

 Page 562

An Emphasized Apriori Algorithm for Huge Sequence of Datasets

Ravi Kumar.V

Associate Professor,

Department of IT,

TKRCET.

Dr.Purna Chander Rao

Research Scholar- JNTUH

Professor,

SVIET.

Abstract:

In this paper, an Emphasized Apriori algorithm is

proposed based on the most popular Apriori

algorithm to overcome its drawbacks which are

nothing but time consumption and the memory space.

Since the Apriori algorithm scans the entire database

based on minimum support and minimum

confidence, it consumes more time and also more

space. In this approach, new candidate set was

prepared by considering the minimum support such

that the total number of items will be reduced intern

reduces the time taken and also memory space. This

approach also includes the concept of Frequent

Pattern (FP) growth to delete the items which are not

frequent. Finally, a FP tree is established based on

the frequent itemsets such that the items which are

not frequent were delete intern to reduce the space

consumption.

Keywords: Sequential Pattern Mining, Apriori,

Frequent Pattern, Itemsets, Time Consumption.

1. Introduction

With the quick development of the Internet and

information, mining valuable and important learning or

data is a basic issue as of late. Contingent upon

particular applications [1], [2], the found learning can

be named affiliation manage mining [3],

characterization [4], bunching [5], and successive

example mining [6], [7] among others [8]. Consecutive

example mining (SPM) concerns the requested

arrangement information, for example, DNA

successions, utilization of Web log, Web-click

streams, or the logs of system stream. It can likewise

be utilized to anticipate the obtained practices of the

clients in crate examination. For instance, a client

purchases a few socks in one exchange at shopping

center, he or she will get a few shoes in a later

exchange. In prior, Agrawal et al. proposed the

AprioriAll calculation [6] to produce and-test

contender for mining the successive examples from a

static database. Pei et al. planned the PrefixSpan

calculation to effectively mine the successive

examples in view of the projection component [9]. A

grouping database is recursively anticipated into a few

littler arrangements of anticipated database to

accelerate the calculations for mining consecutive

examples. Zaki et al. proposed a SPADE calculation to

quick mine the successive examples [10]. The SPADE

calculation uses the combinational properties in view

of the effective grid seek methods with join operations.

In view of SPADE calculation, the consecutive

examples can be determined with three database

filters. Numerous calculations have been proposed to

mine the consecutive examples, however the greater

part of them are performed to handle the static

database. At the point when the arrangements are

changed whether succession inclusion [11] or erasure

[12] in the first database, the found consecutive

examples may get to be invalid or new successive

examples may emerge. A natural approach to overhaul

the successive examples is to re-handle the redesigned

database in cluster mode, which is wasteful in

certifiable applications. To handle the dynamic

database with succession inclusion, Lin et al. proposed

a FASTUP calculation [13] to incrementally keep up

and overhaul the found successive examples with

arrangement addition. The first database is still,

nonetheless, required to be rescanned if the found

successive example is expansive in the additional

groupings yet little in the first database in view of the

 Page 563

FASTUP idea. Hong et al. at that point amplified the

pre-expansive idea of affiliation lead mining to

separately keep up and overhaul the found consecutive

examples with succession inclusion [14] and

arrangement erasure [15] in a level-wise manner,

which requires more calculations of numerous

database rescans. Lin initially planned a quick

redesigned consecutive example (FUSP)- tree and built

up the calculations for productively taking care of an

incremental database with grouping inclusion [16].

The FUSP tree is implicit progress before the

arrangements are embedded into the first database.

Two sections with four cases are then separated in

light of the FASTUP idea to keep up and overhaul the

FUSP tree for later mining process. Lin et al.

additionally proposed the support calculation for

grouping cancellation [17]. The first database is, be

that as it may, required to be rescanned in the event

that it is important to keep up a succession which is

little in the first database yet substantial in the

embedded groupings with arrangement inclusion or a

succession is little both in the first database and in the

erased successions with grouping erasure. In this

paper, an Enhanced Apriority approach is proposed to

diminish the time utilization and memory space in

consecutive example mining framework. The proposed

approach depends on the most well known Apriority

algorithm which is having an issue of exercise in

futility and parcel of memory utilization. The

improved Apriority algorithm beats these two issues

by erasing the itemsets which are not visit. Whatever is

left of paper is sorted out as takes after: area II depicts

the points of interest of Apriority algorithm. Area III

depicts the points of interest of the proposed Enhanced

Apriority algorithm. The test results are represented in

area IV lastly the conclusions are given in segment V.

2. Apriori Algorithm

Agrawal and Srikant [6] firstly proposed Apriority

algorithm . This calculation depends on Apriori

property which expresses each sub (k-1)- Itemset of

regular k-Itemset must be visit. Two primary process

are executed in Apriority algorithm : one is applicant

era handle, in which the bolster tally of the comparing

sensor things is computed by checking value-based

database and second is substantial itemset era, which is

produced by pruning those hopeful Itemsets which has

a bolster number not as much as least limit. These

procedures are iteratively rehashed until competitor

Itemsets or huge Itemsets gets to be unfilled as in

illustration appeared in Fig 1. Unique database is

filtered first time for the competitor set, comprises of

one sensor thing and there support has checked, then

these 1-Itemset applicants are pruned by just

evacuating those things that has a thing tally not as

much as client determined edge (in above case

threshold=30%). In second pass database is filtered

again to create 2-Itemset hopefuls comprise of two

things, on the other hand pruned to delivered

expansive 2-Itemset utilizing apriori property. As per

apriori property each sub 1-Itemset of 2 regular

Itemsets must be visit. This procedure closes as in

fourth sweep of database 4-Itemset hopeful will be

pruned and huge itemset will be unfilled.

(a) (b) (c)

(d) (e)

(f) (g)

Figure.1 (a) original database, (b) candidate-1, (c)

large-1 items, (d) candidate-2, (e) large-2 items, (f)

candidate-3, (g) largest-3 items

There are two constraints of this calculation: one is

unpredictable hopeful itemset era handle which

expends substantial memory and tremendous execution

time and second issue is over the top database checks

 Page 564

for competitor era. By and large there are two

approaches to beat these constraints: one route is to

investigate distinctive pruning and separating systems

to make competitor Itemset littler. Second approach is

either supplant unique database with subset of

exchange in light of huge incessant Itemset or

minimizes the quantity of sweeps over the database.

3. Enhanced Apriori Algorithm

Despite being straightforward and clear, the Apriority

algorithm experiences some shortcoming.

Squandering of expensive time for checking all out

datasets and the lower least support or bigger itemsets

is the principle confinement couch priori calculation.

Since, it has exponential multifaceted nature; it

devours parcel of memory furthermore reaction time.

For instance, if the quantity of exchanges is 100, then

the aggregate number of itemsets will be 2100

furthermore it does mining twice. This issue can be

illuminated by decreasing the quantity of itemsets by

continuous itemsets mining (FIM) assistant diminishes

the time required for mining. Be that as it may, the

fundamental impediment with FIM is the utilization of

a great deal of space and gets to be wasteful for

ongoing itemset applications.

In this paper, another example mining methodology is

proposed to beat the issue of ordinary Apriori and FIM

calculations. We should characterize a few definitions,

for example, be the exchange set, be the arrangement

of things in every single exchange and k-thing set is

additionally an itemset with the end goal that it is a

subset to thing set I, . Here another parameter s

characterized as the support or the recurrence of event

of thing, characterized as , applicant itemset of size k

and be the successive itemset of size k. We first output

every one of the exchanges to produce F1 which

contains the things, their bolster check and Transaction

IDs where the things are found. And afterward we

utilize F1 as a partner to create F2, F3 … ., Fk. When

we need to produce C2, we make a self-join F1 * F1 to

develop 2-itemset C (x, y), where x and y are the

things of C2. Before filtering all the exchange records

to check the bolster tally of every competitor, utilize

F1 to get the exchange IDs of the base bolster tally

amongst x and y, and in this way examine for C2 just

in these particular exchanges. A similar thing applies

for C3, build 3-itemset C(x, y, z), where x, y and z are

the things of C3 and utilize F1 to get the exchange IDs

of the base bolster tally between x, y and z and after

that output for C3 just in these particular exchanges

and rehash these means until no new continuous

itemsets are distinguished. Presently to decrease the

memory space when extensive exchanges are there a

straightforward administer can be taken after: Let n be

the quantity of hubs in the FP-tree and k be the shade

of the groups of the exchanges in the database.

Presently, absolutely n > k. If so then k is at most n - 1.

Assume we have 1000 exchanges then k will be at

generally 999. There are such a large number of

conceivable outcomes of hues and every one of the

hues will be picked by us. All things considered,

unmistakably that prompts to a terrible decision.

Presently, let n>= k as this can likewise be conceivable

then k will be at most n yet at the same time the run

applies as n can't be not as much as k since then at

every level hubs will have a similar shading. It must be

same if the tree is completely needy. Since it consumes

exponential memory room, the potential outcomes of

hues getting produced ought to be minimized. This

should be possible by utilizing another scientific recipe

for looking at the quantity of hubs and hues i.e. n > 2k.

For this situation hues will be minimized definitely eg;

if n = 1000 now then k will be around log2(1000) =

10. The base 2 connotes that the bunch is getting

apportioned into 2 sections and selecting implies out of

the two just 1 is getting chosen. This can be any

number of segments relying upon client's decision.

Client will have the decision of choosing the base. The

estimation of the base is equivalent to the quantity of

allotments of the group. Utilizing this approach less

memory space is devoured at once and things can be

mines in a lesser measure of time. Consequently, it

fills the need.

 Page 565

Give us a chance to accept an extensive grocery store

tracks deals information by stock-putting away unit

(SSU) for every thing, for example, "Sugar", "Dal",

"Drain", "Wheat", "Oil", "Rice" is distinguished by a

numerical SSU. The general store has a database of

exchanges where every exchange is an arrangement of

SSUs that were purchased together. Give the database

of exchanges a chance to comprise of taking after

itemsets: The exchange set as appeared in Table 1. At

first, filter all exchanges to get visit 1-itemset I1 which

contains the things and their bolster tally and the

exchanges ids that contain these things, and after that

dispense with the competitors that are not visit or the

thing having bolster not exactly the base support as

appeared in table 2.

Table 1. The Transactions

Table 2. The candidate 1- itemset

The regular 1-itemset is appeared in table 3. The sets

which are in intense will be erased in regular 2-itemset

as appeared in table 4. The sets which are in strong

will be erased in successive 3-itemsets as appeared in

table 5.

Table 3. The frequent 1- itemset

Table 4. The frequent 2- itemset

Table 5. The frequent 3- itemset

The following stride is to produce competitor 2-itemset

from L1 split each itemset in 2-itemset into two

components then utilize l1 table to decide the

exchanges where you can discover the itemset in,

instead of looking for them in all exchanges. For

instance, we should take the primary thing in table.4

(Rice, Oil), in the first Apriori we check every one of

the 7 exchanges to discover the thing (Rice, Oil);

however in our proposed enhanced calculation we will

part the thing (Rice, Oil), into Rice and Oil and get the

base support between them utilizing L1 has the littlest

least support. After that we hunt down itemset (Rice,

Oil) just in the exchanges T1 the base certainty, and

 Page 566

afterward create all applicant affiliation rules. In the

past case, on the off chance that we tally the quantity

of examined exchanges to get (1, 2, 3)- itemset

utilizing the first Apriori and our enhanced Apriori, we

will watch the undeniable distinction between number

of checked exchanges with our enhanced Apriori and

the first Apriori. From the table 6, number of

exchanges in1-itemset is the same in both of sides, and

at whatever point the k of k-itemset increment, the

crevice between our enhanced Apriori and the first

Apriori increment from perspective of time expended,

and thus this will decrease the time devoured to create

applicant bolster tally. To get bolster mean each

itemset, here Oil, and T7. For a given regular itemset

LK, T4, discover all non-discharge subsets that fulfill

the base certainty, and afterward produce all applicant

affiliation rules. In the past case, on the off chance that

we tally the quantity of examined exchanges to get (1,

2, 3)- itemset utilizing the first Apriori and our

enhanced Apriori, we will watch the conspicuous

contrast between number of checked exchanges with

our enhanced Apriori and the first Apriori. From the

table 6, number of exchanges in1-itemset is the same

in both of sides, and at whatever point the k of k-

itemset increment, the hole between our enhanced

Apriori and the first Apriori increment from

perspective of time devoured, and consequently this

will lessen the time expended to produce competitor

bolster check.

Figure.2. FP-tree of the above illustrated Example

The last yield of the FP-Tree is as appeared in

Figure.2. Also, the base bolster tally is 3. Presently

locate the incessant examples from the FP-Tree. It's

minor. The things of the database and their recurrence

of events are appeared in Table:2 for everything.

Above all else, we have to organize all the itemsets as

indicated by their recurrence of events and afterward

we will see everything one by one from base to beat.

The things can be recorded as: Then we see Milk. To

begin with we have to locate the contingent example

base for Milk:3. This is because of the recurrence of

event of Milk. Presently go to Graph 1 and check the

Milks. There are 3 Milks and one event for each.

Presently cross base to best and get the branches which

have Milks with the event of Milk. We got 3 branches

and they are RDSO: 1, D: 1, RDS: 1. To guarantee that

you accurately got every one of the events of Milk in

FP-Tree include events of every branch and contrast

and the events recorded previously. For Milk we get

1+1+1 = 3 so it is right. At that point, consider Oil.

What's more, along these lines the accuracy will be

guaranteed for residual things. By doing this for all

things we can erase all different branches aside from

that and just that branch will stay in the FP-Tree which

we can draw again for Milk and similarly for every

single other thing.

4. Experimental Analysis

The performance evaluation of proposed approach is

examined by applying on various datasets. For every

itemset, the performance was measured by measuring

the time taken for every transaction and the reduced

amount of time at every transaction, the execution time

will vary with number of transactions. As the number

of transaction increases, the time taken for scanning

also increases. Initially, the time taken for execution is

evaluated for all transaction and the one transaction is

considered for evaluation with varying minimum

support. The obtained results are summarized as

follows:

Figure.3. Running time for all transactions

T1 T2 T3 T4 T5
0

5

10

15

20

25

R
u
n
n
in

g
 T

im
e
(s

)

Transactions

Apriori[5]

EApriori

 Page 567

Figure.3. shows the comparative analysis of the

proposed approach with earlier Apriori algorithm with

respect to the time taken for execution. The running

time varies from transaction to transaction. As the

number of transactions increases, the time required for

execution also increases. From the above figure, it can

be observed that the running time for proposed

approach is less compared to Apriori algorithm.

Figure.4. Running time variations w.r.t minimum

support

Figure.4 shows the time taken for execution with

respect to minimum support. As the minimum support

increase, the time taken for execution will be

decreased. The above figure compares the Apriori with

the proposed approach with respect to execution time

for varying minimum support. From the above figure,

it can be observed that for the proposed approach, the

time taken for execution at each and every minimum

support is less compared to Apriori.

Figure.5. Time consuming comparison for different

groups of transactions.

Figure.5 describes the details of the time taken for

execution with varying number of transaction. The

number of transactions is varied from 500 to 2500 and

the respective time consumption results for both the

Apriori and the proposed EApriori are shown in

figure.5. Since the proposed approach considers the

frequent itemset as one more parameter to perform

mining, the time taken by EApriori must be less when

compare to Apriori. In the above figure, the time taken

is increasing with number of transaction, but the

increment is less for EApriori compared to Apriori.

Figure.6. Number of nodes of tree for varying data

size

Figure.6 describes the number of node obtained for

varying data side such that the number of itemsets.

Generally, the dataset size increases, the number of

nodes also increases. From the above figure, the

proposed approach almost approaches the earlier

approach.

Figure.7. Runtime (ms) variations with varying

dataset size

The runtime generally increases with an increase of

dataset size. The above figure illustrates the variations

of runtime in milliseconds for a varying dataset size.

Form the above figure, it can be observed that the

proposed approach has less increment in the runtime

compared to earlier approach.

0.02 0.04 0.06 0.08 0.10
0

0.5

1

1.5

2

2.5

3

3.5

4

R
u
n
n
in

g
 T

im
e
(s

)

Minimum Support

Apriori[5]

EApriori

500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

50

Number of transactions

T
im

e
(s

)

Apriori[5]

EApriori

10 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

N
o
d
e
s

Dataset Size

Apriori[5]

EApriori

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

Dataset Size

R
u
n
ti
m

e
(m

s
)

Apriori[5]

EApriori

 Page 568

5. Conclusion

In this paper, a new approach was proposed for

sequential pattern mining based on the earlier Apriori

algorithm. This approach successfully reduces the

memory space and also reduces the time required for

execution even for large datasets. The enhancement if

the proposed approach can be observed when there is

an increment in the k itemsets. The time consumed to

generate candidate support count in our enhanced

Apriori is less than the time consumed in the original

Apriori. The results also reveal the efficiency of

proposed approach in the view of time consumption.

References

[1] R. Agrawal, T. Imielinski, and A. Swami,

``Database mining: A performance perspective,'' IEEE

Trans. Knowl. Data Eng., vol. 5, no. 6, pp. 914_925,

Dec. 1993

[2] M.-S. Chen, J. Han, and P. S. Yu, ``Data mining:

An overview from a database perspective,'' IEEE

Trans. Knowl. Data Eng., vol. 8, no. 6, pp. 866_883,

Dec. 1996.

[3] R. Agrawal and R. Srikant, ``Fast algorithms for

mining association rules in large databases,'' in Proc.

Int. Conf. Very Large Data Bases, 1994, pp. 487_499.

[4] S. B. Kotsiantis, ``Supervised machine learning: A

review of classi_cation techniques,'' in Proc. Conf.

Emerg. Artif. Intell. Appl. Comput. Eng., Real Word

AI Syst. Appl. eHealth, HCI, Inf. Retr. Pervasive

Technol., 2007, pp. 3_24.

[5] P. Berkhin, ``A survey of clustering data mining

techniques,'' in Grouping Multidimensional Data.

Berlin, Germany: Springer-Verlag, 2006,pp. 25_71.

[6] R. Agrawal and R. Srikant, ``Mining sequential

patterns,'' in Proc. Int. Conf. Data Eng., 1995, pp.

3_14.

[7] C. H. Mooney and J. F. Roddick, ``Sequential

pattern mining_Approaches and algorithms,''

ACMComput. Surveys, vol. 45, no. 2, pp. 1_39, Feb.

2013.

[8] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ``An

effective tree structure for mining high utility

itemsets,'' Expert Syst. Appl., vol. 38, no. 6, pp.

7419_7424, Jun. 2011.

[9] J. Pei et al., ``Mining sequential patterns by

pattern-growth: The PrefixSpan approach,'' IEEE

Trans. Knowl. Data Eng., vol. 16, no. 11, pp.

1424_1440, Nov. 2004.

[10] M. J. Zaki, ``SPADE: An efficient algorithm for

mining frequent sequences,'' Mach. Learn., vol. 42,

nos. 1_2, pp. 31_60, Jan. 2001.

[11] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong,

``Maintenance of discovered association rules in large

databases: An incremental updating technique,'' in

Proc. 25th Int. Conf. Data Eng., Mar. 1996, pp.

106_114.

[12] D.W.-L. Cheung, S. D. Lee, and B. Kao, ``A

general incremental technique for maintaining

discovered association rules,'' in Proc. Int. Conf.

Database Syst. Adv. Appl., Apr. 1997, pp. 185_194.

[13] M.-Y. Lin and S.-Y. Lee, ``Incremental update on

sequential patterns in large databases,'' in Proc. IEEE

Int. Conf. Tools Artif. Intell., Nov. 1998, pp. 24_31.

[14] T.-P. Hong, C.-Y. Wang, and S.-S. Tseng, ``An

incremental mining algorithm for maintaining

sequential patterns using pre-large sequences,'' Expert

Syst. Appl., vol. 38, no. 6, pp. 7051_7058, Jun. 2011.

[15] C.-Y. Wang, T.-P. Hong, and S.-S. Tseng,

``Maintenance of sequential patterns for record

deletion,'' in Proc. IEEE Int. Conf. Data Mining, Nov.

2001, pp. 536_541.

 Page 569

[16] C.-W. Lin, T.-P. Hong, W.-H. Lu, and W.-Y. Lin,

``an incremental FUSP-tree maintenance algorithm,'' in

Proc. 8th Int. Conf. Intell. Syst. Design Appl., Nov.

2008, pp. 445_449.

[17] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ``An

efficient FUSP-tree update algorithm for deleted data

in customer sequences,'' in Proc. Int. Conf. Innovative

Comput., Inf. Control, Dec. 2009, pp. 1491-1494.

