSED SYSTEM 

In  this  section,  we  propose  a  partially  parallel  

structure  to  encode  long  polar  codes efficiently. To 

clearly show the proposed approach and how to 

transform the architecture, a 4-parallel  encoding  

architecture  for  the  16-bit  polar  code  is  

exemplified  in  depth.  The  fully parallel  encoding  

architecture  is  first  transformed  to  a  folded  from  

and  then  the  lifetime analysis and register allocation 

are  applied  to the folded architecture.  Lastly, the 

proposed parallel architecture true for long polar code 

is described. 

 

A. Folding Transformation 

The folding transformation [15], [18] is widely used to 

save hardware resources by time-multiplexing several 

operations on a functional unit. A data flow graph 

(DFG) corresponding to the fully parallel encoding 

process for 16-bit polar codes is shown in Fig. 2, 

where a node represents the kernel matrix operation F , 

and wij denotes the jth edge at the ith stage. Note that 

the DFG of the fully parallel polar encoder is similar 

to that of the fast Fourier transform [18], [19] except 

that the polar encoder employs the kernel matrix 

instead of the butterfly operation. Given the 16-bit 

DFG, the 4-parallel folded architecture that processes 

4 bits at a time can be realized with placing two 

functional units in each stage since the functional unit 

computes 2 bits at a time. In the folding 

transformation, determining       a folding set, which 

represents the order of operations to be executed in a 

functional unit, is the most important design factor 

[15]. To construct efficient folding sets, all operations 

in the fully parallel encoding are first classified as 

separate folding sets. Since the input is in a natural 

order, it is reasonable to alternatively distribute the 

operations in the consecutive order. Thus, each stage 

consists of two folding sets, each of which contains 

only odd or even operations to be performed by a 

separate unit. 

 

Considering the four-parallel input sequence in a 

natural order, stage 1 has two folding sets of {A0, A2, 

A4, A6} and {A1, A3, A5, A7}. Each folding set 

contains four elements, and the position of an element 

represents the operational order in the corresponding 

functional unit. Two functional units for stage 1 

execute A0 and A1 simultaneously at the beginning 

and A2 and A3 at the next cycle, and so forth. The 

folding sets of stage 2 have the same order as those of 

stage 1, i.e., {B0, B2, B4, B6} and {B1, B3, B5, B7}, 

since the four-parallel input sequence of stage 2 is 

equal to that of stage 1. Furthermore, to deter- mine 

the folding sets of another stage s, the property that the 

functional unit processes a pair of inputs whose 

indices differ by 2s−1 is exploited. In the case of stage 

3, two data whose indices differ by 4 are processed 

together, which implies that the operational distance of 

the corresponding data is two as the kernel functional 
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unit computes two data at a time. For instance, w2,0 

and w2,4 that come from B0 and B2 are used as the 

inputs to C0. Since both inputs should be valid to be 

processed in a functional unit, the operations in stage 3 

are aligned to the late input data. Cyclic shifting the 

folding sets right by one, which can be realized by 

inserting a delay of one time unit, is to enable full 

utilization of the functional units by overlapping 

adjacent iterations. As a result, the folding sets of 

stage 3 are determined to {C6,C0,C2,C4} and 

{C7,C1,C3,C5}, where C6 in the current iteration is 

overlapped with A0 and B0 in the next iteration. In the 

same manner, the property that the functional unit 

processes a pair of inputs whose indices differ by 8 is 

exploited in stage 4. The folding sets of stage 4 are 

{D2, D4, D6, D0} and {D3, D5, D7, D1}, which are 

ob- tained by cyclic shifting the previous folding sets 

of stage 3 by two. Generally speaking, a stage whose 

index s is less than or equal to log2 P , where P is the 

level of parallelism, has the same folding sets 

determined by evenly interleaving the operations in 

the consecutive order, and another stage whose index s 

is larger than log2 P has the folding sets obtained by 

cyclic shifting the previous folding sets of stage s − 1 

right by s − log2 P . 

 
Fig.3. Register allocation table for w2j and w3j. 

 

 
Figure 4: Proposed 4 parallel architecture of polar 

codes. 

 

Now, let us consider the delay elements required in the 

folded architecture more precisely.  When an edge wij 

from functional unit S to functional unit T has a delay 

of d, the delay requirements for wij in the F -folded 

architecture can be calculated as 

 
where t and s denote the position in the folding set 

corresponding to T and S, respectively. Note that (1) is 

a simplified delay equation [15] derived with 

assuming that the kernel functional unit is not 

pipelined. The delay requirements of the 4-folded 

architecture, i.e.,  D(wij)  for  1 ≤ i ≤ 3  and  0 ≤ j ≤ 15,  

are summarized in Fig. 3. For instance, w2,0 from B0 

to C0 demands one delay since d = 0, t = 1, and s = 0. 

Note that some edges indicated by circles have 

negative delays. For the folded architecture to be 

feasible, the delay requirements must be larger than or 

equal to zero for all the edges. Pipelining or retiming 

techniques can be applied to the fully parallel DFG in 

order to ensure that its folded hardware has 

nonnegative delays. Every edge with a negative delay 

should be compensated by inserting at least one delay 

element to make the value of (1) not negative.  We 

have to make sure that the two inputs of    an operation 

pass through the same number of delay elements from 

the starting points. If they are different, additional 

delay elements are inserted to make the paths have the 

same delay elements. In Fig. 3, for example, four 

edges with zero delays are specially marked with 

negative zeros since additional delays are necessary 

due to the mismatch of the number of delay elements. 

The DFG is pipelined by inserting delay elements, as 

shown in Fig. 2, where the dashed line indicates the 

pipeline cut set associated with 12 delay elements. The 

delay requirements of  the  pipelined  DFG  Dr(wij)  

are  recalculated  based  on  (1) and shown at the 

bottom of Fig. 3. As a result, 8 functional units and 48 

delay elements in total are enough to implement the 4-

parallel 4-folded encoding architecture based on the 

folding sets. 

 

B. Lifetime Analysis and Register Allocation 

Although a folded architecture for 16-bit polar 

encoding is presented in the previous section, there is 

room for minimizing the number of delay elements. 
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The lifetime analysis [16] is employed to find the 

minimum number of delay elements required in 

implementing the folded architecture. The lifetime of 

every variable is graphically represented in the linear 

lifetime chart illustrated in Fig. 4. Since all the edges 

starting from stage 1 demand no delay elements, only 

w2j and w3j are presented in Fig. 4. For instance, w3,0 

is alive for two cycles as it is produced at cycle 1 and 

consumed at cycle 3. The number of variables alive in 

each cycle is presented at the right side of the chart. 

Note that the number of live variables at the fourth or 

later clock cycles takes into account the next iteration 

overlapped with the current iteration. Consequently, 

the maximum number of live variables is 12, which 

means that the folded architecture can be implemented 

with 12 delay elements instead of 48. 

 

Once the minimum number of delay elements has been 

determined, each variable is allocated to a register. For 

the above example, the register allocation is 

tabularized in Fig. 5. In the register allocation table 

[17], all the 12 registers are shown at the first row, and 

every row describes how the registers   are allocated at 

the corresponding cycle. With taking into account the 

4-parallel processing, variables are carefully allocated 

to registers in a forward manner. In Fig. 5, an arrow 

dictates that a variable stored in a register is migrated 

to another register, and a circle indicates that the 

variable is consumed at the cycle. For example, w2,0 

and w2,4 are consumed in a functional unit to execute 

operation C0 that generates w3,0 and w3,4. At the 

same time, w2,1 and w2,5 are consumed in another 

functional unit to execute operation C1 that produces 

w3,1 and w3,5. The migration of the other variables 

can be traced by following the register allocation table. 

 

Finally, the resulting 4-parallel pipelined structure 

proposed to encode the 16-bit polar code is illustrated 

in Fig. 6, which consists of 8 functional units and 12 

delay elements. A pair of two functional units takes in 

charge of one stage, and the delay elements are to 

store variables according to the register allocation 

table. The hardware structures for stages 1 and 2 can 

be straightforwardly realized as no delay elements are 

necessary in those stages, whereas for stages 3 and 4, 

several multiplexers are placed in front of some 

functional units to configure  the inputs of the 

functional units. The proposed architecture 

continuously processes four samples per cycle 

according to the folding sets and the register allocation 

table. Note that the proposed encoder takes a pair of 

inputs in a natural order and generates a pair of outputs 

in a bit-reversed order, as shown   in Fig. 2. As the 

functional unit in the proposed architecture processes a 

pair of 2 bits at a time, the proposed architecture 

maintains the consecutive order at the input side and 

the bit- reversed order at the output side if a pair of 

consecutive bits is regarded as a single entity. 

 

In  the  proposed  system  of  4  parallel  architecture  

of  polar  code  to  be  re-modified  and  to implement   

8-parallel   architecture   of   polar   code,   and   

finally   show   the   same   power consumption, and 

the report of area, delay and logic sizes. 

 

Advantages 

1. Less Hardware complexity 

2. More power consumption 

3. Support for long polar codes 

 

IV. ANALYSIS AND COMPARISON 

In the proposed architecture, the number of functional 

units required in the implementation depends on the 

code length    N and the level of parallelism P.  Since a 

functional unit representing the kernel matrix F 

processes two bits at a time, each stage necessitates 

|P/2| functional units and the whole structure requires 

|P/2| log2 N functional units in total. 
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Moreover, the minimal number of delay elements 

required in the proposed architecture is N − P , as 

explained below. The stages whose indices s are larger 

than log2 P require P delay blocks of length 2s−log2 

P−1, whereas the other stages can be implemented 

with no delay elements. In other words, the total 

number of delay elements is 

 
 

Given the hardware resources, the proposed partially 

parallel architecture can encode P bits per cycle. To 

sum up, Table I shows how the hardware complexity 

and the throughput are dependent on the level of 

parallelism. Furthermore, Table II demonstrates the 

proposed (8192, K) encoder architecture synthesized 

in a 130-nm CMOS technology for various 

parallelism. As the level of parallelism in- creases, the 

hardware complexity measured in terms of the gate 

count is significantly deteriorated due to the complex 

logic part, whereas the register part in all encoder 

architectures maintains similar complexity if we take 

into account a P -bit input buffer needed to hold the 

data to be read from the memory. On the other hand, 

the higher parallel architecture has advantages of small 

latency and high encoding throughput. Therefore, the 

relationship shown in Table II can be applied to derive 

the most efficient partially parallel encoder 

architecture for a given requirement. The throughput 

per gate is proportional to the level of parallelism as 

the complexity of the register part is almost 

independent of the parallelism. Moreover, Table III  

shows how much the partially parallel encoders save 

the hardware complexity compared with the fully 

parallel architecture [1] for various code lengths. For 

fair comparison, all the encoders designed for the code 

lengths ranging from 210 to 214 are constrained by a 

working frequency of 200 MHz to assure a decoding 

performance over 6.4 Gb/s even for the 32-parallel 

architecture. Note that the percentage in the 

parenthesis indicates the ratio of the proposed encoder 

to the fully parallel encoder. Compared with the fully 

parallel encoder, the proposed encoder saves the 

hardware by up to 73%. 

 

V. RESULTS 

The Number of Slices, Number of Slice Flip Flops, 

Number of 4 input LUTs, Number of bonded IOBs, 

Number of GCLKs used is 63, 88, 56,66,1 respectively 

for the proposed system. 

 
FIGURE 5: Device utilization summary of 

Proposed system. 

 

 
FIGURE 6: RTL Schematic of proposed system. 

 

 
FIGURE 7:Output waveforms of proposed system. 
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Maximum combinational path delay: 7.337ns 

 

VI. CONCLUSION 

This paper has presented a new partially parallel 

encoder architecture developed for long polar codes. 

Many optimization techniques have been applied to 

derive the proposed architecture. Experimental results 

show that the proposed architecture can save the 

hardware by up to 73% compared with that of the fully 

parallel architecture. Finally, the relationship between 

the hardware complexity and the throughputs is 

analyzed to select the most suitable architecture for a 

given application. There- fore, the proposed 

architecture provides a practical solution for encoding 

a long polar code. 
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