

 Page 632

Design and Analysis of Partially Parallel Encoder for 16-Bit Polar

Codes

N.Chandu

M.Tech (VLSI Design)

Department of ECE

Shree Institute of Technical Education,

Krishnapuram, Tirupati(Rural),

Andhra Pradesh.

Mrs.M.Kalpana, M.Tech

Assistant Professor

Department of ECE

Shree Institute of Technical Education,

Krishnapuram, Tirupati(Rural),

Andhra Pradesh.

ABSTRACT

Polar codes have become an important error

correction codes due to their competence achieving

property. Successive cancellation (SC) algorithm is

considered as a good candidate for hardware design

of polar decoders due to its low complexity. Although

the previous fully parallel encoder is sensitive and

easy to implement, it is not suitable for long polar

codes because of the huge hardware complexity

required. The Partial parallel encoder is intuitive and

easy to implement, it is not suitable for long polar

codes because of the huge hardware complexity

required. The partial parallel encoder architecture

that is adequate for long polar codes but increases in

delay. The proposed architecture is used to avoid the

faulty outputs in the propagation path of encoder

circuit and delay element is added in each and every

stage to get fault free output. In this brief, we analyze

the encoding process in the viewpoint of very-large-

scale integration implementation and simulation

result shows the reduction in faulty output.

I. INTRODUCTION

Polar code is a linear block error correcting code. The

code construction is based on a multiple recursive

concatenation of a short kernel code which transforms

the physical channel into virtual outer channels. When

the number of recursions becomes large, the virtual

channels tend to either have high reliability or low

reliability (in other words, they polarize), and the data

bits are allocated to the most reliable channels.

Polar-coding is a capacity achieving code setting up

method mainly for binary-input discrete memory much

less channels. This can be done by the phenomenon of

channel-polarization that every channel processes a

flawlessly secure else a fully noisy channel as the

code-length drives beyond over a collective channel

built using a suite of N same sub channels1. 50% of

power consumption can be reduced by parallel

processing of two-input samples which reduces the

frequency of operation by. For small or adequate polar

code, fault performance by the Cyclic Redundancy

Check (CRC) supported Successive Cancelation List

(SCL) decoding procedure is improved than the

Successive Cancelation (SC) decoding process3,

which isn’t appropriate for lengthy polar-codes owing

to extreme hardware density. Linear block code with

appropriate parameters can be used to perform

block wise decoding of outer codes if there is not take

into account, not necessary polar, as C 4. Path-search

techniques for coding tree polar-codes are given as

combined depiction of the SC, SCL, and SCS

decoding algorithm. Integration of SCL and SCS, a

 Page 633

new decoding process called the Successive

Cancellation Hybrid (SCH). A semi-parallel- encoder

based partial-sum update features as accessible

architecture for SC decoding of polar-codes. This

module uses Static Random Access Memory (SRAM)

for storing, and uses a fixed data path. This design

influences a multi-level quantization structure for

Limb Lengthening and Reconstruction society (LLRs),

reducing the memory usage and area.

Polar-codes require tremendous code lengths to

strategy the capacity of the underlying channel6.

Coding theorem by Shannon’s proof for noisy channel

is random coding method which is used to exhibit the

presence of ability-reaching code structures without

revealing any designated one7. In realistic

implementations, the memory measurement and the

usage of XOR-gates expand because code size

increases. The polar-decoders is 8 times more than the

successive cancellation decoder to increase the

throughput of polar- decoding by an order of

magnitude8. None of the previous works has deeply

analyzed the best way to the polar-code encoding

effectively, although quite a lot of trade-offs are

feasible among the latency and hardware difficulty.

This design synthesized in a CMOS technology of

130nm for a parallel structure. Then again, the

complex parallel structure has benefits of low latency

and high throughput. The Polar Cosine Transform

(PCT) algorithm used to divide the image into

overlapping patches and then feature vectors are

extracted from the patches. Hence, the polarization

method is used in the image encryption and

decryption9. Folding Transformation is a technique in

which the number of butterflies in the same column is

mapped into one butterfly unit. A pipelined parallel

Fast Fourier Transform (FFT) architecture which has a

lesser power consumption compared to serial FFT

architectures. Digital Signal Processor (DSP)

operations are repetitive and periodic in nature.

The life time chart specifies the life period of all

variables in a single frame and the subsequent frames

are computed in a periodic manner.

II. EXISTING SYSTEM

Polar code is a new class of error correcting codes that

provably achieves the capacity of the underlying

channels. In addition concrete algorithms for

constructing, encoding and decoding the code are all

developed. Due to the channel capacity achieving

property, the polar code is now considered as a major

breakthrough in coding theory, and the applicability of

the polar code is being investigated in many

application including data storage devices. The

property of efficient error correcting codes based

upon the channel capacity, the code length should be

at least 220bits, and many literature works introduces

polar codes ranging from 210to 215to achieve good

error-correcting performances in practice. In

addition, the size of a message protected by an error-

correcting code in storage systems in normally 4096

bytes. Although the polar code has been regarded as

being associated with low complexity, such a long

polar code suffers from severe hardware complexity

and long latency,. The polar code utilizes the channel

polarization phenomenon that each channel

approaches either a perfectly reliable or a completely

noisy channel as the code length goes to infinity over

a combined channel constructed with a set of N

identical sub-channels. As the reliability of each

sub-channel known a priori, K most reliable sub-

channels are used to transmit information and the

remaining sub-channels are set to predetermined

values to construct a polar (N,K) code.

Figure 1: Parallel architecture for encoding a 16-

bit polar code.

 Page 634

Figure 2: DFG of 16 bit polar encoding

The fully parallel encoder is intuitively designed

based on the generator matrix, but implementing

such an encoder becomes a significant burden when a

long polar code is used to achieve a good error

correcting performance. In Practical implementation,

the memory size and the number of XOR gates

increase as the code length increases.

Disadvantages:

1. More Hardware complexity

2. More Power dissipation

3. Not support for long polar codes

III. PROPOSED SYSTEM

In this section, we propose a partially parallel

structure to encode long polar codes efficiently. To

clearly show the proposed approach and how to

transform the architecture, a 4-parallel encoding

architecture for the 16-bit polar code is

exemplified in depth. The fully parallel encoding

architecture is first transformed to a folded from

and then the lifetime analysis and register allocation

are applied to the folded architecture. Lastly, the

proposed parallel architecture true for long polar code

is described.

A. Folding Transformation

The folding transformation [15], [18] is widely used to

save hardware resources by time-multiplexing several

operations on a functional unit. A data flow graph

(DFG) corresponding to the fully parallel encoding

process for 16-bit polar codes is shown in Fig. 2,

where a node represents the kernel matrix operation F ,

and wij denotes the jth edge at the ith stage. Note that

the DFG of the fully parallel polar encoder is similar

to that of the fast Fourier transform [18], [19] except

that the polar encoder employs the kernel matrix

instead of the butterfly operation. Given the 16-bit

DFG, the 4-parallel folded architecture that processes

4 bits at a time can be realized with placing two

functional units in each stage since the functional unit

computes 2 bits at a time. In the folding

transformation, determining a folding set, which

represents the order of operations to be executed in a

functional unit, is the most important design factor

[15]. To construct efficient folding sets, all operations

in the fully parallel encoding are first classified as

separate folding sets. Since the input is in a natural

order, it is reasonable to alternatively distribute the

operations in the consecutive order. Thus, each stage

consists of two folding sets, each of which contains

only odd or even operations to be performed by a

separate unit.

Considering the four-parallel input sequence in a

natural order, stage 1 has two folding sets of {A0, A2,

A4, A6} and {A1, A3, A5, A7}. Each folding set

contains four elements, and the position of an element

represents the operational order in the corresponding

functional unit. Two functional units for stage 1

execute A0 and A1 simultaneously at the beginning

and A2 and A3 at the next cycle, and so forth. The

folding sets of stage 2 have the same order as those of

stage 1, i.e., {B0, B2, B4, B6} and {B1, B3, B5, B7},

since the four-parallel input sequence of stage 2 is

equal to that of stage 1. Furthermore, to deter- mine

the folding sets of another stage s, the property that the

functional unit processes a pair of inputs whose

indices differ by 2s−1 is exploited. In the case of stage

3, two data whose indices differ by 4 are processed

together, which implies that the operational distance of

the corresponding data is two as the kernel functional

 Page 635

unit computes two data at a time. For instance, w2,0

and w2,4 that come from B0 and B2 are used as the

inputs to C0. Since both inputs should be valid to be

processed in a functional unit, the operations in stage 3

are aligned to the late input data. Cyclic shifting the

folding sets right by one, which can be realized by

inserting a delay of one time unit, is to enable full

utilization of the functional units by overlapping

adjacent iterations. As a result, the folding sets of

stage 3 are determined to {C6,C0,C2,C4} and

{C7,C1,C3,C5}, where C6 in the current iteration is

overlapped with A0 and B0 in the next iteration. In the

same manner, the property that the functional unit

processes a pair of inputs whose indices differ by 8 is

exploited in stage 4. The folding sets of stage 4 are

{D2, D4, D6, D0} and {D3, D5, D7, D1}, which are

ob- tained by cyclic shifting the previous folding sets

of stage 3 by two. Generally speaking, a stage whose

index s is less than or equal to log2 P , where P is the

level of parallelism, has the same folding sets

determined by evenly interleaving the operations in

the consecutive order, and another stage whose index s

is larger than log2 P has the folding sets obtained by

cyclic shifting the previous folding sets of stage s − 1

right by s − log2 P .

Fig.3. Register allocation table for w2j and w3j.

Figure 4: Proposed 4 parallel architecture of polar

codes.

Now, let us consider the delay elements required in the

folded architecture more precisely. When an edge wij

from functional unit S to functional unit T has a delay

of d, the delay requirements for wij in the F -folded

architecture can be calculated as

where t and s denote the position in the folding set

corresponding to T and S, respectively. Note that (1) is

a simplified delay equation [15] derived with

assuming that the kernel functional unit is not

pipelined. The delay requirements of the 4-folded

architecture, i.e., D(wij) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15,

are summarized in Fig. 3. For instance, w2,0 from B0

to C0 demands one delay since d = 0, t = 1, and s = 0.

Note that some edges indicated by circles have

negative delays. For the folded architecture to be

feasible, the delay requirements must be larger than or

equal to zero for all the edges. Pipelining or retiming

techniques can be applied to the fully parallel DFG in

order to ensure that its folded hardware has

nonnegative delays. Every edge with a negative delay

should be compensated by inserting at least one delay

element to make the value of (1) not negative. We

have to make sure that the two inputs of an operation

pass through the same number of delay elements from

the starting points. If they are different, additional

delay elements are inserted to make the paths have the

same delay elements. In Fig. 3, for example, four

edges with zero delays are specially marked with

negative zeros since additional delays are necessary

due to the mismatch of the number of delay elements.

The DFG is pipelined by inserting delay elements, as

shown in Fig. 2, where the dashed line indicates the

pipeline cut set associated with 12 delay elements. The

delay requirements of the pipelined DFG Dr(wij)

are recalculated based on (1) and shown at the

bottom of Fig. 3. As a result, 8 functional units and 48

delay elements in total are enough to implement the 4-

parallel 4-folded encoding architecture based on the

folding sets.

B. Lifetime Analysis and Register Allocation

Although a folded architecture for 16-bit polar

encoding is presented in the previous section, there is

room for minimizing the number of delay elements.

 Page 636

The lifetime analysis [16] is employed to find the

minimum number of delay elements required in

implementing the folded architecture. The lifetime of

every variable is graphically represented in the linear

lifetime chart illustrated in Fig. 4. Since all the edges

starting from stage 1 demand no delay elements, only

w2j and w3j are presented in Fig. 4. For instance, w3,0

is alive for two cycles as it is produced at cycle 1 and

consumed at cycle 3. The number of variables alive in

each cycle is presented at the right side of the chart.

Note that the number of live variables at the fourth or

later clock cycles takes into account the next iteration

overlapped with the current iteration. Consequently,

the maximum number of live variables is 12, which

means that the folded architecture can be implemented

with 12 delay elements instead of 48.

Once the minimum number of delay elements has been

determined, each variable is allocated to a register. For

the above example, the register allocation is

tabularized in Fig. 5. In the register allocation table

[17], all the 12 registers are shown at the first row, and

every row describes how the registers are allocated at

the corresponding cycle. With taking into account the

4-parallel processing, variables are carefully allocated

to registers in a forward manner. In Fig. 5, an arrow

dictates that a variable stored in a register is migrated

to another register, and a circle indicates that the

variable is consumed at the cycle. For example, w2,0

and w2,4 are consumed in a functional unit to execute

operation C0 that generates w3,0 and w3,4. At the

same time, w2,1 and w2,5 are consumed in another

functional unit to execute operation C1 that produces

w3,1 and w3,5. The migration of the other variables

can be traced by following the register allocation table.

Finally, the resulting 4-parallel pipelined structure

proposed to encode the 16-bit polar code is illustrated

in Fig. 6, which consists of 8 functional units and 12

delay elements. A pair of two functional units takes in

charge of one stage, and the delay elements are to

store variables according to the register allocation

table. The hardware structures for stages 1 and 2 can

be straightforwardly realized as no delay elements are

necessary in those stages, whereas for stages 3 and 4,

several multiplexers are placed in front of some

functional units to configure the inputs of the

functional units. The proposed architecture

continuously processes four samples per cycle

according to the folding sets and the register allocation

table. Note that the proposed encoder takes a pair of

inputs in a natural order and generates a pair of outputs

in a bit-reversed order, as shown in Fig. 2. As the

functional unit in the proposed architecture processes a

pair of 2 bits at a time, the proposed architecture

maintains the consecutive order at the input side and

the bit- reversed order at the output side if a pair of

consecutive bits is regarded as a single entity.

In the proposed system of 4 parallel architecture

of polar code to be re-modified and to implement

8-parallel architecture of polar code, and

finally show the same power consumption, and

the report of area, delay and logic sizes.

Advantages

1. Less Hardware complexity

2. More power consumption

3. Support for long polar codes

IV. ANALYSIS AND COMPARISON

In the proposed architecture, the number of functional

units required in the implementation depends on the

code length N and the level of parallelism P. Since a

functional unit representing the kernel matrix F

processes two bits at a time, each stage necessitates

|P/2| functional units and the whole structure requires

|P/2| log2 N functional units in total.

 Page 637

Moreover, the minimal number of delay elements

required in the proposed architecture is N − P , as

explained below. The stages whose indices s are larger

than log2 P require P delay blocks of length 2s−log2

P−1, whereas the other stages can be implemented

with no delay elements. In other words, the total

number of delay elements is

Given the hardware resources, the proposed partially

parallel architecture can encode P bits per cycle. To

sum up, Table I shows how the hardware complexity

and the throughput are dependent on the level of

parallelism. Furthermore, Table II demonstrates the

proposed (8192, K) encoder architecture synthesized

in a 130-nm CMOS technology for various

parallelism. As the level of parallelism in- creases, the

hardware complexity measured in terms of the gate

count is significantly deteriorated due to the complex

logic part, whereas the register part in all encoder

architectures maintains similar complexity if we take

into account a P -bit input buffer needed to hold the

data to be read from the memory. On the other hand,

the higher parallel architecture has advantages of small

latency and high encoding throughput. Therefore, the

relationship shown in Table II can be applied to derive

the most efficient partially parallel encoder

architecture for a given requirement. The throughput

per gate is proportional to the level of parallelism as

the complexity of the register part is almost

independent of the parallelism. Moreover, Table III

shows how much the partially parallel encoders save

the hardware complexity compared with the fully

parallel architecture [1] for various code lengths. For

fair comparison, all the encoders designed for the code

lengths ranging from 210 to 214 are constrained by a

working frequency of 200 MHz to assure a decoding

performance over 6.4 Gb/s even for the 32-parallel

architecture. Note that the percentage in the

parenthesis indicates the ratio of the proposed encoder

to the fully parallel encoder. Compared with the fully

parallel encoder, the proposed encoder saves the

hardware by up to 73%.

V. RESULTS

The Number of Slices, Number of Slice Flip Flops,

Number of 4 input LUTs, Number of bonded IOBs,

Number of GCLKs used is 63, 88, 56,66,1 respectively

for the proposed system.

FIGURE 5: Device utilization summary of

Proposed system.

FIGURE 6: RTL Schematic of proposed system.

FIGURE 7:Output waveforms of proposed system.

 Page 638

Maximum combinational path delay: 7.337ns

VI. CONCLUSION

This paper has presented a new partially parallel

encoder architecture developed for long polar codes.

Many optimization techniques have been applied to

derive the proposed architecture. Experimental results

show that the proposed architecture can save the

hardware by up to 73% compared with that of the fully

parallel architecture. Finally, the relationship between

the hardware complexity and the throughputs is

analyzed to select the most suitable architecture for a

given application. There- fore, the proposed

architecture provides a practical solution for encoding

a long polar code.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for

constructing capacity achieving codes for symmetric

binary-input memoryless channels,” IEEE Trans. Inf.

Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] R.Mori and T. Tanaka, “Performance of polar

codes with the construction using density evolution,”

IEEE Commun. Lett., vol. 13, no. 7, pp. 519– 521, Jul.

2009.

[3] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar

codes: Characterization of exponent, bounds,

constructions,” IEEE Trans. Inf. Theory, vol. 56, no.

12, pp. 6253–6264, Dec. 2010.

[4] I. Tal and A. Vardy, “List decoding of polar

codes,” in Proc. IEEE ISIT, 2011, pp. 1–5.

[5] K. Chen, K. Niu, and J. Lin, “Improved successive

cancellation decoding of polar codes,” IEEE Trans.

Commun., vol. 61, no. 8, pp. 3100–3107, Aug. 2013.

[6] G. Sarkis and W. J. Gross, “Polar codes for data

storage applications,” in Proc. ICNC, 2013, pp. 840–

844.

[7] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and

W. J. Gross, “Fast polar decoders: Algorithm and

implementation,” IEEE J. Sel. Areas Commun., vol.

32, no. 5, pp. 946–957, May 2014.

[8] G. Berhault, C. Leroux, C. Jego, and D. Dallet,

“Partial sums generation architecture for successive

cancellation decoding of polar codes,” in Proc. IEEE

Workshop SiPS, Oct. 2013, pp. 407–412.

[9] B. Yuan and K. K. Parhi, “Low-latency successive-

cancellation polar decoder architectures using 2-bit

decoding,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 61, no. 4, pp. 1241–1254, Apr. 2014.

[10] C. Leroux, A. J. Raymond, G. Sarkis, and W. J.

Gross, “A semi-parallel successive-cancellation

decoder for polar codes,” IEEE Trans. Signal Process.,

vol. 61, no. 2, pp. 289–299, Jan. 2013.

[11] A. J. Raymond and W. J. Gross, “Scalable

successive-cancellation hard- ware decoder for polar

codes,” in Proc. IEEE GlobalSIP, Dec. 2013, pp.

1282–1285.

[12] U. U. Fayyaz and J. R. Barry, “Low-complexity

soft-output decoding of polar codes,” IEEE J. Sel.

Areas Commun., vol. 32, no. 5, pp. 958–966, May

2014.

[13] B. Yuan and K. K. Parhi, “Low-latency

successive-cancellation list de- coders for polar codes

with multibit decision,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., DOI:

10.1109/TVLSI.2014.2359793, to be published.

[14] C. Zhang and K. K. Parhi, “Latency analysis and

architecture design of simplified SC polar decoders,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no.

2, pp. 115–119, Feb. 2014.

 Page 639

[15] K. K. Parhi, VLSI Digital Signal Processing

Systems: Design and Imple- mentation. Hoboken,

NJ, USA: Wiley, 1999.

[16] K. K. Parhi, “Calculation of minimum number of

registers in arbitrary life time chart,” IEEE Trans.

Circuits Syst. II, Analog Digit. Signal Process., vol.

41, no. 6, pp. 434–436, Jun. 1995.

AUTHOR PROFILE

Mr.N.Chandu, P.G.Scholar, Department of ECE,

Shree Institute of Technical Education,Tirupati, A.P.

India.He has Received his B.Tech Degree in (ECE)

from Shree institute of technical education, Tirupati in

2013.Currently He is Doing M.Tech (VLSI) in Shree

Institute of technical education, Tirupati. His General

Areas of Interest are Low Power VLSI, Digital IC

Design, Signal processing, Image processing.

Mrs. M. Kalpana, M.Tech, [DECS]. Assistant

Professor,

She received his Master of Technology degree from

JNTUA. Currently working as Assistant Professor in

ECE department of SHREE Institute of Technical

Education, affiliated to JNTUA, Tirupati, A.P. India.

She has 5years teaching experience in the stream of

engineering education. She has 2 Published in

International Journals. Her research areas are Signal

processing, image processing and communications

systems.

